Is training all you need? Exploring further pretraining
and multi-task finetuning on BERT

Stanford CS224N Default Project

Richard Liu Umar Maniku
Department of Statistics, Stanford University ~ Department of Statistics, Stanford University
haoyuliu@stanford.edu manikui@stanford.edu
Abstract

While large language models have achieved state of the art results on many natural
language tasks, their size makes them computationally infeasible for many users.
Instead, we explore to what extent a model’s performance can be improved through
additional training, without changing its architecture. We investigate the effect
further pretraining and multi-task finetuning have on the model’s ability to generate
robust sentence embeddings, measured by its performance on sentiment analysis,
paraphrase detection and semantic textual similarity. We find that multi-task
finetuning with tweaks to the model’s prediction heads is the most performant
training approach, achieving an overall test score of 0.724, with 84.3% accuracy
on paraphrase detection - a significant improvement over our baseline model.

1 Key Information to include

External collaborators: None; Mentor: N/A; Sharing project: N/A

2 Introduction

BERT revolutionized the natural language modeling space when it was introduced in 2018, spawning
a series of ever-larger language models that have continuously improved upon existing results on
natural language tasks. At the core of this innovation lies the use of pre-trained contextual word
embeddings. [Sun et al.| (2019) noted that pre-training models on large corpora yield substantial
improvements in predictive performance for various NLP tasks, especially over embeddings learned
from scratch. This hints at the importance of generating robust sentence embeddings not only for
better downstream predictions, but improving how well a natural language system captures the
semantic meaning of text. Such a system is task-agnostic and ultimately more valuable as it provides
greater opportunity for analyzing large corpora without intensive fine-tuning.

As training large language models like GPT-4 is infeasible for many users, we were motivated to
explore to what extent a relatively smaller model’s performance can be improved through different
training approaches, without significant changes to its architecture.

This paper examines how to generate robust sentence embeddings from BERT that simultaneously
perform well on sentiment analysis (SST), paraphrase detection (Para) and semantic textual similarity
(STS). We investigate the effect the following extensions to BERT’s training process have on its
performance:

* Additional pretraining: We implement masked language modeling (MLM) to pretrain the
BERT model on in-domain and cross-domain data.

* Multi-task finetuning: We simultaneously finetune the model on our tasks by updating
both BERT and prediction head weights based on all tasks’ objectives simultaneously.

We additionally explore different prediction head configurations to increase their ability to decode
word embeddings generated by BERT to make predictions.

Of these extensions, we find that multi-task finetuning is the key to greatly improving performance
over the baseline implementation. Models trained just with multi-task finetuning far outperform those
pretrained using the MLM objective or jointly pretrained then multi-task finetuned. With further

Stanford CS224N Natural Language Processing with Deep Learning

tweaks to our multi-task finetuned model, including adding more layers and defining a correlation
loss function for the STS task, we are able to achieve our highest-performing model.

3 Related Work

Devlin et al.|(2018) introduced BERT, a bidirectional transformer-based language model pretrained
using MLM and next sentence prediction. This approach was significant in moving away from
unidirectional language models, which only restricts attention to previous tokens. This is particularly
harmful for sentence-level tasks where bidirectional context is necessary. Crucially, the MLM
objective works well within the BERT architecture as it allows the model to learn bidirectional
representations by combining left and right contexts to predict the masked word’s token. The
BERT architecture has minimal differences between finetuning and pretraining for downstream tasks,
alleviating the need for language models with complicated task-specific architectures. We leverage
this in our report by finetuning BERT model weights on our predictive tasks, then freezing those
weights to just train the task-specific prediction heads.

Sun et al.| (2019) expands on Devlin et al.’s work by presenting a task-agnostic framework for
finetuning BERT for text classification. They first propose to pretrain using the MLM objective on
in-domain and cross-domain data. This differs from Devlin et al., who pretrains on a general domain.
Sun et al. then multi-task finetunes simultaneously on all tasks before optionally performing a final
finetuning round on each target task.

Sun et al. follow the multi-task learning procedure proposed by |[Liu et al.| (2019) that allows a
language model to learn representations across multiple natural language tasks. They use minibatch
stochastic gradient descent that updates the model based on the minibatch’s task-specific objective.
This allows the model to optimize for the sum of all task objectives. Liu et al. note that this approach
is particularly useful for related tasks as the knowledge the model learns from one task can jointly
benefit the other tasks, which matches our use case.

Ultimately, Sun et al.’s work shows that a combination of finetuning, pre-training and multi-task
finetuning can further improve upon BERT’s state-of-the-art performance on natural language tasks.
Notably, in-domain and cross-domain further pretraining result in greater performance improvements
than completing multi-task finetuning prior to single-task finetuning. We aim to assess the validity of
their training framework on our prediction tasks by assessing each approach’s impact on performance
in isolation, then combining them in different configurations.

4 Approach

4.1 Baseline minBERT model

Our baseline model consists of the provided minBERT model and ADAM optimizer (Staff, |2023)),
with pretrained BERT weights from Huggingface’s bert-base-uncased model [1_1

We implement prediction heads that use the generated BERT word embeddings to output the relevant
logits for their respective prediction task. For our BERT model, each embedding layer has dimension-
ality k = 768. For SST, we implement a linear layer with dropout that takes in v € R, the final layer
[CLS] token embedding, and outputs a length-5 vector of logits corresponding to the sentiment labels
being predicted. We use cross-entropy loss and pass the logits through softmax to get the predicted
sentiment class. For para, we take in u, v, the [CLS] embeddings of the candidate sentences, and
concatenate them: [u, v] € R2**_ This is fed into a linear layer with dropout and a sigmoid function
to output a single logit denoting whether the sentences are paraphrases. We use binary cross-entropy
loss to train this layer. Similarly, STS has its own linear layer with dropout but instead outputs a logit
denoting how similar they are, and uses MSE loss.

4.2 Further pretraining

We pretrain our BERT model using the masked language modeling (MLM) objective. We implement
Devlin et al.| (2018)’s procedure of random masking where 15% of the wordpiece tokens are replaced
with the [MASK] token 80% of the time, a random token 10% of the time or the same token |’} This
prevents mismatches during pretraining and fine-tuning, where the [MASK] token does not appear.

"For more details, refer to http://web.stanford.edu/class/cs224n/project/default-final-project-bert-handout.pdf
’Implementation adapted from https://huggingface.co/docs/transformers/main/tasks/masked_language_modeling

We add a MLM prediction head to our BERT model that takes in each token’s final hidden state and
outputs o € RIVI. This vector is passed through a softmax over the vocabulary size |V'| to predict the
original token, using cross-entropy loss evaluated only on masked tokens.

Sun et al.| (2019) note of the potential performance BERT can gain from cross-domain pretraining, as
Devlin et al. pretrained on a large general corpus. It promises to expose our baseline model to a larger
set of data, giving it more context to the types of language it will be expected to generate predictions
from. We thus run the MLM objective on our domain-specific data using two approaches:

* In-domain pretraining: The pretraining set is obtained from combining data from related
tasks, as text from one set may give additional context that helps the model predict on related
tasks. For example, combining Para and STS data may help as they both focus on predicting
pairwise sentence similarity. We experiment with combining SST and Para, SST and STS
and Para and STS datasets.

* Cross-domain pretraining: The pretraining set is a combination of all tasks’ training sets.

When combining datasets, we downsample each to the minimum size across the 3 training datasets, so
as to avoid one being over-represented. We observe the model’s performance on the three predictive
tasks following each of the aforementioned pretraining strategies. While BERT pretraining includes
the next sentence prediction task, we did not implement this as our datasets are generally disjoint:
adjacent sentences are not necessarily part of the same text.

4.3 Multi-task finetuning

We implement multi-task finetuning, which updates both BERT and prediction head weights based
on all tasks’ objectives simultaneously. Following [Liu et al.| (2019), we experiment with two
different round-robin approaches for iterating through tasks and their respective datasets. The first
is Sequential-Round-Robin, in which we first get 3 separate data loaders from our datasets, each
downsampled to have the same batch size. We then zip the 3 data loaders and at each iteration,
concatenate the batches to train the model on the combined batched dataset sequentially [batchgsr,
batchp,,, batchsts] [’} The second is Drop-Round-Robin, where at each iteration, we randomly select
one batch and its corresponding task among the 3 batches, and just train the model on said task|’| Both
approaches approximately optimizes the sum of all task objectives, £pu1ti = CssT + para + CsTs
(B1 et al., 2022)), allowing the model to update its embeddings and learn for all tasks concurrently.

4.4 Prediction head architectures

We experiment with different configurations for the prediction heads as well as shared layers, as
displayed in figure 1:

» Within the classification layers for para and STS, we investigate Reimers and Gurevych
(2019)’s method of concatenating the sentence embeddings u, v with their absolute value
element-wise difference |u — v|, before passing this through a linear layer with dropout.

* We add a linear layer with dropout and leaky ReLLU activation that is shared across tasks. It
takes in the final layer [CLS] token embedding u € R* and outputs a vector representation

s € R* which is passed into each task-specific head.

* Within the prediction heads for Para and STS, we calculate the pairwise [CLS] embedding
cosine similarity: cosine-sim(u,v) € R¥ and add this to the output from the linear layer:
0 =W (u,v,|u —v|) + cosine-sim(u, v). For Para, we pass this summed output of logits
through a sigmoid and calculate the binary cross entropy loss. For STS, we define a
correlation loss function between the predicted text similarity scores and the labels.

3Details in Appendix A.1 Algorithm 1
“Details in Appendix A.1 Algorithm 2

X = tokenized sentence or pair of sentences
(BERT Wordpiece Tokenizer)

BERT encoder
(Hidden layers: 12, Hidden dimensionality: 768)

........... Fommmm -
Pretraining. 1 Finetuning
v v
X token X, token X, token [CLS] token
embedding | embedding embedding embedding

I
MLM layer SST classification Pa_lr_Wls_e text PalrWl_se text
layer classification layer regression layer
2

2
H . Binary cross-entropy] e A
Cross-entropy loss [Cross-entropy loss] [i { MSE loss

; s "

[Softmax] [Sigmoid]

¢ Semantic
Masked Sentence Paraphrase Textual
token ID sentiment prediction Similarity
prediction prediction prediction

Figure 1: Final model architecture

4.5 Training approaches

Figure 2 shows the training approaches we explore:

1.

Baseline: We freeze the BERT weights and just finetune the prediction heads. Using this,
we can evaluate how robust the baseline embeddings are when predicting across our tasks.

. Sequential Finetuning (SFT): We train both BERT weights and prediction heads on each

task consecutively, passing the finetuned model with the best dev performance from each
task onto the next one. Then, we freeze the BERT weights and re-train just the prediction
heads to account for the new embeddings resulting from the previous finetuning.

. Further pretraining (MLM): We further pretrain just the BERT weights using the MLM

objective. Then, we freeze them and only train the prediction heads.

. Multi-task finetuning: We train both BERT weights and prediction layers using multi-task

finetuning. Then, we freeze the BERT weights and only re-train the prediction heads.

. Combination: Last, we follow Sun et al.’s framework where we further pretrain, then

multi-task finetune the BERT weights from the pretrained model and the prediction heads.
Following this, we freeze the BERT weights and re-train the prediction heads.

We investigated the model’s performance following each of the aforementioned training approaches.

1. Baseline
E »| Further Pretraining:

MLM

Y

%

BERT-Base-Uncased

Embeddings Multi-task Finetuning

Prediction head
Finetuning

\Vl

Output

WY

E Sequential Finetuning

Figure 2: Different training approaches

5 Experiments
5.1 Data

Each of our datasets were split into train/dev/test sets. SST: Stanford Sentiment Treebank dataset
of 11,855 sentences with 5 class labels; CFIMDB dataset of 2,434 sentences with binary labels.
Para: Quora Question Pairs dataset of 400,000 questions pairs with binary labels. STS: SemEval
Benchmark dataset of 8,628 sentence pairs with continuous score labels in the range [0, 5].

5.2 [Evaluation method

For MLM, we evaluate using the model’s cross-entropy loss on a held-out dev set. For our main
prediction tasks, we evaluate the model’s accuracy on the dev set for SST and Para. For STS, we
calculate the Pearson correlation of the true similarity values against the predicted similarity values
across the dev dataset. For a holistic evaluation across model configurations, we use an overall score
that is the average of the prediction task metrics.

5.3 Experimental details

‘We maintain the same set of hyperparameters across our experiments and training approaches, for
consistency. We set batch size to 8, dropout probability p = 0.1 and learning rate to le-5. We
find that a lower learning rate tends to avoid the catastrophic forgetting problem where the model’s
performance on a task it was trained on drops after training on a different task. This is because the
knowledge it extracted from the previous task is erased when it learns the new task. Sun et al. found
that BERT training fails to converge with a learning rate greater than le-5, and our experiments
validate this. Further we save the model with the best dev set performance for each experiment.

As our datasets have different sizes, we downsample the training and dev sets for MLM and Multi-task
finetuning. This is to avoid the Para dataset exerting large influence on the model training process
due to its relatively large size. We use the full dataset for each task during prediction head finetuning.
We run all baseline, SFT and Multi-task finetuning experiments for 10 epochs while MLM runs for
20 epochs. Model training takes about 1.5 hours for sequential finetuning with 10 epochs for all
tasks, 2 hours for MLM on 20 epochs and 1 hour for Multi-task finetuning on 10 epochs on an AWS
g5.xlarge instance with a NVIDIA A10G GPU.

5.4 Results and discussion

Before discussing the results from our different training approach experiments, we first investigate
the best prediction head configurations among those discussed in section 4.4. In table 1, we start
with our baseline model from section 4.1 and iteratively amend the prediction head configuration.
We maintain the amendment for subsequent experiments if it improves the overall score. We use our
baseline training approach for these experiments.

Prediction head configuration Score SST Para STS
Baseline 0.388 0.326 0.630 0.206
Para and STS: SBERT modification 0405 0.326 0.655 0.234
All: Shared layer 0.363 0308 0.569 0.212
STS: Cosine similarity with MSE loss 0.397 0326 0.655 0.209

STS: Cosine similarity with correlation loss 0.410 0.326 0.655 0.248
Table 1: Results on dev set for different prediction head configurations.

Table 1 shows that the SBERT modification of concatenating the sentence embeddings u, v with
their absolute value element-wise difference |u — v| increases performance relative to the baseline
on both the Para and STS tasks. Further, implementing cosine similarity with correlation loss also
improves STS performance, beating MSE loss which only slightly outperforms the baseline. This is
perhaps because adding cosine similarity between u, v gives the model another notion of semantic
closeness aside from what it learns within the linear layer. As cosine similarity measures the angle
between two vectors, the training process will make two similar sentences have similar directions in
its high dimensional embedding space. Combining cosine-similarity with linear layers allows our
prediction head to measure both the distance and angle between two sentence embedding vectors.
We are surprised to find that adding a shared layer was ineffective, as it reduces the model’s overall

performance. We had believed that the layer could encode common knowledge across the tasks,
allowing the prediction heads to focus on the nuances of their respective tasks. However, it looks as if
the shared layer just adds more confusion, perhaps providing conflicting signal with the prediction
head layers. Overall, we find that SBERT + Cosine similarity with correlation loss on STS gives the
best overall dev performance, so we will keep these two updates in later experiments.

Training Approach Score SST Para STS

SST and Para 0.399 0.311 0.646 0.240
SST and STS 0.375 0.306 0.620 0.198

MLM Paraand STS 0405 0325 0.645 0244
All 0380 0309 0637 0.193

. _ Sequential 0723 0512 0.844 0814
Multi-task Round Robin - 1y) 0.657 0513 0788 0.669

Table 2: Results on dev set of models either pretrained on MLLM or Multi-task finetuned.

We see in Table 2 that downstream performance following further pretraining greatly depends on the
dataset used. Pretraining on SST and STS and, surprisingly, cross-domain pretraining on all datasets,
yields lower overall performance than the baseline. This may be because the texts are conflicting in
grammatical structure or context in ways that hurt the model’s performance. However, pretraining on
Para and STS datasets improved performance over the baseline, but was still lower than using the
baseline embeddings with our prediction head amendments.

Models that are multi-task finetuned clearly outperform those that are further pretrained. This
performance difference was unexpected but is likely because multi-task finetuning adjusts both BERT
and prediction head weights according to all tasks in unison. With further pretraining, the model may
have just learned the datasets instead of useful context for the tasks. Sequential multi-task finetuning
performs best as it uses the maximum amount of data (concatenation of 3 tasks’ batches) for each
epoch. With this approach, the model is exposed to a broader range of text and is always evenly
exposed to the 3 tasks. As Drop-Round-Robin randomly selects a task for each batch and drops the
rest, it loses potentially helpful information encoded in the other batches.

Multi-task Sequential Round Robin

Score SST Para STS

SST + Para 0.652 0.518 0.792 0.647

MLM SST+STS 0.650 0.516 0.791 0.642
Para+ STS 0.644 0.506 0.797 0.630

All 0.647 0.492 0.785 0.663

Table 3: Matrix of results on dev set of models pretrained on MLM then Multi-task finetuned.

Combining a further pretrained model with multi-task finetuning improves performance over further
pretraining, but still lags behind multi-task finetuning. This highlights how multi-task finetuning is
the key to better downstream performance, and that the embeddings pretrained with MLM are not
as robust as those from the baseline. We experimented with pretraining for more epochs and lower
learning rates to avoid the catastrophic forgetting problem, but multi-task finetuning still outperformed
pretraining. This was surprising as Sun et al. found that multi-task finetuning improved performance
less than further pre-training, but it may be because they used different but related datasets to pretrain
while we used the same ones for both pretraining and finetuning.

.. Dev Set Test Set
Training Approach
Score SST Para STS Score SST Para STS
1. Baseline 0.388 0.326 0.630 0.206
2. Sequential Finetuning 0.669 0.356 0.809 0.843
3. MLM 0405 0325 0.645 0.244
4. Multi-task 0.723 0.512 0.844 0814 0.724 0.537 0.843 0.793

5. MLM + Multi-task 0.652 0.518 0.792 0.647
Table 4: Results from best models for each training approach.

6

Table 4 demonstrates the power of careful model finetuning. Training models with multi-task
sequential round robin finetuning yielded the best overall score on the dev set, and equally well on the
test set, although the STS task slightly overfit. Sequentially finetuning the model on SST, Para then
STS also performed well. However, its performance was likely hindered by catastrophic forgetting as
parameter updates that benefitted the SST task were forgotten during Para and STS updates. This
is likely why Multi-task finetuning outperformed it as the gradient updates were made to minimize
the summed loss across the 3 tasks. Its good performance perhaps follows analogously to when
people apply knowledge from related tasks to help learn a new task (Liu et al.,|2019). The multi-task
finetuning process allows our model to learn to generalize its embeddings to all 3 tasks. Sun et al.’s
training framework of combining pretraining and multi-task finetuning did improve performance
from the baseline. However, further pretraining seems to have hindered more than it helped.

6 Analysis

6.1 Error analysis on best model SST

Text: "the film is quiet, threatening and unforget-
table."
Label: 4; Predicted: 1

-06

The confusion matrix on the left shows that the
model performs relatively well when predicting 1
or 3, and worse on the extremes. This is surprising
as extremely negative or positive text should be
easier for the model to identify due to, for example,
the strength of the language used. However, we
see in the example above that this is not necessarily
true. The model predicted the text as slightly nega-
.» tive when it was actually a very positive statement.
It probably associated "quiet" and "threatening"
with having negative connotations when they were
o1 the features that made the movie "unforgettable".

03

Nevertheless, the model seems to favor predict-
. " ’ ’ ’ ing sentiments in the middle, between 1 and 3.

preicted We see this as most very negative text are actu-
ally predicted as relatively negative by the model.
Similarly, most very positive text is classified as
relatively positive. The model is biased towards
predicting a middle ground.

X

°

Figure 3: Confusion Matrix of SST predic-
tions from our best model

¢ | Para

Text A: "how did you learn java?"
Text B: "how do i learn java internals?"
Label: O; Predicted: 1

-07

Overall, the model performs well on paraphrase
prediction. From the confusion matrix, recall is
very similar to accuracy. A lot of the sentence
s pairs the model got wrong were very subtle. For
example, at first glance, texts A and B are similar
as they both talk about learning Java. However,
A asks about one’s experience while B asks about
how to learn one aspect of Java. This difference
s would require the model to encode more of the
sentence’s grammatical structure through parts-of-
speech tagging, for example. The pairs of text
the model is currently predicting incorrectly may
o i require more explanatory power through additional
e layers or task-specific feature engineering in its
Figure 4: Confusion Matrix of Para predic- prediction head.
tions from our best model

Actual

0.7 Predicted
Label

STS

Text A: "on monday, as first reported by cnet-
041 news.com, the riaa withdrew a dmca notice to
031 penn state university’s astronomy and astro-
physics department.”

Text B: "last thursday, the riaa sent a stiff

o1 copyright warning to penn state’s department
ool : ; : : : of astronomy and astrophysics."
o 1 2 3 4 5
Similarity Score Label: 1 .75

Predicted: 5

Figure 5: Histogram of the distribution of pre-
dicted STS Dev Similarity Scores from our best
model

The above histogram shows the model is heavily biased to predicting scores close to 5 (similar
sentences), and neglects predicting that sentences are not similar. In fact, the distribution of predictions
is generally upward biased. We see an example above where both texts do talk about the same event -
a DMCA notice. However, text A reports on the notice’s withdrawal while text B talks about it being
sent. The model placed too much focus on both sentences mentioning this notice/warning but failed
to identify key words like "withdrew" and "sent" that indicate the texts are not similar. This may
be because of our choice of loss function. Although correlation loss performs well, it may cause
the predicted similarities to not necessarily be close to true labels, but parallel them. For example,
labels [1,2,3] and labels [3,4,5] may have a high correlation but poor MSE loss. Thus, it is worth
further exploring this tradeoff when using correlation loss. Also, it is important to determine whether
correlation is a good evaluation metric on the semantic similarity analysis task that may cause the
same problem as us.

7 Conclusion

We find that multi-task finetuning is the key to extracting better performance from a model. However,
carefully engineering the task-specific prediction heads is also essential as simple modifications
can yield big improvements in downstream performance. For example, we showed that as Para and
STS both measure some notion of pairwise sentence closeness, incorporating embedding distance
measures in different ways lifted performance beyond our baseline. However, we note that our
approach did not exhaustively try every combination of prediction head configurations. We did
not pursue this as there were at least 85 different combinations of prediction heads and training
approaches to explore. With more time, the exact optimal configuration for our downstream tasks
could be found following an exhaustive search or an ablation study.

As to the training approaches we investigated, multi-task round robin finetuning performed better
than sequential finetuning, as the latter falls victim to the catastrophic forgetting problem, where the
model forgets previously trained tasks. Pretraining using the MLM objective did not yield significant
performance improvements, even when paired with multi-task finetuning. While this does not align
with [Sun et al.| (2019)’s findings, furter pretraining might still be useful if the model is trained on
multiple similar datasets as that of the downstream tasks.

Further, as this paper focuses on examining the impact of different training approaches, we maintained
the same set of hyperparameters for consistency. There is tremendous scope for finding hyperparame-
ters that work well for a given training approach. Learning rates played a big role and we saw sizeable
performance differences with small learning rate changes in our experiments. Another example is for
adding shared layers or additional prediction head layers. We found that adding a second layer, that
halved the input dimensionality, to each prediction head helped for some tasks. There may have been
some configuration of number of layers and their dimensionalities that would have improved results.
With more time, we would explore this further.

In general, our current best model almost doubles its overall dev score compared to the baseline
model. We have shown that with careful selection of prediction heads and using multi-task finetuning,
a simple model can be trained to generate robust sentence embeddings for a variety of tasks.

References

Qiwei Bi, Jian Li, Lifeng Shang, Xin Jiang, Qun Liu, and Hanfang Yang. 2022. Mtrec: Multi-task
learning over bert for news recommendation. In Findings.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of|
deep bidirectional transformers for language understanding.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019. Multi-task deep neural
networks for natural language understanding.

Nils Reimers and Iryna Gurevych. 2019. |Sentence-bert: Sentence embeddings using siamese bert-
networks.

CS224N Course Staff. 2023. (CS224N Default Final Project: minBERT and Downstream Tasks!.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. 2019. How to Fine-Tune BERT for Text
Classification?

https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1901.11504
https://doi.org/10.48550/ARXIV.1901.11504
https://doi.org/10.48550/ARXIV.1908.10084
https://doi.org/10.48550/ARXIV.1908.10084
http://web.stanford.edu/class/cs224n/project/default-final-project-bert-handout.pdf
https://doi.org/10.48550/ARXIV.1905.05583
https://doi.org/10.48550/ARXIV.1905.05583

A Appendix

A.1 Multi-task finetuning round-robin algorithms

Algorithm 1: Sequential Round Robin, adapted from Liu et al.|(2019)

Set the number of epochs to train: epochs ;

We have total 3 tasks, and ¢ is the task number;

fortin1,2,3do
| Pack the dataset of task ¢ into mini-batch as a Data-Loader: Dy

end

for epoch in 1,2,. .. epochs do

for batch in Zip(D1, Do, D3) do

batchgssTts, batchpgrq, batchsrs < batch;

1. Compute cross-entropy loss for SST using batchgsgsr, compute gradient then update
the model,

2. Compute binary cross-entropy loss for Para using batchpg,q, compute gradient then
update the model;

3. Compute correlation loss for STS using batchsrs, compute gradient then update the
model;

end
end

Algorithm 2: Drop Round Robin, adapted from|Liu et al.|(2019)

Set the number of epoch to train: epochs;

for t in SST, Para,STS do
| Pack the dataset of task ¢ into mini-batch as a Data-Loader: D;

end

for epochin 1,2,... epochs do

for batch in Zip(DSST, Dpara, DSTS) do

batchgst, batchpgrq, batchsts < batch;

randomly choose a from {1, 2, 3};

if « = 1 then

Compute cross-entropy loss for SST using batchgsT, compute gradient then update
the model,

else if ¢ = 2 then

Compute binary cross-entropy loss for Para using batch p,.q, compute gradient then
update the model;

else if ¢ = 3 then

Compute correlation loss for STS using batchgsrs, compute gradient then update the
model;

end
end

10

	Key Information to include
	Introduction
	Related Work
	Approach
	Baseline minBERT model
	Further pretraining
	Multi-task finetuning
	Prediction head architectures
	Training approaches

	Experiments
	Data
	Evaluation method
	Experimental details
	Results and discussion

	Analysis
	Error analysis on best model

	Conclusion
	Appendix
	Multi-task finetuning round-robin algorithms

