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Abstract
We have seen the proliferation in English proficiency assessments for non-native
speakers–especially in writing and speaking–for academic and professional op-
portunities. While human graders have been the gold standard for evaluation,
automated tools provide a scalable, objective alternative. We propose transformer
models for written and spoken proficiency (based on DistilBERT and Wav2Vec2,
respectively) finetuned on datasets from ETS, ICNALE, ELL, and Speechocean.
We evaluated various models for both essay and speech assessments and found
that simple models built on top of the transformers perform best. Our best models
achieve 0.4254 and 0.5718 test R2 for the written and spoken assessment total
scores, respectively. Our predicted written and spoken assessment scores have cor-
relations of 0.66 and 0.77 with the corresponding human-graded scores. The results
of our study suggest that transformer models have the potential to be a reliable and
efficient alternative to human graders for English proficiency assessments.
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2 Introduction
Our primary goal is to create a neural network to score written and spoken proficiency exams (e.g.,
TOEFL, FCE) taken by ESL (English as a Second Language) learners. Proficiency exams are widely
used by universities in the United States as an admission criterion for international students. By
creating a more robust, accurate autograding system that can outperform simpler models, we have the
potential to (1) improve efficiency in grading these exams (autograders score essays more quickly
than their human counterparts) and (2) create an analytical approach to scoring these exams. This
work could serve as a major asset and cost-saver for testing companies if the autograder can mirror
the scores of human graders well. Additionally, this tool could be a valuable diagnostic for students
preparing to take these proficiency exams. For evaluating essay responses, we built a model on top of
the DistilBERT transformer. We then trained single and multi-output networks to predict overall score
as well as categorical sub-scores to understand the grading criteria. Our approach to modeling spoken
English profiency exams consisted of building on top of Facebook’s Wav2Vec2 transformer. We
trained a multi-output network to predict a variety of sentence-level sub-scores as well as an overall
score. We also utilized human-graded word and phoneme-level sub-scores as additional targets in a
more complex model, but did not find significant improvements with the more granular targets. We
hope to show that neural networks can learn human-graded proficiency scoring and predict similar
scores to humans on unseen test examples.

3 Related Work
Prior research in assessing proficiency exams has centered around (1) simpler models for evaluation
and (2) error detection. In particular, Yannakoudakis et al. (2011) focused on using support vector
machines (SVMs) to predict scores for First Certificate in English (FCE) exams. The model focuses
on the FCE essays, so it does not guarantee generalizability across tests. In contrast, we aim to create
a model that works for different examinations–such as the FCE exam as well as the TOEFL and other
proficiency tests–rather than confining ourselves to a single exam. We believe that a deep-learning
implementation for scoring could prove more useful for such generalizability than simple SVMs.

In a related paper, Rei and Yannakoudakis (2016) utilized the same FCE data but focused instead
on implementing neural networks for error detection. Prior error detection research focused on
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context pattern matching or learning weights for context n-grams, but such methods struggled due
to data sparsity and limitations from fixed context sizes. Rei and Yannakoudakis (2016) extended
the prior research in error detection by generalizing to create an all-encompassing, deep-learning
error detection model. They incrementally incorporated training data from different data sources to
improve their model’s performance, demonstrating the effectiveness of adding more training data
(from different sources). This incremental incorporation of different data sources inspired us to use
different datasets in a hierarchical or iterative model to learn more about the structure of language,
though we plan to do so for scoring systems, not error detection.

Rei and Yannakoudakis (2016) attempted to perform error detection in English essays by non-native
speakers, which correlates with our goal of creating an effective autograder for English proficiency
tests. They suggest methodologies like the bidirectional LSTM and iterative training on increasingly
more data, providing us with an example to consider when approaching written exam evaluation. That
said, they did not provide suggestions about generating scores: they only focused on error detection.
Ultimately, our work aims to combine the results from Yannakoudakis et al. (2011) and Rei and
Yannakoudakis (2016) to create an autograder system that mimics human graders for overall scores
(rather than error detection), but with a deep-learning focus (rather than SVMs). We do not aim to
simply combine the results of these two papers, but plan to expand on them by considering different
modalities: we will apply our approach for proficiency assessments to both text and audio mediums.

Additionally, machine learning scientists have used convolutions in deep learning and natural lan-
guage processing for tasks like summarization or information extraction (Lopez and Kalita, 2017).
Proficiency scoring is similar to these tasks: we aim to consider the document (essay or audio) in
total to assess overall quality, so surrounding context may prove important–similar to how context is
important when extracting information. As such, we experimented with using convolutions after the
transformer to see if nearby context would improve overall quality of predicting proficiency scores.

One paper related to speech assessment models involved a model-based approach to spontaneous
(not designed) spoken English (Wang et al., 2018). Wang et al. (2018) argued that such speech data
from non-native speakers provides signal into mastery of language. In their models, they extracted
features from transcribed text rather than modeling the audio data directly with a transformer. While
Wang et al. (2018) obtained satisfactory results, they mentioned the difficulties with transcribing
speech; we take a different approach by modeling with a speech model transformer to predict a
variety human-graded sub scores. We show that we can capture signal without feature engineering
from transcribed text, which highlights the power of Facebook’s Wav2Vec2 transformer.

4 Approach
When modeling essay scores, we built on the DistilBERT transformer because it is a fast, cheap,
and light transformer from Hugging Face that utilizes the BERT architecture (Sanh et al., 2019).
We then added a single dropout and a linear layer to build our baseline model. Our baseline was
trained exclusively on one dataset and evaluated on our holdout test set from a separate exam. We
trained all other basic models on a single dataset and incorporated additional dropout or nonlinearities
(ReLU or 1-dimensional convolution), alternating between linear layers, dropouts, and nonlinearities.
Nonlinearities could improve expressivity and performance and, in particular, convolutions could take
into account nearby context when assessing the essay’s quality (Lopez and Kalita, 2017). Additionally,
incorporating dropout before each linear layer further decorrelates the weight matrices.

Figure 1: Hierarchical Model

We aimed to leverage multiple datasets, so we considered architec-
tures that used multiple sources. Our iterative models were trained
sequentially on different data: we finetuned on one dataset and loaded
these adjusted parameters to subsequently finetune on a separate
dataset. Doing this allowed us to train on different sources as sug-
gested by Rei and Yannakoudakis (2016). Our hierarchical model
trains simultaneously on two different datasets. One dataset has 6
category scores while another has an overall score: the hierarchical
model connects a length-6 vector to a single output, linking the two
outputs (Figure 1). We simultaneously train on the loss for the length-
6 vector and the final output, interleaving data from both sources into
the same batch to reduce variance in the loss and gradient between
batches. If the hierarchical model performed well, we then could
establish a causal link between the 6 categories and the overall score.
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Figure 2: Multi-task Model

For the multi-task model, we still trained on two different datasets
simultaneously, but rather than having the length-6 vector pass through
to a single output, we had our final output as a length-7 vector. The
first 6 elements correspond to the ELL categories and the last element
corresponds to the overall score for the ICNALE data (Figure 2). For
prediction, we take the last element as our prediction of the overall essay
score. We considered this as an alternative to the hierarchical in case
the 6-1 hierarchical structure provided too strong of a constraint on the
model that hindered performance. A multi-task response allowed us to
simultaneously optimize for granular and high-level overall assessment
without that relational constraint.

Our final model type was an ensemble model, which simply combines the predictions of multiple
models and computes a weighted average as the final prediction. For all implementations (written and
speech), we added neural network architecture with PyTorch to the existing transformer for finetuning.
We also note the transformers used (i.e., DistilBERT) are not novel: we utilize Hugging Face (Sanh
et al., 2019). Additionally, we incorporated boilerplate code from CS224N Assignment 5 for training.

Our first speech modeling approach is a sentence-level multi-output model to predict human-graded
speech scores for English language learners. We built this model on top of Wav2Vec2 with audio files
from English learners and corresponding scores (Baevski et al., 2020). Wav2Vec2 processes audio
files into useful representations for downstream tasks by training on speech audio and finetuning on
transcribed speech. Wav2Vec2 is trained using connectionist temporal classification (CTC) which is
a useful technique for handling sequence tasks like speech in which the timing varies. Wav2Vec2
also can handle larger audio input when compared to similar models such as Whisper (Radford et al.,
2022). We passed tokenized audio input to Wav2Vec2 and then utilized the last hidden state to pass
to the rest of the network. We added a dropout layer (p = 0.3) followed by a linear layer to predict
human-graded sentence scores. This final linear layer outputs 4 sentence-level scores: accuracy,
fluency, prosodic, and total score. This multi-output technique is powerful since these sentence-level
subscores are related and can help the model learn more specific traits of English proficiency. We
simply used the average mean-squared error across the 4 scores as our loss function for this network.

Figure 3: Granular-Output Speech Model

The second model that we implemented for speech involved the utilization of more granular human-
graded scores. Along with sentence-level scores, our dataset contained word-level scores (accuracy,
stress, total score) and a phoneme-level score (accuracy). We tried many techniques to incorporate
these granular sub-scores and arrived at adding extra regression heads (Figure 3). The sentences in
our dataset were all very short in length: each contained at most 10 words and 30 phonemes. Hence,
we output 3 sub-scores for each of the potential 10 words in the sentence (total output of length 30
for word-level output). Similarly, we output a vector of length 30 which correspond to phoneme
accuracy for the possible 30 phonemes in the sequence. As such, this model in total had 64 outputs:
4 on sentence-level, 30 on word-level, 30 on phoneme-level. For the loss function, we calculated the
average mean-squared error for each of the 3 output levels separately (sentence, word, phoneme)
then summed these losses for our loss criterion. We attempted to utilize weights to allow for a more
optimal weighting of losses over the 3 levels, but did not find any significant improvements. When a
sentence contained fewer than 10 words or 30 phonemes, we masked the loss for these outputs.

5 Experiments
5.1 Data
Our test essay data from Cambridge includes 1,223 hand-graded exams, on a 0-40 scale, from the
First Certificate in English (FCE) (Yannakoudakis et al., 2011). For the training datasets, we have
data from ICNALE, with 5,600 writing samples by college students in ten different Asian countries,
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with scores on a 0-100 scale for approximately 600 essays. We also have data from ELL that provides
a more granular score of 6 constituent categories, each on a scale of 1-6 with half point increments,
for 3,911 essays. Our third training dataset from ETS provides 12,100 scored essays (Blanchard
et al., 2014). We primarily used this dataset in initial stages of training/finetuning, as the scores were
categorical: “low,” “medium,” or “high.” This data allowed us to help the model gain a general idea
of a “bad,” “okay,” or “good” essay before proceeding to continue training with ELL, ICNALE, or
both to get specific scores for these essays. We scaled the numeric essay scores to 0-100 to make the
deviations comparable across datasets.

For speech, we used a dataset from Speechocean with 5000 English sentences by 250 different
non-native speakers who speak Mandarin as a first language (Junbo Zhang, 2021). The sentences
were all very short as previously mentioned and we processed the WAV audio files through Hugging
Face’s audio dataset framework. The Speechocean data includes human-graded sentence-level scores
(averaged from 5 experts) for accuracy, fluency, prosodic, and total (all graded on a scale of 10).
The dataset also included human-graded scores for each phoneme (out of 2) as well as word-level
scores for accuracy, stress, and total (out of 10). The sentence and word-level scores were all integers,
whereas the phoneme scores had one decimal place. We scaled all targets to be out of 100 for
consistency and to align with the written targets. Unfortunately, this was the only speech dataset with
human scores that we acquired, so we trained on this dataset and evaluated on a hold-out test set of
500 samples (10%) from subjects that did not appear in the training or validation sets.

5.2 Evaluation method
The evaluation metrics we used to assess performance were RMSE (root mean squared error) and test
R2 = 1− (SSE/SST ) = 1− (Ntest(RMSE)2)/(

∑Ntest
i=1 (yi − ȳ)2) to compare predictions to true scores.

We created predictions for the test set and then calculate our metrics with respect to the predicted and
observed values (i.e., the scores by the humans who graded the essay). We used test R2 because it
has a maximum of 1, providing an easy metric to understand model performance (higher values are
better). For each dataset, we made sure that the ranges of scores were adapted to be the same (i.e.,
out of 100 with the same mean). For the essay models, we mean-adjusted because different exams
might have different expected means, but the results should be centered around a known average.
In practice, exam graders know what the overall average performance for a given exam would be.
For the ELL dataset, because the output is 6 category scores, we averaged these to get a single essay
score (to align with the FCE test set and our end goal).

5.3 Experimental details
We built on top of the DistilBERT transformer for all of our essay models. When finetuning, we made
an 80-20 train-validation split and used the AdamW optimizer. Our initial models used a learning rate
of 2× 10−5, and weight decay of 0.1 for all parameters other than bias and layer norm parameters.
We made our learning rate small because we did not want to overfit to the small-sized training data.
We also attempted to combat overfitting with weight decay and dropout. However, we did not decay
the learning rate over the 20 epochs used in the finetuning process.

For subsequent essay models, we utilized the Ray Tune framework for hyperparameter tuning (Liaw
et al., 2018). Specifically, we experimented with various combinations of hyperparameters such as
learning rate, learning rate decay, weight decay, batch size, and number of epochs to achieve the best
results. We used a grid search with predefined ranges for each hyperparameter and use the validation
set to evaluate the model’s performance. Through the use of Raytune, we found that a learning rate of
6× 10−6 and no learning decay was optimal, as well as smaller batch sizes of 8 or 16. We saved the
model which achieved the lowest validation loss during training. For these essay models, we utilized
the AdamW optimizer with mean-squared error as the loss criterion in all cases except when training
on the ETS dataset; since the ETS dataset had a categorical output, we used cross-entropy as the loss
function for that dataset.

The speech model experimentation framework was similar to that of the essays. Since we only had
the Speechocean dataset, we used a 80-10-10 train-validation-test split for the 5000 sentences in
this dataset. We split on subject-level to ensure that all sentences for a subject appeared in the same
split to prevent leakage. Additionally, we performed the experiment 5 separate times with varying
seeds to obtain significant, trust-worthy results. We then averaged across the 5 experiments for
evaluation purposes. As with the essay models, we once again utilized Ray Tune with a grid search
for hyperparameter tuning. The speech models performed optimally with a learning rate of 2× 10−5,

4

https://www.kaggle.com/competitions/feedback-prize-english-language-learning/data


no custom learning decay, and a batch size of 16. We trained the sentence-level model for 10 epochs
and the granular-output model for 15 epochs, saving the model which had the lowest sentence-level
validation loss. For both speech models, we utilized the AdamW optimizer (weight decay of 0.1 on
all parameters besides bias and layer norm) and mean-squared error for the loss.

5.4 Results

Model Additional Dropout? Nonlinearity Data Used RMSE Test R2

Baseline No None ICNALE 11.1732 0.3255

Basic

No None ELL 10.8779 0.3607
Yes ReLU ICNALE 10.3576 0.4204
Yes ReLU ELL 10.9572 0.3513
Yes Convolution ICNALE 12.0160 0.2199

Iterative No None ELL, ICNALE 10.7399 0.3768
Yes ReLU ETS, ELL 10.8381 0.3654

Hierarchical Yes None ELL, ICNALE 13.1572 0.0647
Multi-task Yes None ELL, ICNALE 10.6521 0.3870
Ensemble 10.3125 0.4254

Table 1: Essay Models

Our essay model performance (Table 1) varied a bit by model. We expected the models to struggle
generalizing because we evaluated on FCE, which was a hold-out test set from a different exam
(so we did not know if the distribution of scores and the human-grading criteria would align). We
see this phenomenon, as test R2 scores for our best model (the ensemble model1) was 0.4254. We
had a correlation of 0.66 between our predictions and the true scores, which is a strong showing for
generalizability. Additionally, we note that the ensemble model performing best aligned with our
initial expectations–combining the results from multiple models produced a slightly better model
(not drastically better, but better nonetheless).

The two models that performed worse than expected were the model with a convolution layer and
the hierarchical model. While we expected the convolution to work well (and take in surrounding
context in assessing essays), its test R2 was a mere 0.2199. One reason for this might be that the
transformer already accounts for context, and by potentially double-counting we may have focused
on noisy aspects of the grading process. Additionally, this demonstrated to us that simpler models
may be better: a ReLU layer seemed to work better than a convolution and the best model (outside
the ensemble), was the basic model trained on a single dataset. Moreover, we see that incorporating
a hierarchical model resulted in extremely poor performance: the test R2 was 0.0647, which was
marginally better than predicting the mean for every essay. Perhaps the strong constraint of a direct
link between the 6 category scores and the one overall score caused the model to struggle to learn
from either loss function–so it ended up staying around the mean. We contrast this to the multi-task
model, which jointly predicted both category and overall scores at the same level–that approach
seemed to perform similarly to our other models. Overall, this demonstrated that a causal link, though
nice in theory, was not necessarily optimal in this case and that placing too many constraints (like the
6-to-1 linear layer) in the model could lead to poor performance.

While the essay models performed about as well as we expected, the speech models overall performed
very well and even better than anticipated. As expected and shown in Table 2, both speech models
performed significantly better on the training set than the test set. The results in the table include R2

and RMSE values for each sentence-level output, averaged across the 5 random seeds to generate
train-val-test datasets. Obviously it is difficult to generalize to unseen examples, but the training
samples also included 20 sentences from 200 subjects. Since we have multiple sentences from the
same subject, this may have caused the model to pick up subject-specific tendencies that contribute
to certain scores. However, we also note that the granular-output model had better training RMSE
and training R2 than the sentence-level model. The granular-output model was able to train for
more epochs than the sentence-level model without severe overfitting to the training set–we see the
performance for both models is similar on the test set.

1The produced ensemble model combined the predictions from (1) the basic model trained on ICNALE with
additional dropout and ReLU and (2) the iterative model trained on ELL and ICNALE
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Training
Accuracy Fluency Prosodic Total Score

Sentence-Level Model 0.7842 (7.3588) 0.8181 (6.6130) 0.8147 (6.2748) 0.8286 (6.4178)
Granular-Output Model 0.8351 (6.5726) 0.8635 (5.5180) 0.8558 (5.5714) 0.8691 (5.7884)

Testing
Accuracy Fluency Prosodic Total Score

Sentence-Level Model 0.5371 (11.6225) 0.6380 (9.0692) 0.6369 (8.9554) 0.5718 (11.1194)
Granular-Output Model 0.5152 (11.8528) 0.6574 (8.7936) 0.6511 (8.7406) 0.5610 (11.2090)

Table 2: Average speech model test R2 (RMSE in parentheses) across 5 random train-val-test splits

From Table 2, we see that the speech models generalized well to unseen test sentences from different
non-native speakers. The sentence-level model achieved a test R2 score of 0.5718, while the granular-
output model had a test R2 of 0.5610. Additionally, the correlation between the test set predictions for
total score and the human-graded total score was 0.772 for the sentence-level model and 0.764 for the
granular-output model. This was an encouraging result: our models could learn from human-scores
of English proficiency and grade similarly on new data. Another interesting result was that both
models perform better on the fluency and prosodic sub-scores than on accuracy and total score. This
pattern was not apparent on the training set but was pretty clear on the test set; both models achieved
test R2 above 0.63 for fluency and prosodic sub-scores and 0.5-0.6 for the others. One potential
explanation for this is the variance of the scores themselves: the variance for fluency and prosodic
scores are 2.16 and 2.23, respectively, while the variance for accuracy and total scores are 2.59 and
2.62, respectively. This higher variability in the scores could lead to worse performance on a test set.

There appeared to be no significant difference on test-set performance between the two speech
models. Overall, the sentence-level speech model performed very well despite its simplicity. The
granular-output model slightly outperformed the sentence-level model in terms of test R2 on fluency
and prosodic sub-scores. Overall, the results were pretty similar despite the additional word and
phoneme-level outputs in the granular-output model. This can likely be attributed to the fact that
the model could not learn how these granular outputs were derived. We passed these additional
outputs to the model, but the model does not know the exact occurrence of each phoneme or word
in the sequence and its corresponding score. The Wav2Vec2 model is trained using connectionist
temporal classification (CTC) but we have not implemented an automatic speech recognition (ASR)
model on top of this to learn the phonemes and words in the sequence in which the granular outputs
reference. While these granular outputs could have offered some added benefit to the model by
simply having extra responses, we believe that we could add more complexity to the model to take
complete advantage of these outputs.

6 Analysis

One takeaway from constructing our essay models was that the best models were typically trained
with a smaller number of epochs. In particular, we saw that while the training loss continued to
decrease as the number of epochs increased, the validation loss stagnated after around 5 epochs
(Figure 4). As such, this bolstered our understanding that “simpler is better.” If we trained for more
epochs, we would end up overfitting and thus, worsening the generalizability of our model. Hence,
we trained for a limited number of epochs in our best models.

Figure 4: Train vs. Validation Loss
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To understand the strengths and weakness of specific models, we constructed confusion matrices. We
bucketed the essay scores in increments of 5 starting at 55. Figure 5a shows the hierarchical model’s
predictions vs expected results. The hierarchical model tried to optimize loss on the two datasets,
but failed to do so. It placed a strict constraint by modeling a causal link between the 6 category
scores and the overall score: we believe that this constraint limited the effectiveness in learning both
components, so the model compromised by predicting near the mean score for all essays. We noticed
that, when we removed this sequential constraint (as we saw for the multi-task model), performance
was comparable to other model types. That said, one interesting aspect of our ensemble model (which
was true of many essay models we tried) was that we rarely predicted scores above 85 even though
we see a decent number of essays with true scores above 85. This phenomenon is something we aim
to correct in future model iterations to more accurately predict on the higher end.

(a) Confusion Matrix (Hierarchical) (b) Confusion Matrix (Ensemble) (c) Prediction Error (Ensemble)

Figure 5: Analysis of Essay Models

While the hierarchical model failed, we saw that the ensemble model performed strongly: Figure
5b shows its predictions vs. the expected results, and the ensemble model performs much better
than the hierarchical as the relative trend fits closer to the diagonal. We observe plenty of instances
around the diagonal, indicating we often predicted ±5 points of the true score. The noise about the
diagonal (rather than values exactly on the diagonal) could be attributed to the limited data available
for finetuning. We suspect that if we increased the size of training corpus (currently, we only have
around 4,500 essays), we would observe more points on the diagonal and more accurate predictions
because of the data increase. We further see this through a histogram of the prediction errors as
found in Figure 5c. With a bin size of 3, we notice that our predictions errors are approximately
normally distributed around 0. If we increased training size n, the distribution would smooth and
tighten around the mean as desired, resulting in stronger model performance.

(a) Confusion Matrix (Sentence-Level) (b) Confusion Matrix (Granular-Output)

Figure 6: Speech Model Confusion Matrices

Unlike the essay models, we evaluated the speech models on the same dataset, so we did not have
to consider generalization to different human-grading scoring criteria. Furthermore, our audio files
were recordings of examiners speaking short sentences with an average length of 6.36 words, so
we could not test the model on longer audio input. Figure 6a shows the confusion matrix for our
sentence-level model for the total sentence-level score. Since all actual scores are a multiple of
10, we created buckets that indicate whether our prediction is within 5 points of the actual score.
The confusion matrix seems to be diagonal for the sentence-level model and this trend is nearly
identical for the granular-output speech model in Figure 6b. The sentence-level model had 44% of
the predictions in the correct bucket (within 5 points) and 87% of predictions within one bucket of the
actual (within 15 points). The granular-output output had 45% in correct bucket and 87% within one

7



bucket. We saw this as a positive indicator, but we examined the confusion matrix more closely to see
that most of the actual scores fall within 60-90 (84.6% of actual total scores). The models struggled
to predict well on extremely low scores as the predictions never fell below 25 despite a handful of
human-graded scores below this number. We can also see this with the histograms in Figures 7a
and 7b. The errors appear to be centered at 0, but there is a right tail which shows a bias towards
higher predictions. Additionally, the model never predicted greater than 95 despite having some
actual perfect test scores. It also indicates that the model learned the distribution of the human-graded
scores from the Speechocean dataset.

(a) Sentence-Level Prediction Error (b) Granular-Output Prediction Error

Figure 7: Speech Model Prediction Errors

7 Conclusion
In our project, we found moderate performance in predicting essay scores. We achieved a test R2

above 0.4, with the correlation between our predictions and the actual essay scores around 0.66,
indicating moderate correlation. We claim that this is a strong performance because we assess the
generalizability of our models to different English proficiency exams (i.e., we trained on ELL, ETS,
or ICNALE data but evaluated on FCE). That said, we note that one limitation is that these scores are
from different tests, which might have different minutia in their grading schema. Thus, we captured a
general trend in the scores (our models accurately gave essays with better scores higher predictions).
One reason we may not perform much better is that the scoring criteria may differ across exams.
Another limitation is that essay scores are inherently noisy, as each human grader has inherent biases
and the specific score depends on the specific grader. We note that the different graders might give
the same essay for the same test different scores, showing that the grading process itself is noisy and
prone to high variability. The correlations of 0.66 of our predictions with human-graded FCE scores
show strong performance and generalizability in spite of these limitations.

We have shown significant results with our speech modeling for non-native English Speakers. We
obtained test R2 above 0.56 on total score on the Speechocean dataset. Both the sentence-level
and granular-output model were able to predict within 5 points of the actual total score in over
40% of test samples and within 15 points on 87% of test samples. We demonstrated an ability to
grade speech similar to the Speechocean human graders, but we are curious to test how this model
would generalize. Additionally, we did not see a significant improvement with utilizing the word and
phoneme-level outputs in the granular-output model. We believe that we could further improve our
models to include an automatic speech recognition (ASR) model which could learn the phonemes
and words in the sentence while simultaneously predicting the sub-scores which correspond to the
words and phonemes. This could allow the model to learn the location in the sequence from which a
given phoneme or word score is derived. While we have shown an ability to differentiate between
various levels of spoken English proficiency, we believe that we can do more work to take advantage
of the phoneme and word-specific scores available in the Speechocean dataset.

The next steps for this project are to merge our models into a single autograder system that encap-
sulates written and spoken proficiency together. We currently have strong separate autograders, but
have not been able to combine the two for the creation of an autograder for a complete proficiency
exam because of the data restrictions–we have not found a dataset that has both written and speech
components publicly available with scores for both sections. Ideally, if we could find such a dataset,
we would be able to combine our models to predict a single overall proficiency score akin to an
overall TOEFL score. Currently, we have models that can produce useful results by scoring written
and oral proficiency separately, but to combine these two for an overall score in the future, we will
need a dataset that contains information on both modalities for the same individual.
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