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Abstract

The project has a two fold goal: implement core components of BERT to bet-
ter understand its architecture, and experiment with possible extensions to pro-
duce generalized sentence embeddings that can perform well on multiple tasks.
For the first goal, important components of BERT were implemented to create a
minBERT model. As for the second goal, three task specific minBERT models
were fully fine-tuned for comparison with a single multi-task model built using
the framework proposed in Wei et al. (2022). The fully fine-tuned task specific
models outperformed the pre-trained minBERT model, and the single multi-task
model achieved 99% accuracy of the fully fine-tuned models.
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2 Introduction

While the first goal of the project is interesting as it is a learning exercise to better understand the
BERT architecture, the second one is more exciting due to its open ended nature. The second goal is
challenging in that it is difficult to produce robust model embeddings that perform well across several
tasks. Problems such as forgetfulness and conflicting gradient directions plaque the performance of
models in a multi-task setting. There are myriad approaches that can be experimented to produce
generalized BERT embeddings. Utilizing the framework proposed in Wei et al. (2022) to serve
BERT for multiple tasks provides the ability to independently fine-tune and update the model for
frequently changing tasks without affecting other tasks. It enables pre-trained BERT embeddings
to be shared across multiple tasks. The key enabling idea is that only some of the top layers of
BERT are fine-tuned specific to the task, and the bottom layers are kept frozen to be shared across
them. The work for the second part of the project evaluates the framework on minBERT for the task
of sentiment analysis (SA), semantic textual similarity (STS) and paraphrase detection (PD), and
confirms that partial fine-tuning of the top most layers produces performance close to that of full
fine-tuned minBERT models on the aforementioned tasks. In addition, we also evaluate how cosine
similarity (CS) with the mean-square-error (MSE) loss objective perform in comparison to a linear
head with cross entropy (CE) loss on the task of STS.

3 Related Work

The partial fine-tuning approach has been studied before in ((Houlsby et al., 2019); (Merchant et al.,
2020)) and is a sensible idea given that previous studies show that the middle layers of BERT are
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most transferable, and the top layer representations are task oriented. ((Wang et al., 2019); (Tenney
et al., 2019); (Liu et al., 2019); (Merchant et al., 2020)]). (Merchant et al., 2020) demonstrated that
fine-tuning primarily affects weights from the top layers while weights in the bottom layers do not
change much. The use of CS and MSE loss has been suggested in Reimers and Gurevych (2019) as
a regression objective for a siamese setup of the BERT model. A similar approach is adopted in this
work and compared with the CE loss objective on the task of STS.

4 Approach

4.1 Main Approach

The following steps are performed for the second part of the project, as depicted in Fig. 1.

Figure 1: minBERT serving pipeline

4.1.1 Single Task Partial Fine-Tuning

This step involves fine-tuning an independent copy of BERT for each of the three tasks while keeping
some layers frozen. This steps produces a set of single-task models referred to as single-task teacher
models. The CE loss objective was used as a baseline to fine-tune the model.

4.1.2 Single Task Knowledge Distillation (KD)

KD (Buciluundefined et al., 2006) is a compression technique in which a compact model, the student,
is trained to reproduce the behavior of a larger model, the teacher. The goal of this step is to
compress the fine-tuned task-specific layers in the teacher model to smaller number of layers in a
student model. The framework in Wei et al. (2022) proposes this step when serving the model under
a resource constrained environment. Since we do not have such a constraint we skip this step for the
work in this project.

4.1.3 Model Merging

The final step involves merging the fine-tuned single-task models into a multi-task model such that
the parameters and computations in the frozen layers can be shared. This is achieved by loading
weights from multiple model checkpoints into a single computation graph, as depicted in Fig. 2.

4.2 STS Loss Objectives

STS specific full fine-tuning of minBERT is conducted on two separate loss objectives and the best
performing is chosen for further evaluation. In the baseline approach sentence pairs are concatenated
with the [SEP] token and fed as an input to the minBERT model. The token type ids that were a
placeholder in the base minBERT model are now considered for constructing the input embeddings.
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Figure 2: minBERT single task model merging

Figure 3: SBERT architecture (Reimers and Gurevych, 2019)

A linear head is used to generate logits from the pooled output and loss is calculated using the CE
objective.

The baseline is compared with a saimese setting of the model in which the individual sentences of a
pair are fed into the same model separately, as depicted in Fig. 3 (Reimers and Gurevych, 2019). A
cosine similarity between the pooled outputs is computed and MSE is used as the loss objective for
fine-tuning. The pooled out for all procedures in this project is the [CLS] token embedding from the
last minBERT layer.

5 Experiments

5.1 Data

Stanford Sentiment Treebank Socher et al. (2013) for SA, SemEval Agirre et al. (2013) for STS and
Quora Question Pairs Chen et al. (2017) for PD.
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• Stanford Sentiment Treebank (SST) dataset
– train (8,544 examples)
– dev (1,101 examples)

• CFIMDB dataset
– train (1,701 examples)
– dev (245 examples)

• Quora Dataset
– train (141,506 examples)
– dev (20,215 examples)

• SemEval STS Benchmark Dataset
– train (6,041 examples)
– dev (864 examples)

5.2 Evaluation method

Accuracy percentage is used to evaluate model performance for the task of SA and PD, while Pearson
Correlation is used for STS.

5.3 Experimental details

The following minBERT models were evaluated independently for each of the respective tasks on
task-specific dev data sets.

• Base model (baseline)
• Single task fully fine-tuned models
• Partially fine-tuned merged model

The models were fine-tuned on task-specific training data sets with the following configurations:

• learning rate: 2e− 5

• Adam: β1 = 0.9, β2 = 0.999

• epochs: 3, 4, 5
• dropout: 0.3
• batch size: 64
• top most layers: 4, 5, 6, 7, 8, 9, 10 (Wei et al., 2022)

5.4 Results

Most of the results are inline with expectations, wherein fine-tuning boosts performance and partial
fine-tuning of the top most layers produces performance close to fully fine-tuned models. Results
are shown in Table 1, Table 2, Table 3 and Table 4.

6 Analysis

Better performance results were expected on the task of STS with the use of CS and MSE loss. The
poorer than expected performance could be due to the following reasons.

• The default implementation of the MSE loss objective penalizes the outcome even when
CS results in a negative value [−1, 0) and the sentences are dissimilar. It forces the CS
output to be 0, i.e. the sentence embeddings to be orthogonal, even when it would suffice
if they are anywhere in between orthogonal and opposite.

• The labels are normalized to the [0, 1] interval during training and evaluation. This does
not map neatly to the cosine interval of [−1, 1], resulting in a misaligned loss objective.
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minBERT top layers/Task SA STS PD

layer 4 0.5 0.818 0.882

layer 5 0.521 0.830 0.884

layer 6 0.504 0.802 0.887

layer 7 0.526 0.802 0.879

layer 8 0.510 0.839 0.887

layer 9 0.510 0.835 0.887

layer 10 0.515 0.849 0.887

Table 1: dev accuracy of minBERT task-specific layers: (4, 5, 6, 7, 8, 9, 10). Best score in bold

minBERT/Task SA STS PD

Base model 0.399 0.003 0.376

Full fine-tuned 0.528 0.850 0.888

Partial fine-tuned, merged 0.525 0.862 0.885

Table 2: dev accuracy of minBERT models

minBERT/Task STS

Full fine-tuned, CS/MSE 0.641

Full fine-tuned, CE 0.850

Table 3: STS loss objective comparison

minBERT/Task SST STS Paraphrase Overall

Partial fine-tuned, merged 0.524 0.844 0.885 0.751

Table 4: test leader board accuracy

The minBERT fine-tuned model performs poorly on the task of SA. No particular pattern is observed
in the incorrect prediction results. The problem seems to be that of over-fitting. This is because the
observed accuracy on the training data set is significantly higher than the one against the dev data
set. Incorporating regularization techniques, increasing the drop out rate or increasing the size of
the training corpora are some ways to alleviate the problem and improve accuracy.

The minBERT fine-tuned model works well on the task of PD. Upon inspecting the sentence pairs
that were incorrectly predicted, it seemed as if the model ignored meaningful parts of the sentence
when making predictions. Ex: what are the best and profitable ways for saving money ?, what are
your best ways to save money ?. This behavior could be due to the use of the [CLS] token embedding
from the last minBERT layer for training and prediction. Instead, a different pooling strategy, like
mean pooling, could be evaluated for a more robust representation of sentences that would also
improve performance.

7 Conclusion

I experimented with different extensions to the pre-trained BERT model that was developed in the
first part of the project. I implemented the framework suggested in Wei et al. (2022) to generate
model embeddings such that the top layers of BERT are fine-tuned specific to the task and the
bottom layers are kept frozen to be shared across tasks. The partially fine-tuned merged model
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provides the flexibility to update the model for frequently changing tasks without affecting other
tasks, and still achieve similar performance as the task-specific fully fine-tuned models.

The results from my experiments were limited in that I was unable to thoroughly explore and opti-
mize for the hyper-parameter space, i.e trying different drop out rates, batch sizes, etc..In addition,
several other techniques like regularized optimization, Contrastive and Multiple Negatives Ranking
Loss learning, and in-domain further pre-training can be conducted independently or in combination
to boost performance.

I have learnt a lot as part of this project, from reading about the BERT architecture to building its
core components and experimenting with extensions that have real world applications. Performing
the entire cycle of model building, fine-tuning and evaluation has been an extremely rewarding
experience.
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