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Abstract

Approaches for finding new drugs are often costly and ineffective. On the other
hand, available drugs that are currently being used to treat certain diseases could
potentially be repurposed for others. Recent studies have attempted to represent
known drug-disease interactions as networks in order to predict unknown edges
that might correspond to novel drug-disease interactions (Kim et al., 2022). In
particular, one method to do this is to create an embedding representation of a
knowledge graph containing known drug-disease interactions and perform link
prediction to predict new edges in the graph. Recently, several embedding methods
have leveraged the use of language models to take advantage of both the structure
of knowledge graph and its textual components when creating representations (Yao
et al., [2019)) At the same time, open source NLP tools have enabled the creation
of large networks of biomedical relationships (Percha and Altman, |2018). In this
project, we modify existing state of the art (SOTA) language model embedding
methods to biomedical applications and frame the drug repurposing problem as a
knowledge graph completion task. We introduce three new findings: (1) a novel
dataset of known drug-disease treatments derived from the Global Network of
Biomedical Relationships (GNBR) to test network based prediction tasks for drug
repurposing, and (2) a knowledge graph embedding method that leverages language
models and the existing biomedical corpora (Percha and Altman,2018)), achieving
improved performance over SOTA baselines, and (3) a faster variant of BioBERT
Lee et al.| (2020) called biobert-tiny, pretrained on six million PubMed abstracts and
publicly available on Hugging Faceg'| The code for this project is open sourceﬂ
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2 Introduction

The goal of drug discovery is to synthesize new compounds to treat diseases. However, the process
of creating and testing novel drugs is slow and expensive. Rare diseases compound this problem with

"https://huggingface.co/yashpatil/biobert-tiny-model
“https://github.com/jwang307/gnbr-project

Stanford CS224N Natural Language Processing with Deep Learning


https://huggingface.co/yashpatil/biobert-tiny-model
https://github.com/jwang307/gnbr-project

low patient volume, generally less knowledge on treatments, and a lack of incentives for companies to
research these diseases. Even though individual rare diseases affect less than 0.05% of the population
by definition, over 100 million people worldwide are affectecﬂ Drug repurposing, the application of
clinically approved drugs on different diseases than originall intended, offers a less expensive process
to finding cures when compared with drug discovery. Databases of drug-disease interactions such as
GNBR have enabled drug repurposing methods that leverage knowledge graphs - networks consisting
of entities represented by nodes and relationships between entities represented by edges. Knowledge
graphs are often represented by triples of the form (h,r,t), where h and ¢ are two entities in the
graph known as the head and tail, and 7 is the relation between them. The following is an example of
a triple extracted from GNBR:

(h,r,t) = (JNJ-39758979,alleviates, asthma)

In link prediction, the goal is to find valid triples (h,r,t) that do not exist in the graph. In this
project, we model the drug repurposing problem as a link prediction task for finding triples of the
form (drug, treatment, disease). Specifically, we run a subvariant of link prediction called triple
classification, where triples (h,r,t) in the test set have a corresponding label 0 or 1, and the model
tries to classify each triple as valid or invalid. Popular methods for this include TransE by |Bordes
et al.|(2013)), TransH by [Wang et al.| (2014), and DistMult by |Yang et al.| (2015)), which learn low-
dimensional vector representations for entities and relations in the graph. Once the embeddings are
generated, similarity metrics like cosine similarity, dot product, or Euclidean distance are used to
measure the strength of relationships between entities, which in turn helps in predicting the missing
links.

Recently, large databases of biomedical relationships such as PharmKG and GNBR have introduced
knowledge graphs on the order of millions of interactions between drugs, genes, and diseases (Zheng
et al.,[2020)(Percha and Altman, 2018)). This prompts the question as to whether language models can
leverage this increase in available data to more accurately predict drug-disease interactions. While
using language models to produce knowledge graph embeddings is not a novel concept, it has never
been applied to drug repurposing. In this project, we use a knowledge graph embedding method
that leverages language models for our drug repurposing task, achieving improved performance over
standard baseline methods on our dataset. The main contributions of this project are as follows:

* We show a 2.63% improvement in accuracy over baseline methods using BioBERT [Lee
et al.| (2020) to generate knowledge graph embeddings for triple classification.

* We introduce a new dataset for rare disease interactions with known drugs and genes
extracted from GNBR and consisting of 25411 unique entities, 31 types of relations, and
166859 edges.

* We introduce a new language model called biobert-tiny, which was pretrained on six million
PubMed abstracts and runs over eight times faster than BioBert.

3 Related Work

This project consisted of work in knowledge graph embeddings, biomedical language model pretrain-
ing, and biomedical dataset creation. As such, related work in each area is described below.

3.1 Knowledge Graph Embeddings

A core aspect of the project involves the conversion of triples into knowledge graph embeddings.
Formally, this task can be modeled as an operation from (h,r,t) — h € R% r € R%, t € R?, where d
is the embedding dimension. There are two main types of methods for embedding triples into vector
spaces: structure-based and description-based knowledge embeddings (Wang et al., 2022).

In structure-based embedding methods, calculations are based solely on the nodes and relation of
the triple. Among structure-based methods, a landmark technique called TransE uses a geometric
approach to scoring triples (Bordes et al., 2013). TransE frames relations as translations in the
embedding space, scoring a triple by the distance of the vector for h from the vector for t after a
translation of h defined by r. Further modifications of TransE include TransH and TransR, which
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propose differences in the translation operation (Wang et al.,2014)(?). In TransH, both h and t are
projected to a relation-specific hyperplane, while in TransR, h and t exist in entity-specific spaces
and are projected to a relation-specific vector space.
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Figure 1: Simple Visualization of Entity and Relation Spaces in TransR

The other prominent type of structure-based methods are known as semantic matching methods or
tensor decomposition models. These methods treat the knowledge graph as an adjacency matrix
represented by a three dimensional tensor, which can be decomposed with the embeddings for entities
and relations. In knowledge graph completion, these methods predict new links as values that are
close to 1 in the adjacency matrix. A popular method for this is DistMult, which treats rasa d x d
diagonal matrix, and the resulting score is the matrix product of h, r and t.

Recently, description-based embedding methods have become popular because they leverage language
models to better embed entities and relations. While structure-based methods rely solely on the
existence of triples, description-based methods are able to use textual knowledge of entities via
pretrained language models to generate embeddings. In addition, most description-based methods
also introduce descriptions for each entity and relation. In theory, these descriptions for entities
and relations enable a better representation of the triple and a more accurate embedding. A popular
description-based method is KEPLER by |Wang et al.| (2020), a language model designed and
trained on both knowledge graph completion and general language model tasks. [Yao et al.|(2019)
published the landmark description-based method KG-BERT, which uses BERT to generate a
sequence embedding for the triple and scores the sequence embedding with a sigmoid classifier.
Most recently, [Wang et al.[(2022) introduced LMKE, removing the requirement of descriptions for
each entity and relation by concatenating the triple and removing [SEP] tokens between entities. In
practice, this increases the accessibility of these methods, as real-world datasets like the one created
in this project do not have readily available descriptions for entities and relations. To the best of our
knowledge, LMKE produces SOTA results on general knowledge graph completion benchmarks.

3.2 Biomedical Language Models

Biomedical language models have gained significant attention in recent years, as they enable more
accurate representation of domain-specific concepts and relationships. These models are typically
pre-trained on large-scale biomedical text corpora, such as PubMed abstracts or full-text articles, and
then fine-tuned for specific tasks. Notable models include BioBERT (Lee et al., 2020), SciBERT
(Beltagy et al.,|2019)), and BlueBERTﬂ These models are pre-trained on large-scale biomedical text
corpora, such as PubMed abstracts or full-text articles, and fine-tuned for specific tasks.

BioBERT and SciBERT pioneered the adaptation of the BERT architecture to the general biomedical
domain, demonstrating substantial improvements in various biomedical NLP tasks, such as named en-
tity recognition, relation extraction, and question-answering (Lee et al.,[2020). More specific models
like BlueBERT which focuses on molecular mechanisms of diseases and therapeutics development
can be used for better results on certain tasks.

3.3 Biomedical Datasets

There are many online databases cataloguing known drug, disease, and gene interactions. Traditional
databases such as the Comparative Taxicogenomics Database (CTD) have been manually curating
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interactions since 2004 and contain over 40 million interactions between drugs, genes, and diseases
along with other areas of interest such as exposure events. A useful database for rare diseases is
Orphaneﬂ which manually catalogues interactions between known drugs and rare diseases. OMI

is an online compendium of genes and genetic disorders created by the School of Medicine at
Johns Hopkins University, and MeSH is a vocabular database monitored by the National Library of
Medicine (NLM) at the National Center for Biotechnology Information (NCBI).

Since the onset of NLP tools such as CoreNLP by Manning et al.|(2014) and biomedical language
models such as BioBERT, multiple knowledge graphs have been created that leverage NLP to mine
massive text copora. Notable ones include GNBR by |Percha and Altman| (2018), which mined
over 16 million PubMed abstracts with a variety of NLP tools including PubTator for named entity
recognition, CoreNLP for dependency path parsing, and a clustering algorithm by |Percha and Altman
(2015) to create a final knowledge graph of drug, gene, and disease interactions characterized by
36 types of relations and over 2 million triples. More recently, (Chandak et al.|(2023)) used multiple
manually curated databases such as DrugBank and the Disease Gene Network (DisGeNet) to build
PrimeKG, knowledge graph of over 17,000 diseases associated with various biological entities and
events. Even so, there is a lack of available benchmarks for biomedical knowledge graph completion.
The most accessible is PharmKG by [Zheng et al.|(2020), a benchmark for biomedical knowledge
graph completion and mining with over 500 thousand edges and eight thousand entities across 29
relation types.

4 Approach

4.1 Dataset Generation

Because our task focused on drug-disease treatment interactions for rare diseases, we found triples
in PharmKG and other knowledge graph benchmarks too sparse for meaningful testing (< 1000
drug-disease treatment pairs for rare diseases). We introduce a new dataset for triple classification
of rare disease interactions, extracted from data in GNBR. To do this, we first processed GNBR
to a list of triples (h, r,t) and mapped each relation to their textual definition. Following this, we
compiled a list of MeSH IDs corresponding to rare diseases as defined by Orphanet. Using the list
of diseases from CTD, we matched Orphanet IDs to CTD diseases to obtain a list of clean disease
names. In GNBR, we created mapped diseases to MeSH IDs and cleaned the formatting of diseases
since multiple diseases were found with the same MeSH ID. For each rare disease extracted from
CTD, we mapped that disease to the closest matching entity in GNBR using the Ratcliff-Obershelp
algorithm with a cutoff of 0.3. This was necessary because of inconsistent naming in GNBR (Ex.
acute_myeloid_leukemia vs myeloid leukemia, acute). We obtained 1279 rare diseases
from GNBR through this cross-matching method.

Using the list of rare diseases, we created our dataset using breadth first search and a depth of 2. In
order to reduce our dataset to a computationally feasible size, we capped the degree of each node to
120 and randomly sampled if the degree of that entity in GNBR was greater. The size of our final
dataset is shown below in comparison to PharmKG.

Dataset Edges Entities Relations Average Degree

GNBR 166859 25411 31 3.28
PharmKG 500958 7603 29 32.94

Table 1: Comparison of our dataset and PharmKG

Since our objective is focused on rare diseases, the "rarity" is reflected in the sparsity and low degree
average of the graph.
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4.2 biobert-tiny

A key inspiration for our work was BioBERT [Lee et al.| (2020), a BERT-based language model that
was pre-trained on large-scale biomedical corpora. In conducting our research, we were constrained
on both compute power and processing time. Therefore, we focused on creating a smaller, more
efficient model tailored to the task of inferring novel drug candidates for diseases, which we call
biobert-tiny. This smaller model allows for faster training and inference times, while still leveraging
the domain-specific knowledge from the large-scale biomedical text corpora. To develop a smaller
and faster variant of BioBERT, we performed the following steps:

1. Data Collection: We extracted approximately 6000000 paper abstracts from the online
MEDLINE/PubMed Baseline Repository (MBR). Abstracts were chosen at random from
the past 10 years of data.

2. Tokenizer Training: In order to achieve optimal accuracy, we created a custom tokenizer.
We initialized the tokenizer with the pre-trained "bert-base-uncased" tokenizer to reuse
its special tokens. Then, we trained the tokenizer with Hugging Face’s default byte pair
encoding (BPE) algorithm on the raw dataset with a vocabulary size of 32,000 to account for
new tl%kens found in the biomedical corpus. This trained tokenizer can be found on Hugging
Face

3. Data Preprocessing: Using our custom tokenizer, we tokenized the input and applied a
simple truncation strategy where documents longer than 512 tokens were truncated without
splitting them into several documents. The preprocessed dataset was then shuffled and
pushed to the Hugging Face Hub for later use.

4. Model Pre-training: To pre-train the biobert-tiny model, we forked a smaller version of
BERT called BERT-tiny°| (4.4M parameters) and employed Masked Language Modeling
(MLM), a technique by |Devlin et al.| (2019) that encourages bidirectional learning from text.
In MLM, a word in a sentence is masked (hidden), and the model is tasked with predicting
the masked word using the context provided by the surrounding words. See the example
below:

Mitochondria are tiny [MASK] inside cells that are involved in
releasing energy from food.

4.3 LMKE and Triple Classification

To perform triple classification, we used LMKEﬂ by Wang et al.| (2022) with modifications. We
chose LMKE for its SOTA results on general knowledge graph completion and its ability to generate
embeddings without required textual descriptions for each entity and relation. In this section, we
formally provide an overview of LMKE’s architecture as well as our modifications.

LMKE: LMKE takes in a triple v = (h, r,t) and concatenates it to form the input to the tokenizer,
[CLS], h,r, t, [SEP]. If descriptions - denoted d},, d,, d; - are included, then the input to the tokenizer is
[CLS], h,dp, T, d,, t, dt, [SEP]. This sequence is passed through the tokenizer of the chosen language
model, which is passed into the language model. We tested three language models with decreasing
size:

* BioBert: 110M parameters: H = 12, d = 768, 110M parameters

. TinyBioBer H =4, d =768, 15M parameters
* biobert-tiny: H = 2, d = 128, 4.4M parameters

The architecture and training of the first two models is described in |Devlin et al.| (2019)), while our
pretrained model is described in this paper. To aggregate the output embeddings from the language
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model, we use the embedding of [CLS], denoted ¢ € RY. This embedding serves as the embedding
vector of the triple u. To score the triple, we use a single layer classifier:

¢(u) = o(we +b)

Here, w € R9 and b are learnable parameters.

Support Scores: In the original LMKE paper, the labels for a triple are either 1 for true or 0 for
negative triples. We modify the labels used for training LMKE by leveraging support scores found
with each triple in GNBR. Because GNBR was mined with software tools and not manually curated,
each triple in the network comes with a support score s, normalized between 0 and 1, to indicate the
uncertainty of the triple being true, where scores closer to 1 are more certain as fact. These scores
can be leveraged using uncertainty knowledge embedding methods such as|Chen et al.|(2019), but
we introduce a simple modification to LMKE by modifying the label of each training triple to s,
representing the probability that the triple is true. During testing and vaildation, we ensure that triples
tested are all high confidence (> 0.95) and return to predicting 1 or 0 for true or false triples.

Descriptions: Because many entities in GNBR are rarely studied drugs, genes, or diseases, scraping
descriptions off the online PubMed corpus is difficult and time-consuming. A main advantage of
LMKE is it’s ability to work without descriptions; even so, we test the ability of the model on
different configurations of input. We define dj,, d, and d; as the "clean" strings of the entities or
relations. For example, if b = 3-methylcrotonyl_Coa_carboxylase_1_deficiency, we define
d;, = 3-methylcrotonyl CoA carboxylase 1 deficiency. We then configure the input of
the triples in three ways to see if simple textual descriptions improve performance:

* [CLS], h, 1, t, [SEP]
* [CLS],dp, d;, d:, [SEP]
* [CLS], h,dp, 7, dy, t,ds, [SEP]
Baselines: We ran TransE, a geometric method, and DistMult, a tensor decomposition method,

as baselines for triple classification (Bordes et al., |2013)(Yang et al., 2015). In addition to their
respective publications, these methods are briefly described above.

We ran DistMult with the following hyperparameters:

‘Embedding size:200 | Batch size:1658 | learning rate:0.5 | Epochs:1000

We ran TransE with the following hyperparameters:

‘Embedding size:200 | Batch size:1658 | learning rate:1.0 | Epochs:1000

In order to test the effectiveness of biomedical language models compared to general language models,
we also ran LMKE with BERT-tiny as a baseline.

5 Experiments

5.1 Data

The dataset generation process is described above. To split the dataset into train, validation, and
test sets, we used a 10%, 20%, 70% split among all drug-disease treatment edges. This is because
our objective was to identify triples of the type (drug, treatment, disease) In addition, we require all
entities in the validation and test sets to be in the training set so we don’t intorduce new nodes during
testing. To do this, we first extracted all (drug, treatment, disease) triples. Because there were only
1085 triples of this type, the majority of the split was dedicated to testing, resulting in 217 positive
triples for the validation set and 760 positive triples for the test set. All other triples were included in
the train set, resulting in 165882 positive triples in the training set. We then confirmed that all entities
in the validation and test set were present in the training set. Finally, we generated negative triples
with a negative sampling rate of 1, randomly corrupting the head or tail of every triple to an unseen
triple. The final splits total 331764 triples in the training set, 434 triples in the validation set, and
1520 triples in the test set.



5.2 [Evaluation method

Since triple classification is a binary classification task, we use standard metrics, namely accuracy,
precision, recall, and F1 score. We report accuracy since the dataset has a negative sampling rate of
1, resulting in a balanced test set. Given True Positive = T},, True Negative = T;,, False Positive =
F),, False Negative = F;:

— TP + Tn (1)
accuracy = T+ F,+ 0+ Py
1,

precision = ———— 2)

T, + F,

T,

recall = —F2— 3
T 3)
F =2+ precision *x recall @)

precision + recall

5.3 Experimental details
We ran LMKE with several tuned hyperparameters:

* Batch Size: {16,32,64}
* Descriptions: {triples, triples + descriptions, descriptions}

* Support Scoring: {True, False}

We ran all experiments for 50 epochs with 0.0005 learning rate, 10~7 weight decay, and a negative
sampling rate of 1. We trained each model with Binary Cross Entropy Loss. If s is the score of a
triple, v is the true label, D™ is the training set, and D~ is the negative sampled training set, our loss
function is given by

L=- Z (yilog(si) + (1 — yi)log(1 — si)) &)
ie{DtuD~}

At the end of each epoch, parameters were saved if the validation accuracy outperformed all previous
epochs. The best performing parameters were used for testing. We selected the hyperparameters for
each language model by choosing the configuration with the best validation set accuracy. The best
performing hyperparameters are shown with each model.

LMKE with BioBERT:

‘Batch Size:64 | Descriptions:triples+descriptions | Support Scoring:False

LMKE with TinyBioBERT and biobert-tiny:

‘Batch Size:64 | Descriptions:triples+descriptions |Support Scoring:False

Experiments were performed on an AWS EC2 instance with one NVIDIA A100 GPU and on Sherlock
with slurm jobs using 4 NVIDIA A40 GPUs.

5.4 Results

In all metrics, LMKE with BioBERT as the language model was the highest performing method.
Furthermore, all BioBERT variants outperformed the baselines in accuracy and F1 score. However,
improvements are small when comparing the BERT-tiny baseline to the smaller BioBERT models,
where BERT-tiny outperforms both in recall. Over all six tested methods, the incremental differences
in accuracy are also small, with only a 1.06% improvement in accuracy with the best performing
model (BioBERT) over the best performing baseline (BERT-tiny). Among the BioBERT variants, the
difference in improvement as model size increases is primarily seen through the decrease in false
negatives and increase in true positives. Relevant tables and figures are shown below.



Method Accuracy Precision Recall  Fl1

DistMult 0.915 0.921 0.928 0.925
TransE 0.921 0914 0.935 0.925
LMKEgggT-tiny 0.937 0.906 0975 0.939
LMKEg; opgrT 0.947 0.921 0.979 0.949

LMKETrt;ny;oBERT 0.940 0.917 0.968  0.942
LMKE;obert-tiny 0.938 0.921 0.959 0.939

Table 2: Performance of baselines compared with our 3 LMKE configura-
tions
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Figure 2: Confusion Matrices for each BioBERT variant model

6 Analysis

6.1 Evaluating modifications to LMKE

In this project, we make three main modifications to LMKE: the use of textual descriptions, the
use of support scores as labels during training, and the integration of Biomedical language models
instead of general language models. Here, we analyze different impacts of each modification on triple
classification accuracy.

We observe improvements in triple classification accuracy when the triple is passed along with
descriptions. This makes sense, as it allows the language model to contextualize the entities with
their descriptions, as well as the descriptions of the other entity or relation in the triple. We would
expect further improvements with more complete textual descriptions for entities and relations.

In testing the effect of support scoring, it is interesting to note that support scoring does not seem to
have an effect on the accuracy of the model. This was consistent in all variants of BioBERT and the
BERT-tiny baseline. A plausible explanation for this is that the goal of support scoring is to quantify
the ferquency of a certain interaction (triple) in the biomedical corpora. In other words, high support
scores correlate to more frequent mentions in PubMed. However, because we leverage language
models in LMKE, it is possible that the frequency of the interaction in biomedical literature was
already learned by the model while pretraining since BioBERT saw triples with high support scores
much more frequently in pretraining than triples with low support scores

We see that increasing the size of the language model used by LMKE increases the accuracy and F1
score of the model. This is seen by incremental improvements in accuracy from biobert-tiny, the
smallest model, to TinyBioBERT, and finally with BioBERT. However, the improvments in accuracy
are relatively small, with less than 1% improvement between BioBERT and biobert-tiny. Several
possible explanations regarding the differences in convergence during training and the size of our
validation and test sets are analyzed below. Interestingly, this seems to align with previous tests by



Wang et al.|(2022), which found BERT-tiny performance to be comparable, if not better, than BERT
performance on general knowledge graph completion tasks.

6.2 Convergence differences between language models

One explanation for the small difference in accuracy between BioBERT and smaller models is the
rate of convergence in validation accuracy during training.
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Figure 3: Accuracy and loss plots side by side

We observe an significantly higher validation accuracy when using biomedical language models for
the first 5 epochs when comparing against the baseline BERT-tiny model. This supports the notion
that biomedical language models have better a better representation of the entities in the dataset.
However, we see that BERT-tiny is able to converge to similar performance to the two biomedical
language models even though it is smaller than BioBERT and is not pretrained on biomedical corpora.
This suggests that though biomedical language models have an advantage through better pretrained
representations, general purpose language models can quickly learn representations of the entities
from the structure of the knowledge graph. This may also indicate that biomedical knowledge graph
embeddings are still primarily determined by structure, and not descriptions. In addition, this could
explain why size of the model seems to have a small role in classification performance, because the
size of the model primarily benefits the model through better representation of the text of the triples,
not the structure. However, it is clear that descriptions are still helpful, as including them resulted in
improved accuracy across all LMKE variants.

6.3 Validation and test size as a performance factor

Another possible explanation for the relatively small differences in testing and validation is the small
size of both the sets used. Because of the sparsity of rare disease treatments in GNBR, there were
less than 2000 points in the validation and test set combined. Increasing the size of the validation
and test sets would likely improve the resolution between the accuracies of different models. This
is especially true in the validation set, which determined the stopping point and model state after
training. It is likely that the small size of the validation set was not representative of the knowledge
graph and was a primary contributing factor to the plateaued accuracies seen in Figure 3. Further
work and more compute would allow us to bypass this issue by creating and testing a larger dataset.

7 Conclusion and Future Work

We show that leveraging biomedical language models to generate knowledge graph embeddings
improves on SOTA methods for knowledge graph completion in the context of biomedical networks.
By framing our problem as a triple classification task, we find that using BioBERT with SOTA
knowledge graph embedding methods that leverage language models has promise in drug repurposing
tasks. We also provide evidence that knowledge graph embeddings are primarily determined by the
structure of the knowledge graph. However, improvements when adding textual descriptions indicate
that while small, methods that leverage descriptions do improve on structure based methods.



The primary limitation to this project was computational power. This constraint forced us to work with
a smaller dataset, pretrain a smaller BioBERT model for the project, and focus on triple classification
as a representative task for drug repurposing. When comparing to benchmark sets like PharmKG, our
dataset had a ten fold decrease in the average degree of each entity. While some of this is explained
by the sparsity of rare disease interactions in biomedical literature, it is also a byproduct of a smaller
dataset. With more compute, we can mitigate the drop in performance caused by sparsity, and create
larger validation and test sets for future experiments.

While this project framed the drug repurposing task as a triple classification problem, it is perhaps
more useful to think of the drug repurposing problem as one where models can find and rank new
treatments, not just validate ones that are proposed to the model. The former task is a high level
explanation of link prediction, where models are able to rank all possible entities given a certain
relation and entity. Important future work should focus on link prediction to enable models to suggest
top drug candidates for certain diseases. Due to our time and computational resource constraint, we
were unable to test link prediction, which takes considerably more resources because it ranks all
possible entities for each train and test triple. Practically, future work should also focus on predicting
new use cases for drugs and applying this model to several rare diseases to suggest top candidates for
computational and wet lab testing.

8 Contributions

All collaborators contributed equally in developing the research objective, conducting literature
review, and executing the project. Yash Patil has additional contributions in pretraining biobert-tiny,
running baseline metrics, and analysis of convergence. John Wang has additional contributions in
modifications to LMKE, generating the dataset, running experiments for BioBERT variants and
baselines with LMKE, creating scripts for evaluation and analysis, and setting up workflow in
Sherlock.
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Figure A.1: Relation types in GNBR
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Figure A.2: Visualization of a small area of the dataset without relation types shown
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