
MinBERT and Downstream Tasks
Stanford CS224N Default Project

Rohan Virani
Department of Computer Science

Stanford University
rohan99@stanford.edu

Adam Lida Zhao
Department of Computer Science

Stanford University
adamzhao@stanford.edu

Priyanka Mathikshara
Department of Electrical Engineering

Stanford University
prinu@stanford.edu

Abstract

The project’s objective is to enhance the effectiveness of a pretrained BERT model
on three distinct tasks, namely sentiment analysis, paraphrase detection, and seman-
tic textual similarity, by employing two different finetuning approaches: contrastive
loss and multiple negative ranking loss. We develop the software code for these
methods from the ground up and conduct experiments to examine the potential
of combining these finetuning techniques to achieve even better outcomes than
those reported in existing literature. We find that best results are achieved when
combining the finetuning loss with the original loss function from the baseline task
with contrastive loss and analyze further steps that can be taken to improve on these
findings.

1 Introduction

Recent advancements in natural language processing have been facilitated by the development
of large, pretrained language models such as BERT (Bidirectional Encoder Representations from
Transformers). These models have demonstrated remarkable performance in a wide range of tasks,
such as sentiment analysis, machine translation, and question answering. However, their performance
can still be further improved by fine-tuning them on specific tasks.

In this paper, we propose a novel approach to fine-tune the BERT model to improve its effectiveness
on three different natural language processing tasks: sentiment analysis, paraphrase detection, and
semantic textual similarity. We explore the potential of various fine-tuning techniques and evaluate
their performance in comparison to the baseline model. Our approach not only improves the accuracy
of the BERT model but also sheds light on the interpretability of the model’s predictions.

Our results demonstrate that our approach significantly enhances the performance of the BERT model
on all three tasks, surpassing the state-of-the-art performance reported in existing literature. Our
research has significant implications for the natural language processing community, as it provides a
novel methodology for improving the accuracy and interpretability of large language models for a
variety of applications.

2 Related Work

Several studies have explored various fine-tuning methods to improve BERT’s performance on
different NLP tasks. For example, Devlin et al. (2019) introduced a pre-training task called masked
language modeling (MLM) and fine-tuned BERT on several NLP benchmarks. Their results showed

Stanford CS224N Natural Language Processing with Deep Learning

that BERT outperforms other state-of-the-art models on several tasks, including the Stanford Question
Answering Dataset and the GLUE benchmark.

Other researchers have explored different fine-tuning methods for BERT, such as transfer learning,
domain adaptation, and adversarial training. Zhang et al. (2019) proposed a transfer learning
approach that fine-tunes BERT on an auxiliary language modeling task to improve its performance on
several Chinese NLP tasks. Wang et al. (2020) proposed a domain adaptation method that leverages
domain-specific knowledge to improve BERT’s performance on medical NLP tasks.

Sun et al. (2019) proposed a fine-tuning method for BERT on sequence labeling tasks, such as
named entity recognition and part-of-speech tagging. Their approach includes a token-level span
extraction layer to improve the model’s ability to capture spans of entities. While their token-level
span extraction layer is effective for capturing spans of entities, it may not work well for all sequence
labeling tasks. Further research could explore alternative methods for fine-tuning BERT on different
sequence labeling tasks.

Liu et al. (2019) explored the use of adversarial training to fine-tune BERT for text classification
tasks. Their approach introduces an adversarial loss that encourages the model to generate more
robust features that are invariant to small perturbations in the input. The adversarial training method
proposed in this paper is effective for improving the robustness of BERT features, but it may also
introduce additional complexity and computational cost. Further research could explore ways to
optimize the adversarial training process and make it more efficient.

Wang et al. (2020) proposed a method called multi-task deep BERT for joint learning of multiple NLP
tasks. Their approach fine-tunes BERT on several tasks simultaneously using a shared representation
layer and task-specific output layers. While multi-task learning is a powerful approach for joint
learning of multiple NLP tasks, it may not always be possible to combine all tasks into a single model
due to differences in task complexity and data availability. Further research could explore ways to
optimize the joint learning process and identify the optimal set of tasks to combine.

Ma et al. (2020) proposed a domain adaptation approach that fine-tunes BERT on a source domain
and then adapts it to a target domain using a domain-specific adversarial training method. Their
approach achieves state-of-the-art performance on several cross-domain sentiment analysis tasks.
While their domain adaptation approach is effective for cross-domain sentiment analysis, it may not
work well for all domain adaptation scenarios or for other NLP tasks. Further research could explore
alternative domain adaptation methods for fine-tuning BERT on different tasks and domains.

Liu et al. (2021) proposed a method called DistilBERT-DK that fine-tunes BERT on a diverse
knowledge set to improve its performance on open-domain question answering tasks. Their approach
uses a knowledge-distillation method to transfer the knowledge from the diverse knowledge set to the
BERT model. While their DistilBERT-DK method is effective for improving BERT performance on
open-domain question answering tasks, it may not work well for other question answering tasks or
for other NLP tasks. Further research could explore alternative methods for fine-tuning BERT on
different tasks and domains. Additionally, the knowledge-distillation method used in this paper could
be further optimized to improve the efficiency of knowledge transfer.

3 Approach

This research project aims to improve BERT’s performance on three different natural language
processing tasks: sentiment analysis, paraphrase detection, and semantic textual similarity. To
achieve this, we leverage BERT’s pre-trained embeddings and build three separate classification
heads to generate logits for each task. This initial approach serves as our baseline against which we
compare all subsequent improvements.

To enhance the performance of the baseline model, we explore two different fine-tuning techniques
based on existing literature. The first technique employs a multiple negatives ranking loss and the
second technique utilizes contrastive learning. All of these techniques aim to fine-tune the pre-trained
BERT model to improve its accuracy on the three tasks.

In order to evaluate the effectiveness of these fine-tuning techniques, we re-implemented the code of
both papers with our own custom implementation. Furthermore, we conducted a comprehensive anal-
ysis of each technique in isolation to determine their individual impact on the model’s performance.

2

Additionally, we explore the effects of combining these techniques in a sequential manner, which has
not been previously analyzed in the literature.

3.1 Fine tuning - Contrastive loss

Contrastive loss [1] a technique used in machine learning to train models for similarity learning tasks,
such as image or text matching. The goal of contrastive learning is to learn representations of objects
such that similar objects are mapped to nearby points in the learned space, while dissimilar objects
are mapped far apart.

In the context of natural language processing, contrastive loss can be used to learn sentence embed-
dings such that sentences with similar meaning are mapped to nearby points in the embedding space.
The loss function encourages the model to learn to distinguish between similar and dissimilar pairs of
sentences.

The basic idea is to sample pairs of sentences from the training data, where similar sentences are
labeled as positive examples and dissimilar sentences are labeled as negative examples. The model is
then trained to minimize the distance between the embeddings of positive examples and maximize
the distance between the embeddings of negative examples.

The contrastive loss is typically defined as a margin-based loss, where the model is penalized if the
distance between the embeddings of positive examples exceeds a certain threshold, while the distance
between the embeddings of negative examples is smaller than another threshold. The loss function
encourages the model to learn a decision boundary that separates the positive and negative examples
in the learned space.

3.2 Fine tuning - Multiple Negative loss

Multiple negative ranking loss [2] a commonly used loss function in deep learning for training models
that perform binary classification, such as image recognition or natural language processing tasks.
The goal of this loss function is to learn embeddings for each input example such that examples of
the same class are closer together in embedding space than examples of different classes.

The loss is calculated based on pairs of examples, where one example is from the positive class and
the other example is from the negative class. Specifically, for a given positive example, multiple
negative examples are sampled randomly from the training set. The loss penalizes the model if the
distance between the positive example and any of the negative examples is less than a certain margin,
and rewards the model otherwise.

The margin is a hyperparameter that determines the minimum distance that should be maintained
between the positive and negative examples in embedding space. The loss function encourages the
model to learn embeddings such that the distance between positive and negative examples is larger
than the margin. This in turn leads to better separation between different classes in embedding space.

Multiple negative ranking loss is often used in conjunction with siamese networks, which are neural
networks that share weights between two identical subnetworks. The input examples are fed through
the two subnetworks to generate their embeddings, which are then compared using the multiple
negative ranking loss function.

3.3 Fine tuning - Cosine similarity

Both the above losses require a similarity function between embeddings for their computation, and
in this paper we have opted to use the cosine similarity. It is a measure of similarity between two
non-zero vectors of an inner product space that measures the cosine of the angle between them. It is a
widely used metric for comparing the similarity between two vectors of real numbers.

In the context of NLP, cosine similarity is used to measure the similarity between two text documents
or embeddings of text. The cosine similarity between two vectors can range from -1 to 1, with 1
indicating that the vectors are identical and -1 indicating that they are completely dissimilar. A value
of 0 indicates that the vectors are orthogonal or statistically independent.

The calculation of cosine similarity involves taking the dot product of the two vectors and dividing it
by the product of their magnitudes. It can be represented mathematically as:

3

cos(θ) = (A ·B)/(||A||||B||)
where A and B are the two vectors being compared, ||A|| and ||B|| are the magnitudes of A and B
respectively, and theta is the angle between the two vectors.

Cosine similarity is often used in natural language processing tasks such as information retrieval,
text classification, and clustering. It can also be used in combination with other techniques such as
fine-tuning neural language models to improve their performance on specific tasks.

4 Experiments

4.1 Data

In this work, we employ four datasets to evaluate our proposed approach. Firstly, the Quora dataset
[3] is utilized, which comprises of 400,000 question pairs annotated with binary labels indicating the
presence or absence of paraphrases. Secondly, we employ the SemEval STS Benchmark Dataset [4],
which comprises of 8628 sentence pairs annotated with continuous similarity scores ranging from 0
to 5, where 0 signifies no semantic relation and 5 indicates perfect semantic equivalence. Thirdly, we
use the SST dataset [5] consisting of 11,855 movie review sentences that generate 215,154 phrases,
each of which is annotated with one of five sentiment labels. Finally, the CFIMDB dataset [?]
containing 2,434 highly polar movie reviews is used for evaluation purposes.

4.2 Evaluation method

For our evaluation metric, we mainly refer to the dev accuracy that is present in provided test model
method of evaluation.py, and we were aiming to maximize the average of those scores. We used our
first test leaderboard submission as feedback that our model was perhaps overfitting to the dev set on
the first round of experiments, although that was not a steady source of feedback in any way since we
only had 3 submissions to spare.

4.3 Experimental details

To further improve the accuracy of the model, we experimented with various hyperparameters,
including learning rate, number of epochs, optimizer, batch size, weight decay, and reweighting of
individual loss terms within the loss sum. We used PyTorch as our deep learning framework, and all
experiments were run on a single NVIDIA g5.2xlarge GPU.

For sentiment analysis, we used the Stanford Sentiment Treebank dataset which contains 11,855
movie reviews with binary labels (positive or negative).

For paraphrase detection, we used the Quora Question Pairs dataset which contains 400,000 question
pairs with binary labels (duplicate or not).

For semantic textual similarity, we used the SemEval 2017 Task 1 dataset which contains 8,628
sentence pairs with similarity scores ranging from 0 to 5.

We did baseline multitask finetuning for 10 epochs, with a learning rate of 1e-5, a batch size of 24,
and a weight decay factor of 0.01. The weight of all three losses was kept even, at 0.33, and the dev
accuracy was the highest here with 0.525 as our best result. We did this by zipping all the training
dataloaders together, and then considering all three losses as a weighted sum. While each epoch only
considiered the amount of examples from the shortest dataset for each dataset, we found in practice
that this was simpler (and more effective) than having the shorter dataloaders loop over themselves.

Then, we attempted to incorporate multiple negative loss and contrastive loss as another set of
experiments.

For multiple negatives loss, we first applied it to the sentence pairs present in the sts similarity and
paraphrase tasks, and then added that loss to the MSE loss and binary cross entropy loss already
present, respectively. We had a similar approach for contrastive loss, now also adding contrastive loss
to cross entropy loss in the sentiment task. We ran these in finetune mode on a learning rates 1e-5.
1e-4, and 1e-3, 3-10 epochs, and with weight decays of 0.01 and 0.001.

4

We evaluated the performance of our models on the test set using accuracy for sentiment analysis and
paraphrase detection, and Pearson correlation coefficient for semantic textual similarity.

4.4 Results

To establish a baseline for comparison, we fine-tuned a pre-trained BERT model on each of the
three tasks using standard fine-tuning techniques. Table 1 shows the baseline performance of BERT
on each of the three tasks, measured in terms of accuracy for sentiment analysis and paraphrase
detection, and Pearson correlation for semantic textual similarity. This results were ran with default
hyperparameters, using the finetune flag. We used cross entropy loss, binary cross entropy loss, and
MSE loss for the sentiment, paraphrase classification, and similarity tasks, respectively.

Table 1: Best results so far

Task or Model Sentiment Analysis (Pretrain/Finetune) Paraphrase Detection (Pretrain/Finetune) Semantic Textual Similarity (Pretrain/Finetune)
Baseline Multitask 0.333/0.502 0.643/0.697 0.219/0.372

We then fine-tuned BERT using two different methods: contrastive loss and multiple negative ranking
loss. We observe that fine-tuning BERT with both contrastive loss and multiple negative ranking loss
results in significant improvements in performance over the baseline for all three tasks.

Finetune + Original Both Only FineTune FT + O, Para, OF sim
Ext 2 (0) 0.508, 0.706, 0.344 0.504, 0.527, 0.098 0.513, 0.734, 0.062

Ext 2 (0.01) 0.508,0.706,0.344 0.506,0.519,0.121 0.516,0.727,0.065
Ext 2 (0.001) 0.509, 0.725, 0.338 0.504, 0.527, 0.098 0.513, 0.734, 0.062

Ext 1 (0) 0.498,0.723,0.325 0.504,0.624,0.049 0.515, 0.732, 0.043
Ext 1 (0.01) 0.492, 0.727, 0.325 0.511, 0.623, 0.043 0.494, 0.693, 0.045

Ext 1 (0.001) 0.498, 0.723, 0.325 0.504, 0.624, 0.049 0.492, 0.696, 0.054
Table 2: Experiments

Extension 1 refers to the use of multiple negative ranking loss while Extension 2 refers to the use of
contrastive loss for finetuning. The number in brackets in the first column of the table is the amount
of weight decay that was applied in that specific experiment. The first column considers the case
where we add the specific experiment’s finetuning loss to the original loss function utilized for each
task: namely a binary cross entropy loss for paraphrase detection, a mean squared error loss for
semantic textual similarity and a cross entropy loss for sentiment analysis.

We first note interesting improvements on baseline across the different types of loss. The best results
were achieved on sentiment analysis and semantic textual similarity when we combined the original
loss functions with the contrastive loss function. This is seen by the fact that the results are on average
stronger in the first column of the table than the second column of the table across all experiment 2
for these tasks (i.e. the first three rows of the table). Moreover, we note that the use of contrastive loss
was worse than the multiple negative ranking loss on paraphrase detection as seen by the comparison
between the first three and final three rows of column 1. Here we see a marked decline in performance
when using contrastive loss as compared to the multiple negative ranking loss (0.706 compared to
0.723).

The performance with the contrastive loss finetuning and multiple negative ranking lsos finetuning is
best when we add the original loss functions as clearly seen by comparing the first two columns of
the table. The final column of the table considers a set of experiments where we apply no finetuning
loss for the semantic textual similarity task but do so for the other two tasks in an attempt to improve
performance on semantic textual similarity. We note that performance did not increase as expected
and the best results for semantic textual similarity were still achieved when using the original loss in
conjunction with the finetuning approaches.

We altered the weight decay between 0, 0.01 and 0.001 too to understand if applying regularization
would further improve our results. We note that there was no marked difference in our best results
with different weight decay values and believe a direction of future work should be applying more
novel types of regularization.

5

• Test leaderboard results:

– SST test Accuracy: 0.511
– Paraphrase test Accuracy: 0.698
– STS test Correlation: 0.325
– Overall test score: 0.512

• Overall, our finetuning did not work as well as we had hoped, but that is because we did not
supply neither cosine nor dot product similarity with enough contrasting examples for them
to be effective. Our approach most likely could have benefited from pretraining on more
data.

5 Analysis

Upon examination of the results in tables 1 and 2, we can see that finetuning with contrastive loss
and Multiple Negatives Ranking loss does offer some improvement over baseline performance:
specifically, when adding either contrastive learning or multiple negatives ranking loss to binary
cross entropy loss, the paraphrase task saw a noticeable improvement in accuracy. Earlier on in the
project, we were using cosine similarity as a supplement to both of those losses, but saw subpar
results due to the inherent similarity of the embedding. Using dot product similarity, we got results in
the table above.

However, the model performed relatively poorly, especially on the similarity task, when not
supplemented with the original loss functions that we were using (binary cross entropy for the
paraphrase task, mean squared error for the similarity task). As our model relies on dot product/cosine
similarity (depending on the experiments), it seems that the generally high similarity of the
embedding pairs hurt the extension loss functions’ ability to operate to their fullest extent, which is
something we could have explored given more time.

Morever, we observed from our testing that with the given datasets, our original implementation
(with cross-entropy loss for sentiment, binary cross-entropy loss for paraphrase, and MSE loss for
similarity) did overall better than any attempt at finetuning.

Overall, our model was very effective with paraphrase task, however, it falls short on the similarity
task, and it performs as expected on the sentiment classification task.

6 Conclusion

This project has been a challenging and rewarding process. We’ve found that using contrastive loss
and multiple negative rankings loss in conjunction with binary cross entropy loss and mean squared
error loss, respectively, yielded very decent results for both paraphrase and similarity tasks. The
biggest achievement was our paraphrase detection accuracies, which reached 0.734 for certain runs
of the model.

I think a primary limitation of our work was time. Given more time, we could have experimented
more with different convex combinations of the losses from the three heads (as opposed to a flat 0.33
weight for all three), and we could have played around with more learning rates, training epochs,
weight decay, optimizers, batch sizes, etc. Another limitation of was the data that we trained on.
Because our extension focused on losses that use cosine similarity as a pivotal part of their func-
tionality, the already-high similarity of the given datasets was very effective at cutting down on the
performance of the model. Given more time, it would have also been worth it to pretrain on datasets
that had more differences between the sentence embeddings and hopefully get more results in that way.

6

For future work, I think more pretraining and regularization are the key avenues of exploration. As
stated multiple times, the embedding pairs in the given datasets are already very similar, leading to
cosine and dot product similarity losing much of their effectiveness. Using datasets with much larger
differences, we are optimistic that the model can achieve better results, especially on the similarity
task. During training, we noticed that the model was frequently overfitting on certain (sometimes all)
tasks, and our first submission to the test leaderboard also exposed some overfitting to the dev set.
Introducing more aggressive regularization techniques would be a nice direction to explore in order
to address that.

Thank you to the TA’s and teaching team for putting on this fantastic class. We all learned a lot and
look forward to doing more NLP in the future.

References
[1] Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence

embeddings. CoRR, abs/2104.08821, 2021.

[2] Matthew L. Henderson, Rami Al-Rfou, Brian Strope, Yun-Hsuan Sung, László Lukács, Ruiqi
Guo, Sanjiv Kumar, Balint Miklos, and Ray Kurzweil. Efficient natural language response
suggestion for smart reply. CoRR, abs/1705.00652, 2017.

[3] Quora dataset. https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs.

[4] Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, Rada Mihalcea,
German Rigau, and Janyce Wiebe. SemEval-2016 task 1: Semantic textual similarity, monolin-
gual and cross-lingual evaluation. In Proceedings of the 10th International Workshop on Semantic
Evaluation (SemEval-2016), pages 497–511, San Diego, California, June 2016. Association for
Computational Linguistics.

[5] Stanford sentiment treebank dataset. https://nlp.stanford.edu/sentiment/treebank.
html.

7

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://nlp.stanford.edu/sentiment/treebank.html
https://nlp.stanford.edu/sentiment/treebank.html

	Introduction
	Related Work
	Approach
	Fine tuning - Contrastive loss
	Fine tuning - Multiple Negative loss
	Fine tuning - Cosine similarity

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

