
Multi-task NLP with BERT
Stanford CS224N Default Project

Chris King
Department of Computer Science

Stanford University
kingces@stanford.edu

Abstract

We extend BERT to preform multiple Natural Language Processing (NLP) tasks.
The tasks are (1) multi-class sentence classification task in the form of sentiment
analysis of the Stanford Sentiment Treebank dataset of movie reviews, (2) multi-
class sentence pair classification task in the form of predicting the similarity
between sentences of the SemEval STS Benchmark dataset, and (3) a binary-class
sentence pair classification task in the form of de-duplicating Quora questions.
The original model is provided by Stanford CS224N teaching staff. Our best
preforming model changed that base model to instead operate as suggested in the
BERT paper whereby a linear layer (plus a task discriminating feature) is placed a
top the BERT model which classifies the [CLS] token generated by feeding in a
single or multiple sentences. We attempted gradient surgery (4), task embedding
(our own novelty), and task attention embedding (3) but in the end all models
preformed more or less the same although their time to best result differed.

1 Approach

We seek to maximize the average score of three NLP tasks run against a model we extend from BERT.
We refer to the three tasks as sentiment, semantic, and paraphrase where the first is an instance of
sentence classification and the latter two are instance of sentence pair classification task. For detailed
descriptions of each of the three tasks we refer the reader to the Stanford CS224N 2022 Winter
Quarter Default Project Handout1.

Our goal is to maximize the average score on the three NLP tasks with minimal additional parameters.
We restrict ourselves to models without task specific parameters. To that end, we abstract the three
tasks into a meta-task plus discriminator and use task embedding, gradient surgery, task discrimination
features to enable the learning machinery to make more intelligent gradient updates.

2 Experiments

We present five model named Naive, Baseline, Task Embedding, Task Attention Embedding, and PC
Grad (gradient surgery). We continue to run epochs until our score stops increasing or to roughly a
dozen epochs. We use default hyper-parameters for our runs unless otherwise noted. We summarize
the experiments, our sampling methodology, our results in tables, and conclude this section with
more a detailed description of our five experiments when experiment summaries do not suffice.

1. Naive We conjecture the default implementation classification approach of using different
linear layers to classify each task should be replaced with a single linear layer that accepts a
discriminator feature.

1https://web.stanford.edu/class/cs224n/project/default-final-project-bert-handout.
pdf

Stanford CS224N Natural Language Processing with Deep Learning

https://web.stanford.edu/class/cs224n/project/default-final-project-bert-handout.pdf
https://web.stanford.edu/class/cs224n/project/default-final-project-bert-handout.pdf


2. Baseline We conjecture the default implementation sentence pair classification approach of
generating two CLS encodings, one for each sentence via separate forward passes through
BERT, should be replaced with classifying a single CLS token generated by a single forward
pass through BERT of the SEP joined sentences.

3. Task Embedding We conjecture adding a task embedding ala the position embeddings to
BERT will allow the learning machinery to intelligently separate BERT parameter gradient
updates for each task into different dimensions of a shared set of parameters.

4. Id We conjecture pre-pending each example with a task id (followed by a space) will allow
the attention mechanism to pay attention to task type. Where Task Embedding provided a
task specific signal by modifying the model, this experiment would achieve a similar effect
by modifying the data.

5. Task Attention Embedding We conjecture adding task attention embeddings as described
in (3) will similarly allow the learning machinery to intelligently separate BERT parameter
gradient updates for each task into different dimensions of a shared set of parameters.
Essentially each BERT layer learns an embedding per key, value, query per task shared
across heads. Each embedding is of size equal to the corresponding key, value, or query
matrices. The embedding is added to the linear projection of the key, value, and query.

6. Gradient Surgery We conjecture that gradients for different tasks are more likely point in
opposite directions and so projecting them onto each other as described in (4) would reduce
the tension between task updates.

7. Ensemble We conjectured an ensemble of these approaches would produce the best result.
For the ensemble, we modified Gradient Surgery to not preform updates on the Task
Embeddings or Task Attention Embeddings since these parameters were specific to each
task.

2.1 Sampling

For the milestone experiments (Table 1), samples are drawn randomly from each dataset without
replacement until each dataset is exhausted. For the remaining experiments (Table 2 onward), 10k,
20k, and 40k samples are randomly drawn without replacement from the union of the three training
sets. If a dataset is exhausted, then we recycle the data set (Looped Sampling) and being again
drawing random samples from that dataset without replacement. Samples from different datasets are
randomly interleaved for all experiments except when PCGrad is enabled. When PCGrad is enabled
the datasets are randomly sampled without replacement in a round-robbin fashion so that each batch
is gaurenteed to have equal examples of each task. We also experiment with drawing uniformly by
labels within each dataset (Looped Balanced Sampling) which has the effect of hiding the prior label
distribution.

2.2 Batch

For the milestone experiments we used the default batch size of 8. For the remaining experiments we
used a batch size of 9 except for Gradient Surgery where we used a batch size of 3. Using a batch
size of 3 with round robbing selection of datasets ensured each batch contained a single example
from each dataset which we conjectured would allow for maximum opportunity to correct gradient
contention before moving to far in any one direction.

2.3 Results

Name Score Epochs Sentiment Paraphrase Semantic
Naive 0.490 3 0.466 0.698 0.305

Baseline 0.711 6 0.503 0.823 0.806
Task Embedding 0.715 7 0.505 0.809 0.831

Table 1: Milestone Experiment Summary

2



Name Score Epochs Sentiment Paraphrase Semantic
Baseline 0.716 3 0.506 0.818 0.823

Id 0.719 10 0.519 0.826 0.813
Task Embed 0.719 8 0.512 0.826 0.818

Task Atten Enbed 0.718 3 0.494 0.820 0.840
Gradient Surgery 0.712 2 0.514 0.827 0.821

Table 2: 10k Looped Samples Experiment Summary

Name Score Epochs Sentiment Paraphrase Semantic
Baseline 0.724 2 0.513 0.834 0.825

Id 0.724 7 0.509 0.841 0.823
Task Embed 0.724 6 0.510 0.840 0.822

Task Atten Enbed 0.722 8 0.518 0.840 0.808
Gradient Surgery 0.717 2 0.506 0.829 0.816

Table 3: 20k Looped Samples Experiment Summary

Name Score Epochs Sentiment Paraphrase Semantic
Baseline 0.731 11 0.518 0.869 0.807

Id 0.730 7 0.520 0.857 0.814
Task Embed 0.727 11 0.500 0.864 0.817

Task Atten Enbed 0.726 6 0.500 0.855 0.823
Table 4: 20k Looped Balanced Samples Experiment Summary

Name Score Epochs Sentiment Paraphrase Semantic
Baseline 07.21 2 0.506 0.859 0.797

Task Embed 0.727 11 0.500 0.864 0.817
Task Atten Enbed 0.723 4 0.490 0.868 0.811

Table 5: 40k Looped Balanced Samples Experiment Summary

Name Score Epochs Sentiment Paraphrase Semantic
Baseline 03e-6 0.730 7 0.520 0.857 0.814
Baseline 07e-6 0.727 7 0.514 0.857 0.812
Baseline 0e-5 0.731 11 0.518 0.869 0.807
Baseline 13e-6 0.711 7 0.490 0.834 0.810
Baseline 17e-6 0.712 1 0.502 0.828 0.805

Table 6: 20k Looped Balanced Samples Hyperparameter Search Experiment Summary

Name Score Epochs Sentiment Paraphrase Semantic
All experiments 0.714 10 0.486 0.832 0.823

Table 7: 20k Looped Balanced Samples Search Experiment Summary

2.4 Naive

We establish a naive baseline performance using a model requiring minimal changes to the default
model provided by course staff while still allowing each dataset to non-trivially contribute to fine-
tuning of the BERT parameters. To this end, we (1) abstract the sentence classification task as a
sentence pair classification task by duplicating the sentence, and (2) use the union of the labels of the
three sentence pair classification tasks as the set of classifications.

3



Fine-tuning our model proceeds by generating pool vectors for each sentence A ∈ Nh and B ∈ Nh

for the sentence pair classification dataset. Each pool embedding is constructed as specified in
the Default Project Handout (e.g. it corresponds to the first input token ([CLS]) passed through
a single layer neural network with Tanh activation). We next construct a task vector C ∈ R2d+1

by concatenating the pool embedding A and B and a discriminator D ∈ R. The discriminator for
each of the three original tasks is a unique integer. We pass the task vector C through a linear layer
W ∈ Rk×2d+1 where k is the number of labels. Finally, we compute a standard classification loss i.e.
log(softmax(CWT )) and back-propagate.

2.5 Baseline

We join the sentences in the sentence pair classification tasks with a SEP token and run our classifica-
tion on the resulting CLS token. The BERT paper directs sentence pair classification proceed in this
manner and, indeed, it results in a significant improvement in performance over the naive approach.

2.6 Id, Task Embedding, Task Attention Embedding, and Gradient Surgery

None of these approaches reliably improved performance. Differences are attributed to noise.

1. Id While this improved performance in the early epochs the performance returned to baseline.
From this we assume the model quickly learned to differentiate between tasks but that simply
knowing what task is being evaluated is not sufficient to improve performance.

2. Task Embedding Since the position enbedding signal must travel to the top of the BERT
stack to be used by the attention layer there, we assumed so too must an task embedding
travel to the top of the stack and so could be used everywhere to make more intelligent
gradient updates. Ultimately we could detect no reliable improvement in performance.

3. Task Attention Embedding This experiment accounted for our largest semantic score
when run against 10k samples, but our lowest score when run against 20k samples and
average scores for other sampling cohorts. Again, we could detect no reliable improvement
in performance.

4. Gradient Surgery We made use of code provided by the paper to implement gradient
surgery2.

3 Conclusion

Our best model added a single linear layer with a single task discrimination feature atop BERT to
classify the [CLS] token for three different tasks fed to BERT as prescribed in their paper (we used
the [SEP] token). We trained our model by drawing 40k samples from a weighted random distribution
of the union of all datasets. The weights ensured the labels per dataset were sampled at a uniform
rate. This straightforward model preformed in the top 30/110 on a single backbone and 14th/1103

when trained on individual datasets.

4 Future work

In the future we would

1. work to increase our semantic score alone. Our baseline achieves scores of 0.530, 0.870,
and 0.830 for sentiment, paraphrase, and semantic respectively. The first two scores are
reasonably high, but the latter needs something more than pre-training the BERT parameters.

2. do as (1) suggests and pre-train on the tasks BERT originally trained with and finetune
parameters layered on top of BERT; The default model presented in the default project
directs student to use cosine similarity to compare sentences and makes it easy to pre-train
on the downstream tasks. Instead we should do as BERT suggests which is pre-train on the
Masked LM task and use the [SEP] token to compare sentences.

2https://github.com/WeiChengTseng/Pytorch-PCGrad/blob/e987ac603fa1accd386820a985a6dc2fd92dec5b/
pcgrad.py

3as of this writing

4

https://github.com/WeiChengTseng/Pytorch-PCGrad/blob/e987ac603fa1accd386820a985a6dc2fd92dec5b/pcgrad.py
https://github.com/WeiChengTseng/Pytorch-PCGrad/blob/e987ac603fa1accd386820a985a6dc2fd92dec5b/pcgrad.py


3. run layer abatement experiments guaranteed to produce performance gradients. BERT
essentially ignored the changes we made to its model resulting in no performance gradient
hence no direction to focus efforts. Denying a task an increasing number of layers is
guaranteed to eventually produce a change in performance4. Using those results we could
allocate tasks a subset of layers to each task. This would allow the remaining layers
to be dedicated to the remaining tasks reducing gradient update contention in a more
straightforward way than gradient surgery.

References
[1] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, BERT: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[2] A. Thakur, How to Fine-Tune BERT for Text Classification. arXiv preprint arXiv:1905.05583,
2019.

[3] Ł. Maziarka and T. Danel, Multitask Learning Using BERT with Task-Embedded Attention. In
2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 2021 doi:
10.1109/IJCNN52387.2021.9533990.

[4] A. Author, B. Author, and C. Author, Gradient Surgery for Multi-Task Learning. NeurIPS 2020
arXiv:2001.06782.

4Saving all [CLS] tokens for every forward pass would allow this analysis to be done in parallel!

5


	Approach
	Experiments
	Sampling
	Batch
	Results
	Naive
	Baseline
	Id, Task Embedding, Task Attention Embedding, and Gradient Surgery

	Conclusion
	Future work

