
Compositional Generalization Based on Semantic
Interpretation: Where can Neural Networks Improve?

Stanford CS224N Custom Project

Carolyn Qu
Department of Symbolic Systems, Computer Science

Stanford University
cqu@stanford.edu

Rodrigo Nieto
Department of Computer Science

Stanford University
rjnieto@stanford.edu

Abstract

Recent research suggests that compositional generalization in Natural Language
processing remains a challenge, even for state-of-the-art neural models such as
Transformers. This paper explores various model configurations, techniques, and
hyperparameters for the Transformer model to see how we can improve it on
compositional generalization tasks. Within the design space of Transformers,
we explore various techniques such as the decoding strategy, attention variants,
oracle evaluation, and the optimizer type. We find that top-p sampling increases
model accuracy across almost all the datasets we used to measure compositional
generalization. This suggests that relying solely on greedy decoding can lead to
suboptimal results, even in low-entropy tasks such as compositional generalization.
Our research shows that because the greedy decoder is more prone to getting stuck
in local minima, introducing entropy in the form of top-p sampling can actually be
beneficial for the model. Our modified Transformer achieves state-of-the-art results
in a semantic parsing compositional generalization benchmark (COGS), which we
will publicly release so that one can reproduce our results. These findings could
also have broader implications beyond compositional generalization testing, such
as in the field of machine translation.
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2 Introduction

Compositional generalization is an important part of human language production; namely, the ability
to understand and produce a potentially infinite number of novel, well-formed linguistic expressions
by dynamically recombining known elements [1, 2, 3]. For instance, once a person is taught the
meaning of the verb "dance," they can then understand the meaning of more complex phrases, such
as "dance twice" or "sing and dance."

Recently, neural modeling approaches have taken over computational linguistics and Natural Lan-
guage processing, using neural networks (designed to emulate human cognition) to tackle language
processing tasks rather than handcrafted symbolic grammars [4]. Neural models greatly outperform
grammar-based models in a diverse range of natural language tasks such as machine translation,
question answering, and semantic parsing [4]. However, they fail rather dramatically on tests of
compositional generalization, i.e., the ability to learn a set of basic primitives and combine them in
more complex ways than those seen during training [5].
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On the other hand, humans and classical AI algorithms (grammar and search-based systems) are not
troubled by compositional tasks [6, 7]. This leaves the open question of whether we can build deep
learning architectures that solve compositional tasks.

In this paper, we will focus on the Transformer architecture, which functions as the de facto standard
for numerous NLP tasks. Despite recent efforts to improve the performance of Transformer models on
compositional generalization, they often require advanced architecture changes or increased numbers
of model parameters for promising results, leaving a lot to be desired [5, 8]. Our paper explores the
design space of Transformers, while using a controlled number of model parameters and avoiding the
use of large models which may lead to overfitting [5].

3 Related Work

The existing work surrounding compositional generalization includes a variety of approaches in-
cluding data augmentation [9, 10, 11], Syntactic Attention [12], compositional parsers [6, 13],
intermediate representations [14, 15] and structure annotations [7].

Additionally, previous work with Transforms suggests that by exploring the design space of Trans-
former models, minor architectural adjustments can drastically improve the performance of Trans-
formers on compositional generalization tasks. Higher accuracy levels can be achieved without
increasing the parameter count of the baseline model, but rather using relative positional encoding,
changing hyperparameters, using a “copy decoder” and providing intermediate representations of
data [8]. Similarly, other research suggests that revising model configurations such as the scaling of
embeddings, early stopping, relative positional embedding, and Universal Transformer variants, can
also drastically improve the performance of Transformers on compositional generalization. [5].

4 Approach

For consistency with our baseline, we will be building off the algorithm presented by Google Research
[5] and revising the model architecture in order to see improvements in sequence level accuracy
(check section 5.2 for definition). We specifically focused on areas of the Transformer that the modern
literature has not extensively explored, such as decoding strategies, attention variants, and optimizers.

4.1 Top-p Sampling

At the current state of research, none of the state-of-the-art (SOTA) models presented deviate
from using greedy decoding (see Figure 2a for an example). We would like to investigate this by
implementing top-p sampling, which shortlists the tokens whose sum of likelihoods does not exceed a
certain threshold value, p, which is defined as a hyperparameter [16]. The next token is then sampled
from this shortlist based on likelihood scores. This top-p sampling method is commonplace for
generating long-form text and high-entropy tasks [17, 18], but it has rarely been explored in the
context of compositional generalization and other low-entropy tasks.

Although there is little precedent for using top-p sampling in lower-entropy tasks, one central problem
with compositional generalization is the tendency for models to overfit to the dataset, leveraging
learning shortcuts instead of learning compositional generalization. Top-p sampling tests how the
model would perform once some degree of entropy is introduced.

This implementation adapts TensorFlow’s code for two-dimensional predictions [19] to three-
dimensions (batch size, sequence length, vocab size). At the current state, there is little open-source
code for top-p sampling for three-dimensional predictions (as far as we are knowledgeable); therefore,
even outside of testing compositional tasks, this implementation could be useful for other research.
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Figure 1: Example of encoder-decoder architecture for selecting next token [16].

(a) (b)

Figure 2: Greedy decoding vs top-p (nucleus) sampling. While greedy decoding selects the token
with the highest probability, top-p sampling selects the top tokens whose likelihoods add up to p and
samples based on the likelihood scores [16].

4.2 Attention Variants

Csordás et al. (2022) showed how the Transformer model drastically improved by using relative
position encoding as opposed to absolute position encoding as they converge faster, are less sensitive
to batch size, and help mitigate overfitting problems [8]. Therefore, the idea of relative attention,
motivated us to try the effects of different attention variants. We thus experimented with the following
attention variants: multiplicative attention (1), reduced-rank multiplicative attention (2), and additive
attention (3).

ei = s⊤Whi ∈ R (1)

Where e ∈ RN , h1, ..., hN ∈ Rd1 , s ∈ Rd2 and W ∈ Rd2×d1 is a weight matrix.

ei = s⊤(U⊤V )hi = (Us)⊤(V hi) (2)

Where U ∈ Rk×k×d2 , V ∈ Rk×k×d1 are low rank matrices, and k << d1, d2.

ei = v⊤tanh(W1hi +W2s) ∈ R (3)

Where W1 ∈ Rd3×d1 , W2 ∈ Rd3×d2 are weight matrices and v ∈ Rd3 is a weight vector, and d3 is a
hyperparameter.

4.3 Oracle Evaluation in Early Stopping

In Transformer models, the decision to end a decoding sequence is represented by the generation
of a special end-of-string (EOS) token. Research shows that models often overfit to the position of
the EOS token in the train set, suggesting that Transformers struggle to generalize to longer output
lengths than they are trained for [20]. Oracle evaluation measures whether the models are otherwise
able to solve the compositionality task, this is done by ignoring the EOS token during evaluation and
using the ground-truth sequence length to stop decoding.

4.4 Lion Optimizer

A very recent paper by Chen et al. (2023) presented a simple and effective optimization algorithm
Lion that is more memory-efficient and has better in-context learning ability – an emergent behavior
in large language models where the LLM performs a task just by conditioning on input-output
examples, without optimizing any parameters [21] – than Adam [22]. The paper proposes discovering
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Figure 3: Adam (a) and Lion (b) optimizer algorithms [22]

optimization algorithms through the usage of program search. Their method was able to discover the
Lion optimizer. Thus, we were curious to see the performance of Lion relative to Adam, given its
improvement in some NLP applications. The differences between the Lion Optimizer algorithm and
the AdamW algorithm are highlighted in Figure 3.

5 Experiments

5.1 Data

Our primary evaluation dataset will be COGS (Compositional Generalization Challenge based on
Semantic Interpretation): a semantic parsing dataset based on a fragment of English [23], which tests
the task of semantic parsing to map an English sentence to a logical form. For example, an input
token: [START] The hippo ran . [END] is mapped to the logical form: * hippo ( x _ 1 )
; run . agent ( x _ 2 , x _ 1 ) [END] .

Training on compositional task-based datasets often leads to overfitting[24], namely due to uncon-
trolled lexical exposure during training. Therefore, it is imperative that we test our models against a
suite of different compositional generalization tasks. The datasets are as follows:

• Algorithmic Datasets: These are datasets that evaluate productivity-style compositional
generalization: extrapolation to longer sequences than those seen during training [5]. This
set includes addition (Add), addition of negatives (AddNeg), reversing an input sequence
(Reverse), duplication of a sequence (Dup), Cartesian product of two sequences (Cart), and
the intersection of two sequences (Inters).

• SCAN (Simplified versions of the CommAI Navigation tasks): A dataset for grounded
navigation which consists of a set of simple compositional navigation commands paired
with the corresponding action sequences [25]. We include the length split SCAN-l, and the
add primitive jump split SCAN-aj.

• CFQ (Compositional Freebase Questions): A large and realistic natural language question
answering dataset [26]. We include the MCD1 split CFQ. This dataset requires preprocessing
to convert tfrecords to plain text.

• PCFG (Probabilistic Context Free Grammar String Edit Task): A dataset with sequence-
to-sequence problems specifically designed to test different systematicity, productivity,
substitutivity, localism, and overgeneralization [27]. We include the productivity PCFG-p
and systematicity PCFG-s splits of the dataset.

For each of the datasets, we focus on a generalization split, where the test set is a sample from a
distribution that is systematically different from the one for training.

5.2 Evaluation method

For consistency with our initial baseline, we will evaluate the compositional generalization of our
modified Transformer on the sequence level accuracy of the output. Sequence level accuracy, in this
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context, is defined as the percentage of entire sequences that are correctly predicted by the model
within a dataset. Therefore, in order to get 100% sequence accuracy, the token output prediction must
token-by-token match the ground truth in that precise order.

5.3 Experimental details

• Transformer Variant: We will be implementing top-p on our baseline model provided by
Ontanón et al. (2021)[5]. This will involve relative position encoding, where the relative
position labels define a learnable embedding that is added to the key during the attention
process. However, besides that we will not use weight sharing, unlike the work in the paper
considering the Csordás et al. (2022) research notes that weight sharing actually limits the
capacity of the Transformer model [8]. Finally, we will also avoid using the copy decoder
as used by Ontanón et al. (2021). The reason behind this decision is that the inclusion of
a copy decoder would drastically increase the complexity of the model – which we will
explain why in the Model Configurations section is not in the scope of our project – and
copy mechanisms can often lead to repetition or redundancy in the output, which might lead
to overfitting to certain n-grams.

• Model Configurations: The hypothesis from the Ontanón et al. (2021) investigation
concludes with insight that most large models greatly outperform their respective small
ones because large models tend to overfit, which is to be expected [5]. Therefore, for our
model configurations, we wanted to small model size with the number of encoder / decoder
layers set to 2, the dimensionality of the token embeddings set to 64, the intermediate
dimensionality used by the feed-forward sublayer set to 256, and the number of attention-
heads in the attention sublayers set to 4.

• Top-p Sampling: For top-p sampling, we must set a parameter for the p value to limit the
long tail of low-probability tokens that may be sampled [16]. In this practice, we found that
the p value that worked most effectively was when p was set to 0.9.

• Batch Size, Learning Rate, and Optimizer Betas: In order to keep consistency with our
baseline, we will be utilizing the same batch size of 64 and a custom schedule learning rate
with the number of warmup steps set to 400. Similarly, for the Adam optimizer, we also
used a β1 of 0.9 and a β2 of 0.98, as well as ϵ of 1e− 9. Furthermore, we found the same
Adam optimizer parameters were the best-performing hyperparameters on Lion as well.

• Loss function: As used in the Ontanón et al. (2021) work, we will be using the cross
entropy loss function, which as shown in Csordás et al. (2022) tends to be the standard for
compositional generalization tasks [8].

5.4 Results

We report our sequence level accuracy across all datasets in Table 1. All results that are reported are
run chronologically and are meant to find the best combination of techniques to optimize for accuracy,
meaning that because we noticed that top-p sampling greatly improved overall accuracy, all the other
experiments (i.e. Multiplicative Attention, Reduced-rank multiplicative Attention, Additive attention,
Oracle evaluation, and the Lion optimizer) included top-p sampling.

Add AddNeg Reverse Dup Cart Inters Scan-l Scan-aj PCFG-p PCFG-s COGS CFQ Avg
Baseline 0.004 0.018 0.422 0.486 0.004 0.501 0.064 0.003 0.238 0.451 0.170 0.322 0.224
Top-p 0.004 0.021 0.425 0.793 0.000 0.500 0.050 0.012 0.201 0.514 0.296 0.355 0.264
Multi Att 0.002 0.087 0.024 0.002 0.000 0.507 0.091 0.027 0.198 0.514 0.103 0.312 0.156
Reduced Att 0.000 0.001 0.002 0.000 0.000 0.511 0.021 0.001 0.028 0.022 0.047 0.183 0.068
Add Att 0.000 0.001 0.000 0.000 0.000 0.500 0.018 0.001 0.022 0.024 0.023 0.150 0.062
Oracle 0.013 0.010 0.392 0.439 0.000 0.500 0.103 0.036 0.309 0.467 0.304 0.296 0.239
Lion 0.000 0.002 0.394 0.142 0.000 0.502 0.073 0.021 0.114 0.256 0.078 0.232 0.151

Table 1: Comparison of the sequence level accuracy for various implementations, across all datasets
with a "rel-e" size model compared to our baseline with all other hyperparameters kept the same [5].
All results after top-p include top-p sampling in their implementation to improve on the previous run.

Our results show that top-p sampling significantly increased compositional generalization scores,
increasing the average sequence level accuracy from the baseline of 22.4% to 26.4%. The improve-
ments for top-p sampling were especially significant in Dup, PCFG-s, and COGS. This was quite
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surprising and unexpected, namely because top-p sampling is often used for high-entropy tasks.
We further analyze the top-p sampling in Section 6 to explore why introducing entropy might be
beneficial for compositional generalization tasks.

Improvements from attention variants were inconsistent. Multi-headed attention significantly in-
creased performance on AddNeg, SCAN-l, SCAN-aj, but worse overall. Reduced-Rank attention
increased scores on Inters and COGS but significantly decreased performance on other datasets.
Additive attention performed worse than the baseline across the board. Despite relative position
encoding overall helping compositional generalization, introducing attention weights appears to hurt
the sequence level accuracy of the model. Additionally, increasing the number of weight matrices for
reduced-rank and additive attention seemed to further weaken scores.

Oracle evaluation seemed to perform variably, increasing scores on Add, SCAN-l, SCAN-aj, PCFG,
PCFG-p, and COGS. However, top-p sampling with Oracle Evaluation seemed to perform worse
overall than top-p sampling on its own.

The Lion Optimizer also performed rather poorly. This behavior was unexpected, namely because
in comparison to Adam, Lion significantly performs better on several NLP applications [22]. It is
unclear where Lion underperforms compared to Adam, even with the use of our best-performing
hyperparameters. We assume this is partly due to Lion being a new algorithm, with limited research
or understanding of its behavior and properties at the time of writing.

6 Analysis

From our results, we focused on exploring how the introduction of entropy through top-p sampling
can enhance compositional generalization. Our initial results showed significant improvement across
several datasets, but we decided to examine the effects of top-p sampling on COGS in greater detail.
To this end, we conducted a comparative analysis between the outputs generated by top-p sampling
and our baseline, specifically looking for areas of divergence.

6.1 Top-p sampling: Probability Distribution

Figure 4: An example probability distribution for the first token in COGS

Our analysis revealed that when COGS produced an output for the generalization set, the initial words
had a low likelihood of occurrence (ranging from 5% to 14%), while the later words had much higher
likelihood scores (up to 99%). This finding highlights the role that top-p sampling plays in generating
our outputs, and provides us insight on its impact on compositional generalization.

Additionally, the * symbol was produced more frequently in the baseline prediction as compared
to top-p. Given the low confidence on the first few tokens, we hypothesize that the baseline model
learns a shortcut to produce * as the first token. In the top-p variant of our baseline, the model is
forced to consider other alternatives as the first token, which is especially useful as the likelihood for
the first token in COGS is rather low.

6.2 Sequence level Accuracy In COGS

Both our baseline model and our top-p model performed variably depending on the dataset (For
more detailed information see A.1). We noticed that top-p performed significantly better on the
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Figure 5: Sequence level accuracies for the 22 generalization splits evaluated in COGS

following data splits: Subject → Object (proper noun), Object → Subject (proper noun), Object-
omitted transitive → Transitive, PP dative → Double object dative, Theme NP → Obiect-omitted
transitive Subiect, Depth generalization: Sentential complements.

We hypothesize that the semantic structure in these data splits is easier to learn. The similar increase in
performance for the Subject → Object (proper noun), Object → Subject (proper noun) data splits (and
lack of increase in their common noun counterpart datasets) suggests that some form of generalization
occurs across the terms and the structure learned in these splits.

6.3 Common Resolved Error Types

In analyzing some of the common types of sequences that top-p predicted correctly and greedy
decoding predicted incorrectly, we noticed that the overwhelming majority of the greedy-decoded
outputs were only off by one token.

• 1st Token Errors: One of the most frequent sequence types we observed was a 1st-token
error, where the greedy decoder incorrectly the first token of the sequence, which top-p
sampling correctly calculated.

Input: [START] A cockroach expected to nap . [END]
Target: cockroach(x_1)AND expect.agent(x_2,x_1)AND expect.xcomp(x_2,x_4)AND nap.agent(x_4,x_1)[END]
Top-p : cockroach(x_1)AND expect.agent(x_2,x_1)AND expect.xcomp(x_2,x_4)AND nap.agent(x_4,x_1) [END]
Greedy: cake(x_1)AND expect.agent(x_2,x_1)AND expect.xcomp(x_2,x_4)AND nap.agent(x_4,x_1)[END]

• Definite article errors: In the Subject → Object, proper noun dataset, 85% of the sequences
that were mispredicted by the Greedy Decoder and accurately predicted by top-p sampling
included the definite article the A.2. On the other hand, both Greedy decoding and top-p
sampling incorrectly predicted many of the sequences that included an indefinite article.

Input: [START] The hippo dusted . [END]
Target: *hippo(x_1);dust.agent(x_2,x_1)[END][END]
Top-p : *LAMBDA(x_1);dust.agent(x_2,x_1)[END][END]
Greedy: *hippo(x_1);dust.agent(x_2,x_1)[END][END]

By analyzing various error types across datasets, we can observe that greedy decoding fails on
instances of test data that it hasn’t seen before, it predicts a word similar to the input word. For
instance, if the input includes the word cockroach, the model may often output the word cake in
the prediction in place of the correct token cockroach, resulting in a low sequence level accuracy
(∼ 0%, especially if the word cockroach appears in multiple examples in the dataset.

6.4 Entropy in Top-p

Although top-p sampling is not infallible, it allows for the model to consider other alternatives. On
both top-p and greedy decoding models, the loss rapidly approaches 0 (typically < 1 by 25% through
training, as shown in Figure 6) and thus backpropagation may not have a significant enough effect
later in training because the error signal propagated through the network is relatively small.

This could cause the weights and the biases to update less drastically, making it difficult for the model
to escape a local minimum. Even with the entropy introduced through the cross-entropy loss function,
the greedy decoding model still struggles to push the optimization algorithm out of a local minimum.
In this case, the model could get stuck at cake instead of finding the global optimum, cockroach.
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Figure 6: Training loss for greedy (a) and top-p (b) models

We hypothesize that top-p sampling mitigates this issue; if the token with the second highest
likelihood is cockroach instead of cake, there is a higher probability that the token cockroach
would be chosen, thus helping the model to escape the local minimum created around cake. If the
overwhelming majority of the greedy-decoded outputs were only off by one token, this would put
the sequence level accuracy to 0% for all those predictions. This is exacerbated by the fact that the
sequence level accuracy will not achieve much learning through backpropagation if the value of the
loss function is low, thus, showing the need to deviate from pure greedy decoding and introduce
entropy through other decoding strategies.

7 Conclusion

In this work, we tested various model configurations and techniques such as decoding strategy,
attention variants, oracle evaluation, and optimizer type, and found that top-p sampling produced
significant increases in accuracy across all compositional generalization datasets. We find that top-p
sampling has promising potential for low-entropy tasks such as compositional generalization, and our
modified Transformer model results in a 12.6% gain in COGS compared to the current SOTA [5].
From our qualitative analysis, we found that by increasing entropy, top-p sampling helps Transformer
models escape local minima and accurately predict tokens that hadn’t been seen before in training.

One major limitation of our work is the initial model configurations; due to GPU and time limitations,
we were only able to base our model on the smallest version of our baseline [5]. For future work,
we would like to further explore our hypotheses about how top-p sampling helps a Transformer
model escape local minima, as well as further algorithm modifications, i.e. dynamically altering the
threshold value p across multiple datasets.

Additionally, we would like to explore the merits of our findings on other low-entropy tasks such as
machine translation, which have little precedent in utilizing decoding strategies other than greedy
decoding. Compositional generalization is particularly useful for machine translation models, as it
allows models to handle more complex sentences and generate translations for sentences that haven’t
been seen before. This would be especially meaningful for languages that lack enough data and
resources to make a robust and accurate translation model. Poor compositional generalization leads
to inaccurate and nonsensical translations, which is commonplace in endangered and low-density
languages that lack robust datasets.

In conclusion, there is a need for further exploration of the role of entropy in machine translation
models or low-entropy tasks such as compositional generalization and machine translation. By
gaining a deeper understanding of how entropy can be incorporated into learning algorithms, we may
be able to enhance the performance of machine translation systems.

References
[1] Noam Chomsky. Logical structure in language. Journal of the American Society for Information

Science, 8(4):284, 1957.

[2] Jerry A Fodor and Zenon W Pylyshyn. Connectionism and cognitive architecture: A critical
analysis. Cognition, 28(1-2):3–71, 1988.

8



[3] Jerry A Fodor and Ernest Lepore. The compositionality papers. Oxford University Press, 2002.

[4] Lucia Donatelli and Alexander Koller. Compositionality in computational linguistics. Annual
Review of Linguistics, 9, 2023.

[5] Santiago Ontanón, Joshua Ainslie, Vaclav Cvicek, and Zachary Fisher. Making transformers
solve compositional tasks. arXiv preprint arXiv:2108.04378, 2021.

[6] Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and Kristina Toutanova. Compositional
generalization and natural language variation: Can a semantic parsing approach handle both?
arXiv preprint arXiv:2010.12725, 2020.

[7] Juyong Kim, Pradeep Ravikumar, Joshua Ainslie, and Santiago Ontañón. Improving com-
positional generalization in classification tasks via structure annotations. arXiv preprint
arXiv:2106.10434, 2021.

[8] Róbert Csordás, Kazuki Irie, and Jürgen Schmidhuber. The devil is in the detail: Simple tricks
improve systematic generalization of transformers. arXiv preprint arXiv:2108.12284, 2021.

[9] Jacob Andreas. Good-enough compositional data augmentation. arXiv preprint
arXiv:1904.09545, 2019.

[10] Yichen Jiang, Xiang Zhou, and Mohit Bansal. Mutual exclusivity training and primitive
augmentation to induce compositionality. arXiv preprint arXiv:2211.15578, 2022.

[11] Arkil Patel, Satwik Bhattamishra, Phil Blunsom, and Navin Goyal. Revisiting the compositional
generalization abilities of neural sequence models. arXiv preprint arXiv:2203.07402, 2022.

[12] Jake Russin, Jason Jo, Randall C O’Reilly, and Yoshua Bengio. Compositional generalization
in a deep seq2seq model by separating syntax and semantics. arXiv preprint arXiv:1904.09708,
2019.

[13] Pia Weißenhorn, Yuekun Yao, Lucia Donatelli, and Alexander Koller. Compositional general-
ization requires compositional parsers. arXiv preprint arXiv:2202.11937, 2022.

[14] Jonathan Herzig, Peter Shaw, Ming-Wei Chang, Kelvin Guu, Panupong Pasupat, and Yuan
Zhang. Unlocking compositional generalization in pre-trained models using intermediate
representations. arXiv preprint arXiv:2104.07478, 2021.

[15] Soham Dan, Osbert Bastani, and Dan Roth. Understanding robust generalization in learning
regular languages. In International Conference on Machine Learning, pages 4630–4643. PMLR,
2022.

[16] Top-k & top-p. co:here, 2021. https://docs.cohere.ai/docs/
controlling-generation-with-top-k-top-p.

[17] Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. arXiv
preprint arXiv:1805.04833, 2018.

[18] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural
text degeneration. arXiv preprint arXiv:1904.09751v2, 2020.

[19] Tensorflow. sampling_module. 2022. https://github.com/tensorflow/models/blob/
master/official/nlp/modeling/ops/sampling_module.py.

[20] Benjamin Newman, John Hewitt, Percy Liang, and Christopher D Manning. The eos decision
and length extrapolation. arXiv preprint arXiv:2010.07174, 2020.

[21] Sang Michael Xie and Sewon Min. How does in-context learning work? a framework for
understanding the differences from traditional supervised learning. The Stanford AI Lab Blog,
2022.

[22] Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham,
Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V Le. Symbolic discovery of
optimization algorithms. arXiv preprint arXiv:2302.06675v2, 2023.

9

https://docs.cohere.ai/docs/controlling-generation-with-top-k-top-p
https://docs.cohere.ai/docs/controlling-generation-with-top-k-top-p
https://github.com/tensorflow/models/blob/master/official/nlp/modeling/ops/sampling_module.py
https://github.com/tensorflow/models/blob/master/official/nlp/modeling/ops/sampling_module.py


[23] Najoung Kim and Tal Linzen. Cogs: A compositional generalization challenge based on
semantic interpretation. arXiv preprint arXiv:2010.05465, 2020.

[24] Najoung Kim, Tal Linzen, and Paul Smolensky. Uncontrolled lexical exposure leads to overesti-
mation of compositional generalization in pretrained models. arXiv preprint arXiv:2212.10769,
2022.

[25] Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks. In International conference on machine
learning, pages 2873–2882. PMLR, 2018.

[26] Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashu-
bin, Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, et al. Measuring
compositional generalization: A comprehensive method on realistic data. arXiv preprint
arXiv:1912.09713, 2019.

[27] Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed:
How do neural networks generalise? Journal of Artificial Intelligence Research, 67:757–795,
2020.

10



A Appendix (optional)

A.1 COGS dataset splits

Encoding Type Greedy Top-p
Test split 0.9782 0.9507
Dev split 0.9728 0.9442
Subject → Object (common noun) 0.0177 0.0145
Subject → Object (proper noun) 0.1145 0.5093
Object → Subject (common noun) 0.1343 0.0479
Object → Subject (proper noun) 0.1968 0.3572
Primitive noun → Subject (common noun) 0.4447 0.001
Primitive noun → Subject (proper noun) 0.026 0.0375
Primitive noun → Object (common noun) 0.00 0.00
Primitive noun → Object (proper noun) 0.00 0.00
Primitive verb → Infinitival argument 0.00 0.00
Active → Passive 0.001 0.0135
Passive → Active 0.226 0.4281
Object-omitted transitive → Transitive 0.4062 0.0114
Unaccusative → Transitive 0.00 0.00
Double obiect dative → PP dative 0.05 0.0031
PP dative → Double obiect dative 0.1395 0.5083
Agent NP → Unaccusative Subiect 0.001 0.00
Theme NP → Obiect-omitted transitive Subiect 0.0083 0.3062
Theme NP → Unergative subject 0.00 0.2447
Object-modifying PP →Subject-modifying PP 0.0031 0.0052
Depth generalization: PP modifiers 0.00 0.00
Depth generalization: Sentential complements 0.051 0.3572

Table 2: Sequence level accuracy in different subsets of the generalization set in COGS for both
greedy-decoding (baseline) and top-p [5]

11



A.2 Recovered Errors for dataset 3 (Subject → Object, proper noun)
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