
Generative Word Embeddings with New Similarity
Techniques for Legal Linking

Stanford CS224N Custom Project | Mentor Heidi Zhang

Jared Azevedo
Department of Computer Science

Stanford University
jaredssm@stanford.edu

Andrés Felipe Suárez
Law School

Stanford University
asuarezg@stanford.edu

Abstract

The field of law is regarded for its robustness and the amount of work required to be
successful. This is especially true when it comes to legal writing. In legal writing,
being able to refer to past precedents is crucial to creating a convincing position.
This is often a time-consuming and draining process. Having a way to quickly
search through those precedents and find which ones best correlate to the position
an author is writing about would increase the quality and efficiency of legal writing.
The goal of this project was to use different sentence similarity models, specifically
pretrained Bidirectional Encoder Representations from Transformers-based models
(BERT), and similarity techniques, to match amendments from the Constitution of
the United States to snippets of text. We found that using neural network sentence
embeddings was preferred over linearly generated embeddings (output from a
multi-label classifier) and that distance-based similarity measurements performed
best. However, these models still do not perform well enough to completely remove
the need for manual searching of related texts.

1 Introduction

The writing of legal texts is a skill that takes many legal practitioners an extended period of time to
master. Part of this is being aware of other texts that already exist and recognizing when these other
texts can be referenced or reused in their own legal writing to strengthen their position. This can
prove difficult for many due to the extensive number of legal texts already written and the challenges
of finding similar texts in terms of meaning more than semantics. Resolving this problem could result
in improvement in the textual works legal practitioners are able to produce.

While there is already some research and a few products focused on addressing this problem, their
efficacy could be improved. One such successful product is Luminance, which offers assistance with
a range of tasks, but the most interesting one for this project is their task that searches across legal
documents for similar sentences and returns ranked results. The methods of how this ranked retrieval
works are not public, but it is known that it only searches across sentences of documents and not
larger chunks of text. This can lead to pitfalls where the sentence doesn’t align with the context the
author is going for. Another successful example is the research done by Shaffer and Mayhew (2019),
which this project builds upon. Their application of legal linking between inputs and Constitutional
Amendments is great at capturing meaning, but is not very generalized.

The main goal of this project is to try and generalize the work done by Shaffer and Mayhew (2019).
We accomplish this by taking the same task and performing less preprocessing on the data. The task
can be described as taking phrases (often longer than a single sentence) and attempting to match
them with the amendment from the Constitution that best represents the argument in the phrase.
Additionally, we applied a variety of models and similarity techniques to find the best-performing
combination. The takeaway after performing these experiments was that the combination of methods

Stanford CS224N Natural Language Processing with Deep Learning

we employed did not generalize well and that finding a better linking technique at this time is difficult
due to the meaning of phrases and their length.

2 Related Work

The objective of our project is to evaluate the accuracy of natural processing models designed to link
inputs to a limited number of categories that are provided to the model. This task will be evaluated
using inputs, that could be related to a legal category or not, and a finite number of legal categories
which in this case correspond to the amendments from the Constitution of the United States. The
studies we use as a framework for our work are Shaffer and Mayhew (2019), Man and Tai (2019),
Lervtittayakumjorn et al. (2021), Reimers and Gurevych (2019) and Devlin et al. (2019); where the
first three are applications of neural networks to the legal field, and the fourth and fifth papers are
methodological studies that focus on the development of NLP tools. Additionally, the data used to
conduct our study and the baseline model we use to evaluate our implementation are taken from the
study developed by Shaffer and Mayhew (2019).

Shaffer and Mayhew (2019) use a multi-label classifier and a neural network model to determine
if the content of legal texts, regarded as the inputs, are related to the content of another document,
regarded as the knowledge base or reference text. In terms of the paper, the input documents were
opinions from cases decided by the Supreme Court of the United States and the reference text which
the first documents would be compared was the Constitution of the United States, including its
amendments. From the authors’ perspective, their main contribution would be to provide robust
baseline results for future work in this field 1. The authors used three methods for this task: a
ruled-based method, a linear model, and a neural network model 2. They evaluated the three models
using precision, recall, and F1 measures on two variations of the same dataset, the original and
the stripped dataset. As can be seen in Table 1, included in the Appendix, the linear and neural
models trained on the original data performed similarly in terms of recall to the rule-based approach,
but performed worst in terms of precision. On the other hand, the linear and neural network
models outperformed the rule-based approach in terms of recall when trained on the stripped dataset 3.

Man and Tai (2019) conducted a domain adaptation of the German version of the pre-trained
language model BERT and evaluated the performance of its implementation on tasks such as
classification, regression, and sentence similarity. The authors used as the baseline for comparison
the models of Bag-of-Words complemented with term frequency-inverse document frequency and
FastText. Concerning sentence similarity, the authors found that Multilingual BERT was not capable
of accurately linking legal documents that were found to be related by participants. Regarding
the German Bert, the authors highlighted that the algorithm would generally identify two cases as
being similar to the input case and that German legal BERT’s mean average precision was slightly
higher when compared to the other methods. Lervtittayakumjorn et al. (2021) developed a decision
support tool that aimed to help regulators analyze complaints in the field of health services. As
part of the tool, the authors looked to identify similar past cases to facilitate the resolution of new
cases. For the latter, the authors’ strategy was to compute the term frequency-inverse document
frequency cosine similarity of each of the past cases with respect to the input cases and output
the ones that were most similar to the input case. However, according to the ratings provided by
human evaluators, the tool did not perform appropriately in this regard, getting a score of 1.8 out of 5.0.

Regarding the methodological papers we follow for our study, Reimers and Gurevych (2019)
developed Sentence-Bert (SBERT) to perform several NLP related tasks more efficiently than the
existing BERT model. According to the authors, SBERT is a modification of BERT network using
siamese and triplet networks which are capable of outputting semantically meaningful sentence
embeddings. In contrast to BERT, which takes as input a pair of sentences separated by a special

1Additionally, they claimed that in the legal field there were only a few studies that tried to relate two different
types of legal documents (Schwartz et al.(2015), Branting (2017) and Nomoto (2018))

2The linear model is a multi-label classifier based on the work of Boutell et al., (2004) and Nam et al., (2014).
The neural network model is based on the work of Chang et al., (2008)

3From the authors’ perspective, this shows the linear and neural network models are better suited to find
more subtle relations between the sources in comparison to deterministic training set rules.

2

token and returns a final label; SBERT includes a pooling operation to the output of BERT Devlin
et al. (2019)/RoBERTa Liu et al. (2019) to obtain a fixed-sized sentence embedding. The authors
used three different pooling strategies: i) using the output of the CLS-token, ii) computing the max of
all output vectors, and iii) computing a max-over-time of the output vectors. Figure 1, included in the
Appendix, illustrates two of the three pooling strategies chosen by the authors. The architecture on
the left of the figure corresponds to a classification objective function and the one to the right to a
regression objective function. For the classification objective function, the authors concatenated the
embeddings corresponding to the two sentences being compared and their difference, multiply it with
a trainable weight matrix Wt ∈ R3n×k, and pass it through a softmax function. The loss function for
this approach is the cross-entropy loss. On the other hand, for the regression objective function, the
authors used cosine-similarity between the embeddings of the two sentences to determine if they are
related. In this case, the loss function is the squared-error loss. For our implementation of the SBERT
model, we used the SentenceTransformers package developed by the authors SBERT 4.

3 Approach

We are using SBERT (introduced in the Related Works section) to identify the similarity between
phrases obtained from decisions of the Supreme Court and the amendments from the Constitution
of the United States. For example, given an input string s ∈ S, where S is the set of all input
phrases, we want to identify which amendment a ∈ A, where A is the set of all amendments,
best matches s. Note that we have added an extra entry into A that corresponds to "none" or not
strongly matching any of the amendments. SBERT helps us do this by generating "sentence"
embeddings e (same idea as word embeddings but for entire phrases) for each input s and amendment
a and then we apply some similarity technique f(es, ea) to these embeddings to score them,
as explained in the previous section when talking about the different pooling strategies used in SBERT.

We use as our baseline model the results obtained by Shaffer and Mayhew (2019) in which
the authors used a multi-label classifier to study sentence similarity. However, instead of trying to
rank s against a where a is the name of the amendment (e.g. Amendment XIV), we have mapped
each amendment to their definitions obtained from constitutioncenter.org. This was to help
the model learn a deeper meaning behind the sentences than just matching to some amendment name
that by itself does not mean much (i.e. generalize the task).

3.1 Models

Within the SBERT Python package, we employed three different pretrained models accessed via
the HuggingFace Model Hub. The first of these models is all-mpnet-base-v2, which was built
by utilizing the already pretrained mpnet-base model by Microsoft and then finetuning it on an
additional 1 billion data points. The next model is multi-qa-mpnet-base-cos-v1, which was built
and finetuned the same way as the first model. The last model is all-MiniLM-L12-v2 which
was built by utilizing the already pretrained MiniLM-L12-H384-uncased model by Microsoft
and then finetuning it on an additional 1 billion data points (these are the same data points
used to finetune the other two models as well). According to HuggingFace’s documentation, all
three models have been trained to analyze the relationship between sentences through semantic search.

In contrast to sentence similarity, which tries to link a query to a set of documents based
on lexical matches, semantic search looks to improve the search process by understanding the context
and meaning of the search query. To attain this goal, semantic search works by: first, breaking down
the query into its constituent parts to identify key concepts and entities and understand the relation-
ships between them; second, using techniques such as query expansion to identify related concepts and
queries that many not be explicitly mentioned in the query; third, finding the closest embeddings to the
query within the vector space, whether they be sentences, paragraphs, or documents (i.e. any phrases).

All of these models have been shared publicly, but do not expose the layers and connec-
tions that make them special beyond the base models they extend and Figure 1 seen in the Appendix.
Additionally, all three models have a limit on how long input sequences can be which will be
analyzed more in-depth in the Analysis.

4To learn more about SBERT’s Python package, visit https://www.sbert.net/

3

constitutioncenter.org
https://www.sbert.net/

3.2 Similarity Techniques

We tried four different techniques or measures of similarity for this project. The thinking behind each
one was that some calculations might better capture the distance between the meaning of the phrases.
The first technique we tried was cosine similarity. Cosine similarity is a popular choice for finding
the similarity between two embeddings. The equation for cosine similarity is shown in Equation 1.

es · ea
||es|| · ||ea||

(1)

The next technique we tried was the Euclidean distance with n = length of embedding. Another
popular choice for finding similarity, the equation for Euclidean distance is shown in Equation 2.√√√√ n∑

i=1

(esi − eai
)2 (2)

The next technique we tried was the Manhattan distance with n = length of embedding. The equation
for the Manhattan distance is shown in Equation 3.

n∑
i=1

|esi − eai | (3)

The last technique we tried was the Minkowski distance with n = length of embedding and p = 2.
The equation for the Minkowski distance is shown in Equation 4.

(

n∑
i=1

|esi − eai
|p)1/p (4)

The code for this project was written entirely in Python and makes use of the SentenceTransformers
package that grants access to SBERT implementations and SciPy distance calculations. The Github
repository for this project can be accessed through the following link https://github.com/
JaredAzevedoSSM/cs224nlegallinking.

4 Experiments

4.1 Data

We will be using the Linking Supreme Court Decisions to the US Constitution dataset. It contains
over 36,000 paragraphs from US Supreme Court opinions and 41,000 links to the US Constitution.
All the pairs of phrases are composed of sentences obtained from opinions of the Supreme Court and
the text of the specific article or amendment of the Constitution of the United States to which the
opinion is referring or to an empty string in cases where there is no match.

For training, Shaffer and Mayhew (2019) divided the data into two categories: original and
stripped data. The decision to use two different datasets for training was made to address the fact
that some of the input phrases in the original data included direct references or links (e.g. URLs) to
the sections of the Constitution they were referring to. Given that including this information might
allow the model to identify the relations between the input documents and the amendments/sections
of the Constitution they refer to using a "trivial rule" (the presence of a direct reference to the
amendment or section being referred), the authors used a second training dataset, the stripped dataset,
in which they removed direct references and links to sections and amendments of the Constitu-
tion from half of their observations, limiting the model’s ability to make predictions using trivial rules.

For this project, we replaced the name of specific amendments from the Constitution with
its entire text. We believe this modification could give the model more information about the
categories to which it has to map the inputs, thus improving its performance. Aside from this

4

https://github.com/JaredAzevedoSSM/cs224nlegallinking
https://github.com/JaredAzevedoSSM/cs224nlegallinking

modification, each sample in our data consisted of three variables: first, the string to be matched;
second, the text of the amendment for the inputs that matched any of them or the string ’This input
does not strongly match with any of the amendments.’ if it did not; and third, a float equal to one for
inputs that are linked to an Amendment and zero in cases it did not.

4.2 Evaluation method

In line with the metrics used by Shaffer and Mayhew (2019) on the baseline model, we will use recall,
precision, and F1 to evaluate the performance of our implementation. Recall refers to the proportion
of true positives correctly identified by the model over the total of true positive instances. Precision is
the proportion of true positive instances identified by the model over all the instances identified as
positive. F1 is the harmonic mean of precision and recall.

Another motivation for using these metrics was the fact the data is not very well balanced. A large
majority of the data points correspond to no amendment and thus using a metric like raw accuracy
would prove very little about the performance of our models.

4.3 Experimental details

To get the final results reported below, we ran each model twice. We ran each model on the original
dataset and then on the stripped dataset. We used a cosine similarity loss function, a batch size of 16,
100 warmup steps, and 1 epoch when finetuning. While we experimented with the number of epochs
and suspect that running the model for longer could improve results, we found that altering the batch
size and warmup steps had little to no effect on performance. That said, we did have to use a batch
size of 8 for the second model (multi-qa-mpnet-base-cos-v1) due to memory limitations and were
able to run the third model (all-MiniLM-L12-v2) for 3 epochs.

The training time varied depending on the model used. For the first two models used (all-mpnet-base-
v2 and multi-qa-mpnet-base-cos-v1), we observed a training time of roughly 3 hours and 50 minutes
per epoch. For the other model used (all-MiniLM-L12-v2), we observed a much shorter training
time of roughly 1 hour and 10 minutes per epoch. This accounts for finetuning on 85% of the dataset
and evaluating on the remaining 15% where the split is made randomly (i.e. 15% of the dataset is
sampled for the evaluation set and the remainder is for the training set).

4.4 Results

Using the model configurations described above, the best results can be viewed in Table 1 and Table
2. For readability, all-mpnet-base-v2 is referred to as "bert", multi-qa-mpnet-base-cos-v1 is referred
to as "search", and all-MiniLM-L12-v2 is referred to as "mini" within the tables.

Model Similarity Precision Recall F1

baseline Cosine 79.0 45.8 58.0
bert Cosine 2.3 0.2 0.3
bert Euclidean 2.3 0.2 0.3
bert Manhattan 2.4 0.2 0.4
bert Minkowski 2.3 0.2 0.3
search Cosine 6.6 0.3 0.6
search Euclidean 6.6 0.3 0.6
search Manhattan 6.7 0.3 0.6
search Minkowski 6.6 0.3 0.6
mini Cosine 14.5 0.5 1.0
mini Euclidean 14.7 0.5 1.0
mini Manhattan 14.8 0.5 1.0
mini Minkowski 14.7 0.5 1.0

Table 1: Original dataset results

5

Model Similarity Precision Recall F1

baseline Cosine 68.3 54.3 60.5
bert Cosine 13.3 0.6 1.1
bert Euclidean 13.4 0.6 1.1
bert Manhattan 13.3 0.6 1.1
bert Minkowski 13.4 0.6 1.1
search Cosine 2.6 0.2 0.4
search Euclidean 3.3 0.2 0.4
search Manhattan 4.3 0.3 0.5
search Minkowski 3.3 0.2 0.4
mini Cosine 16.6 0.5 1.0
mini Euclidean 12.6 0.5 0.9
mini Manhattan 14.5 0.5 1.0
mini Minkowski 12.6 0.5 0.9

Table 2: Stripped dataset results

Quantitatively, these results are somewhat expected due to the generalization we tried to apply.
Overall, they are still worse than we were hoping for in comparison to the benchmarks of the baseline
and other results obtained by Shaffer and Mayhew (2019). We believe this indicates that trying
to generalize the legal text linking problem with the current methods and similarity techniques is
ineffective and ill-advised.

5 Analysis

As evidenced by the quantitative results above, the models did not have much success on this problem.
There are a variety of facets that we looked at in order to do qualitative analysis. First, we decided to
evaluate how similar or different the embeddings of the amendments of the Constitution are after
the finetuning process. We conducted this analysis based on the understanding that if there are no
meaningful differences among the embeddings of the amendments, the model will have a hard time
distinguishing the amendments and linking the inputs fed to the model with each of them. Figure
1 shows the cosine similarity for the embeddings from all the amendments for all three models we
implemented. Given that cosine similarity takes values between -1 and 1 (white to dark blue), where
1 implies that the two embeddings are proportional and -1 that they are opposite, we find that there
seems to be significant overlap between the amendment embeddings. For instance, in the case of the
all-mpnet-base-v2 and multi-qa-mpnet-base-cos-v1 models, subfigures a and b seems to illustrate
an issue in terms of training, given that it returns cosine similarities equal or close to one for all
combinations of amendments but the empty string or absence of a match. In like manner, subfigure
c also shows that there is a high correlation, although much less than the previous models, for the
amendments obtained using the all-MiniLM-L12-v2 model. Note that the only embedding completely
unrelated to any of the others in all three models is the embeddings for "None" or not matching any
of the amendments.

6

(a) all-mpnet-base-v2 (b) multi-qa-mpnet-base-cos-v1

(c) all-MiniLM-L12-v2

Figure 1: Cosine similarity for amendments

Another aspect that we considered to impact our results is the length of the inputs and amendments.
The models we used have a maximum text length of 384, 512, and 256, respectively, after which
point the model just truncates the string. After looking at some of the later amendments and inputs,
there are a significant number of strings that fall into this category and end up being truncated. This
suggests a limitation in the models, but also a limitation in that it may be asking too much to compare
larger phrases and achieve high evaluation metrics at the same time.

One aspect that we can confidently say mired our results is the fact we did not employ the same
training tricks Shaffer and Mayhew (2019) used. In their paper, they discuss first balancing the
number of direct and indirect references in the data they feed the model and second, adding a factor
to decrease the influence of negative samples since there are so many. Additionally, as highlighted
previously, we decided to train our models using the complete texts of the Amendments instead of
their names based on the assumption that given more information to the model would allow it to
increase its accuracy. However, given the analysis we conducted in relation to the similarity among
the embeddings from the Amendments, it looks like this approach also added noise to the model
given that despite some differences the Amendments also share common words such as connectors.

Additionally, they evaluated on a set of hand-annotated examples that we did not have access to and
were not able to replicate for this project. This led to us evaluating on a random subset of the data
which makes it difficult to truly compare our results to theirs. This could have been mitigated by
using their linear model with the data as we were using it, but we also were unable to get this model
running due to errors with the Python package required to run it. Had we been able to run it, it would
have given us a better baseline to compare our results to that didn’t completely deviate from their
original research.

6 Conclusion

For this project, we focused on applying a combination of pretrained models and similarity measure-
ments on the legal linking task with the idea that this legal linking could be expanded to relate pieces

7

of text. We learned that using the data without decreasing the influence of negative samples and not
evaluating over hand annotated examples resulted in much lower performance than seen by Shaffer
and Mayhew (2019). This could be partially accounted for by not having the time and compute speed
required to iteratively test larger amounts of finetuning and annotated data. However, we were able to
observe that some models and similarity techniques performed better on this task relatively speaking.
Lastly, we discovered the the task of semantic search instead of sentence similarity is a better way to
tackle this problem.

For future work, we would like to see these models and similarity techniques applied to exactly the
same data Shaffer and Mayhew (2019) used in order to determine if using more complex architectures
could bring better results in terms of accuracy. That is, the data used to finetune should include an
equal number of direct references and indirect references, evaluate over hand-annotated examples,
and account for the large number of negative samples. Access to more time and compute speed could
also see improved results even on the generalized data. Ideally, we want to see the attempts performed
in this project applied in the same context as the original work by Shaffer and Mayhew (2019) to
accurately discern if there is an improvement in performance.

References

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers forlanguage understanding.

Piyawat Lervtittayakumjorn, Ivan Petej, Yang Gao, Yamuna Krishnamurthy, Robert van der Gaag,
Anna annd Jago, and Kostas Stathis. 2021. Supporting complaints investigation for nursing and
midwifery regulatory agencies.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omar Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining
approach.

Chin Man and Yeung Tai. 2019. Effects of inserting domain vocabulary and fine-tunning bert for
german legal language.

Nils Reimers and Irina Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-
networks.

Robert Shaffer and Stephen Mayhew. 2019. Legal linking: Citation resolution and suggestion in
constitutional law. In Proceedings of the Natural Legal Language Processing Workshop.

A Appendix

Model Precision Recall F1

Rule-based 91.8 47.0 62.2
Linear (original) 79.0 45.8 58.0
Neural Network (original) 82.1 46.8 59.6
Linear (modified) 68.3 54.3 60.5
Neural Network (modified) 76.5 56.2 64.8

Table 3: Baseline results

8

Figure 2: SBERT architecture with classification objective function and SBERT architecture to
compute similarity score

9

	Introduction
	Related Work
	Approach
	Models
	Similarity Techniques

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion
	Appendix

