Investigating BERT through Fine-Tuned
Regularization and Layer-Level Adaptations for
Multi-Task Performance.

Stanford CS224N Default Project

Arjun Pandey, Neel Narayan
Department of Computer Science
Stanford University
arpandey@stanford.edu, neelsn@stanford.edu

Abstract

This project evaluates the minBERT model under different optimizations to com-
pare and contrast how it performs in multi-task scenarios. Our motivation is

to understand how low-level basic model adaptations can help improve perfor-
mance when working towards multi-task efficiency. Specifically, we aim to inves-
tigate how regularization techniques like Bregman Proximal Point Optimization
and smoothness induced regularization compare to layer adaptation methods,
where each layer between BERT is adapted to account for generalization across
tasks. Here, we will highlight how BERT performs when its current parame-
ters are fine-tuned without any new additions, and when layer adaptations are
done to learn task specific parameters within a reasonable budget using SMART
(SMoothness-inducing Adversarial Regularization and BRegman pRoximal
poinT opTimization) [[1] and adapter modules [2] as frameworks for executing
fine-tuned regularization and layer-level adaptations, respectively.

1 Introduction

Multi-task learning is an inductive bias, meaning that a single large language model has the ro-
bustness to be generalized across several general language understanding tasks. Current literature
largely relies on building custom layers on top of existing models to study multi-task scenarios,
or fine-tuning hyper-parameters to adapt to the task at hand. BERT was originally trained on the
Wikipedia dataset with small-scope language understanding objectives of next-sentence prediction
and language modelling. However, the architecture can be generalized to realize strength across
a variety of general language understanding tasks. Previous state-of-the-art results on the GLUE
dataset have shown BERT’s general language ability. This paper will explore the improvement of
a base BERT model for downstream tasks using optimization and layer-level editing techniques.
The primary goal is to investigate how BERT, specifically when fine-tuned using new data and
objectives, can be utilized for multi-task learning.

Training BERT is computationally expensive since it has approximately 110 million parameters
and was pre-trained on both the Wikipedia corpus of over 2.5 billion words and the Toronto Book-
Corpus of 800 million words. To re-train BERT from scratch requires expensive and potent com-
putational resources. However, we hypothesize that BERT’s trained parameters have sufficient
strength to understand language-level meaning that can be leveraged for other tasks. Recently, re-
searchers have been motivated to see how to build upon this base model to get BERT to generalize
well across unknown tasks while taking advantage of optimization techniques.

Pre-trained models have exploded in popularity over the past several years. Starting from pre-
trained vectors like GLoVe and word2vec which were essential in capturing singular word mean-
ing, more robust large language models have now started to capture semantic technicalities of

Stanford CS224N Natural Language Processing with Deep Learning

language understanding. This paradigm shift started first with contextual models trained on large
corpora, such as the OpenAl transformer, ELMo, and more. These models allow for pre-trained
representations that represent a significant segment of language that encodes contextual informa-
tion. Multi-task learning is based on using those pre-trained capabilities to capture the semantic
and structural meaning behind language for generalization across several tasks only by using small
dataset training and fine-tuning rather than training from scratch.

In this research project, we wanted to investigate how BERT’s pre-trained version equipped with
language understanding capabilities can be improvised to perform better in multi-task inference
scenarios.

2 Related Work

2.1 BERT and PALs

BERT and PALs suggest a technique of editing layers within the model inspired by ‘residual
adapter modules’ [3] so that instead of having task specific parameters as additions to the “top”
of the model i.e. just before the output classification layer, these parameters are learned along
with the rest of the model. One major drawback to adding layers on top of BERT is increasing
the amount of parameters in the model - specifically, adding an extra layer for each task results
in an approximately 1.67 % increase in the number of parameters. To avoid transformations that
significantly increase the number of parameters, we will introduce task-specific functions of the
form:

TS(h) = VP x g(VFh)

where V is the "encoder" matrix, V; is the "decoder" matrix, and g is an arbitrary function which
we will be experimenting with. Schematically (Figure 1) the BERT and PALs architecture looks as
follows:

PALs work by adding an optional residual parallel connection and layer norm that are computed in
parallel with each BERT layer. This is because we want to use our original BERT layer in the cases
where PALSs output a zero vector. Mathematically, we can define this to be calculated as such:

W't = LN (h' + SA(h') + TS(h'))

The true motivation behind PALSs is to move away from the bias of adding parameter transfor-
mations and instead use our "encoder" and "decoder" matrices, which operate on each sequence
separately, as a means of making multi-task BERT more useful for sequences. BERT and PALs led
us to explore how layer-level adaptations work when fine-tuning the model. Our initial goal was to
use the proven architectures the authors came up with for our extension, but we ended up using the
idea of having optional adapters as the basis for one of our extensions.

2.2 Parameter Efficient Learning for NLP

Parameter Efficient Learning for NLP is a technique used to mitigate the costs of fine-tuning mod-
els in the presence of multiple downstream tasks, as an entirely new model is required for each
task. [4] Gelly et al. propose transfer learning with adapter modules as they add only a few train-
able parameters per task, allowing for a compact and extendible model with a high degree of pa-
rameter sharing. Additionally, this adapter-based learning applies to both multi-task (which is what
we are focused on) and continual learning, but since the tasks do not interact, all of the shared pa-
rameters are frozen, allowing the model to retain perfect 'memory’ of previous tasks despite using
a small amount of parameters specific to each individual task.

To achieve (1) good performance, (2) sequential training that does not require simultaneous dataset
access, and (3) the addition of a small number of parameters per task, bottleneck adapter modules
that add new layers to a pretrained network, while the original network’s parameters are frozen
and shared by multiple tasks, are used. In our project, we will adapt the idea of bottleneck adapter
modules for task specific parameters in a smaller dimensional space.

2.3 Noise Stability Regularization for improving BERT fine-tuning

When training large language models like BERT, a problem that often arises is that when there are
only a small number of training samples available, it is more difficult to adapt BERT to a specific
task. As such, fine tuning to specific tasks becomes difficult. To mitigate this issue, Layer-wise
Noise Stability Regularization (LNSR) to induce stabilization and generalization can be used.

LNSR is a lightweight and effective regularization technique that improves the local Lipschitz
continuity of each BERT layer and thus, the smoothness of the entire model.Empirical results
show that the fine-tuned BERT models regularized with LNSR obtain significantly more accurate
and stable results. As such, we will be tuning the perturbation of the embedding layers to induce
smoothness when there is high variability between different tasks.

3 Approach

In this section, we will explore how we got our baseline models and outline ideas for training
approaches. The baseline implementation was done entirely by us, whereas the code for the exten-
sions was adapted from external research.

Our first extension was implementing the SMART technique, which is a regularization technique
for multi-task learning that makes use of trust-based region methodology to prevent aggressive
updating of loss, and subsequently, parameter values. In the original paper, the authors acknowl-
edge how only one technique is not sufficient to realize the full effects of smoothness desired, so
the following techniques outlined below are specifically used because they have been shown to
complement each other when introduced in BERT.

3.1 SMART Framework

Here, we will describe how the Smoothness-Inducing Adversarial Regularization technique and
Bregman Proximal Point Optimization work together to achieve results as defined in the SMART
framework.

3.1.1 Smoothness-Inducing Adversarial Regularization

This regularization technique works by adding a regularization term to the loss function of the
model that encourages the network to produce smooth and continuous output. The regularization
term is typically based on an adversarial loss, which measures the difference between the model’s
output and a smoothed version of that same output. This smooth version can be obtained by ap-
plying a low-pass filter or a smoothing operation to the output. Specifically, let’s consider a model
f(;,) for a target task where x; are input level embeddings and y; are the associated outputs
which, for the sake of explanation, can be considered labels. This method optimizes the following:

mingF(0) = L(0) + As x Rs(0)

Where L(0) is the loss function which is task-specific, R, () represents the regularization func-
tions, and A is the fine-tuning epsilon parameter which controls the strength of the regularization
we desire. This can be adjusted as the variability in tasks go up.

3.1.2 Bregman Proximal Point Optimization

The SMART framework also considers the Bregman proximal optimization to prevent aggressive
updating, which works by adding a strong penalty if the model takes an erratic or large step.

The basic idea behind Bregman proximal point optimization is to minimize a convex function f(x)
subject to some convex constraints by using an iterative approach to solving a sequence of prox-

imal sub-problems. On each iteration, the proximal operator is applied to the current iterate x to

obtain x + 1, which is closer to the optimal solution. Bregman proximal point optimization (PPO) is
particularly useful when the objective function f has a separable structure, i.e. can be decomposed
into a sum of simpler functions. In this case, each proximal sub-problem involves solving a simple
proximal operator, which can be done efficiently using various algorithms. Specifically, if we con-

sider having the BERT pre-trained model f(; ,6), the Bregman PPO takes an approach of updating
the ¢'" iteration as follows:

0141 = argmingF(0) + v X Dpreg(6,6)

The Bregman PPO template provides flexibility since the choice of the v parameter can help tune
the Bregman PPO divergence, which is defined as:

DBTeg(Ha et) = ls(f(-fi; 6)’ f(x'uel))

The primary rationale behind using Bregman PPO was to introduce a trust-region based regulariza-
tion [5]] to deter aggressive updating and ensure that the algorithm only takes steps within a small
neighborhood of the previous iteration.

3.2 Adapter Modules

We were inspired by the methodology first introduced in the BERT and PALs framework, which
introduced task-specific parameters and low-rank layers as alternative BERT blocks to train for
multi-task learning. As shown above, projected attention layers introduced as adapters use encoder
and decoder matrices that operate on each sequence separately to enhance the representational
capacity of the model without adding a significant amount of parameters. However, as mentioned
above, this quickly became hard to achieve since it required a complete re-training of BERT, which
was not computationally feasible. Thus, we tried to replicate the ideology behind BERT and PALs
by introducing adapter modules [4].

Houlsby et. al. introduce a methodology of adapters as an alternative to optimization based fine-
tuning, showing that it requires orders of magnitude less parameters while maintaining model
performance. We followed a similar bottleneck approach, but in two formats: Figure 1 produces
the adapter formations straight after the feed-forward layer and Figure 2 executes the formations
after the layer norm.

—_

[e
—0
o 'Y

A
'

Layer-Marm

—
—_

T

Multi-head Attention

Multi-head Attention

A

Input Embedding ‘— |Input Embedding

Fig 1: Adapter Transformations after feed-forward Fig 2: Adapter Transformations after layer-norm

This adapter block was added to all 12 transformer blocks we had in our models. The intention was
to train it to retain task-specific information. The architecture follows a simple bottleneck method
which is expressed as such:

Adapter(Hi) = WD (gnon—linear (WEhl + bE)) + bD

Our goal was that the task-specific attention layers W ¥ will reshape and project the input to a
smaller dimensional space which will be transformed under the non-linearity. Subsequently, W%
will project it back onto a higher dimensional subspace where br and bp are included to account
for biases. This is to ensure that only parameters enclosed in the smaller subspace are fine-tuned.

The adapter also inherently has a skip connection which we wanted to include from BERT and
PALs. This is because if the parameters of the projection layers are initialized to near-zero, the
adapter merely acts as an identity function.

Finally, we also added a learning hidden unit contribution (LHUC) transformation, which modi-
fies a unit in a network by a reasonable scalar. Since there are way fewer units in a network than
parameters, we included them to account for a reasonable parameter budget. We hypothesized that
learnable units can only improve a network without significant downsides on our baseline.

3.3 Implementation

To achieve our desired implementation we adapted our initial code from the minBERT version
[6] provided to us. For the SMART framework [[7], we took inspiration from the implementation
by Jiang et. al. We made the intentional choice of keeping our noise parameter low and steady

at 1 x 1075 since we were only dealing with three tasks, two of which had a similar scope of
understanding (Paraphrase Detection and Semantic Textual Similarity). Lastly, to implement our
adapter modules, we read through and took inspiration from Google Research [8]], which was
then used as the basis to code our adapter block. For the block, we chose our transformation size
(i.e. the updated hidden size of the block) to be 64, and initialized our Wx and Wp tensors to be
random, and then initialized the truncated normalization, with standard deviation of 1 x 1072 to
ensure it was within certain bounds.

To implement the SMART framework, we had to make certain design choices. We defined our
fine-tuning epsilon parameter ¢ = 1 x 10~% and the noise perturbation was chosen to be 1 x 10~°.
These values were primarily inspired by the best results from the original paper.

The initial part of the project encompassed implementing a minimalistic version of BERT, which
includes the multi-head self-attention, the transformer layers, and the embedding layers defined in
the original BERT [9] model. Subsequently, we also implemented the Adam optimizer which was
used to train across all different optimizations we implemented.

All the code was powered by PyTorch and trained on a singular GPU using Google Colab.

4 Experiments

For the purpose of this project we started by implementing a minimal version of BERT which was
trained on the following two datasets: Stanford Sentiment Treebank (SST) and CFIMDB. This
was done to have tested, trained, and executed a reasonable replication of the BERT architecture.
Next, we wanted to get a baseline evaluation to compare to the results of our optimizations. For
this purpose, we trained our BERT architecture using three datasets: Quora Question Pair, SST,
and SemEval. This gave us a baseline working model to start with. We then implemented our sub-
sequent extensions i.e. SMART and adapter modules. All of the evaluation and data information is
outlined in the sections below.

4.1 Datasets

This section will outline the datasets we worked with across all the experiments we conducted.

Stanford Sentiment Treebank: The SST dataset contains 11,855 single sentences parsed using the
Stanford parser, generating 215,154 unique phrases from the parse tree that were then labelled by
human judges.

CFIMDB Dataset: This dataset consists of 2,434 movie reviews with human labelled polarity
representations i.e. positive or negative.

Quora Dataset: Consists of 400,000 question instances with labels indicating what particular
questions are paraphrases of each other. Since, this dataset was extremely comprehensive and
require computational resources not available at the time of study, we stemmed the dataset to
approximately 10,000 input samples.

SemEval STS Benchmark Dataset: 8,628 different sequence pairs of varying similarity on a scale
from O to 5 i.e. from unrelated to equivalent meaning.

For initial baseline training of our sentiment classification model, we will be utilizing the pre-
provided datasets from Stanford University which are the Stanford Sentiment Treebank and the
CFIMDB dataset. In the cases of evaluation for extending to more general language understanding
tasks, we used two separate datasets: the Quora dataset and the SemEval STS dataset.

4.2 Hyper-Parameters

The following table outlines the model configurations used. The choice to keep them uniform was
done specifically to have uniform results free of hyper-parameter bias.

Configurations
Parameter Value
Learning Rate 1x1073
Number of Epochs 10
Batch Size 8
Dropout Probability 30%

4.3 Evaluation

It is important to note that for the tasks of sentiment classification and paraphrase detection, we
used a basic accuracy score, and for semantic textual similarity, we used a Pearson correlation
score, which finds the ratio between the covariance and standard deviations of two samples.

Our first step was to use our earlier BERT model trained only on the SST dataset (plain) as a test
to see how it performs in multi-task scenarios i.e. instead of giving it relevant data for the two
other downstream tasks, paraphrase detection and semantic similarity, we set out to evaluate its
potency in a completely unsupervised scenario (these results were also published in our project
milestone). Next, we started by training BERT using the Quora, SST, and SemEval datasets to
obtain a reasonable baseline to see how a fine-tuned pre-trained version of BERT model performs
in a multi-task scenario. Finally, we implemented our extensions using the SMART framework and
adapter modules. The below table (Table 1) outlines our final results for all of the models:

Model Dev Sentiment Acc Dev Paraphrase Acc Dev STS Corr.
BERT i 31.9% 55.2% —0.067
BERTyusciine 29.3% 58.6% —0.047
BERT s ART 30.8% 58.2% 0.202
BERT qqaptbe fore 31.2% 58.4% 0.195
BERT qqaptafier 30.1% 56.3% —0.087

Table 1: Evaluation for Trained Models on Dev sets.

The sentiment accuracy for the BERT,;4;, model being higher than the rest is indicative of how
the model was only trained on that particular dataset and learned parameters that are specifically
tuned for that task.

We also trained the model corresponding to Fig. 1. The results, however, were very standard and
not comparable to the baseline. This can be explained by the fact that because the structure of
our code enabled dropout alongside layer-norm, we were projecting to a smaller subspace with
unaccounted or zeroed out units, and thus, we didn’t include it in our analysis.

4.4 Analysis

These results indicate that the SMART model is comparable in accuracy to the sentiment task
with the "plain" model. One particularly interesting output was a noticeably high correlation score
for the "SMART" model as compared to the other scores, indicating that SMART helps smaller
datasets (like the SemEval dataset) since it prevents overfitting by regularizing loss across all
tasks. It makes sure that we generalize well by penalizing model complexity when it focuses on
solely improving a singular task. Given the performance of SMART in the other two sectors, it

is a very good indication of obtaining a robust model if trained on several more general language
understanding tasks.

We also observed a good score for the adaptbefore model which suggests that a small injection
of learned parameters for specific tasks are able to generate valuable results. This is indicative

of adapter modules avoiding the problem of catastrophic forgetting i.e. the model still retains in-
formation that is initially given to it, since the pre-trained parameters are built top of the model
by freezing previous parameters. Adapter modules tend to improve performance in higher lay-
ers, ensuring that we can take full advantage of BERT’s semantic understanding capability and
focus on parameters that are geared towards achieving the task at hand. While the results do not
surpass those of state of the art models, we were able to generate a compact model that surpasses
the baseline, which is the task we initially set out to achieve. One reason as to why the model had
comparable scores for the remaining two tasks could be attributed to our choice of truncated initial-
ization, which was done on a scale of 1 x 1073 - this may have led the adapter module to act like an
identity function and thus, update smaller changes.

To dive deeper into analyzing all three of our key models, we studied how they individually trained.
The general patterns look very similar across all three models, but epoch level-data can give some
idea into how our final dev scores vary:

SMART Training Evaluation Baseline Training Evaluation

0.5 0.5

@ @
5 §
@ *
s P—————o—+ pe o ——¢ - *
S $
3 g
& 0 L
05 05
0 2 4 6 8 10 0 2 4 6 8 10
Epochs Epochs
Adapter Modules Before Training Evaluation
1
=8~ Para Acc 05

=8~ Sent Acc.
STS Corr.

Evaluation Scores
o

-0.5

We observe that the pattern trend across all three lines is very similar for both SMART and our
baseline, which is expected since parameters are being learned in the same way. However, the
trend varies for adapter modules since the direct injection of parameters kicks in from the begin-
ning and gradually influences the inference being done. Another noticeable difference across all
three graphs is the almost constant horizontal line for paraphrase accuracy, which suggests that the
model could not perform very well on this specific task despite having extensions that optimize for
task-specific parameters. However, there is still a big question of how the similar values in training

for SMART and baseline translate to radically different scores - this may be explained by overfit-
ting on training data, but confirmation would require visualizing activation networks of BERT as
heat maps to see how different parts of the network are working during inference.

5 Conclusion

In this study, we conducted experiments to see how two specific additions to the BERT model
impact its performance in a multi-task scenario: the first was loss regularization inspired by the
SMART framework, and the second was layer-level adaptations through adapter modules. We
showed that both methodologies help generalize the model well and specifically, help boost se-
mantic textual similarity correlation by preventing overfitting from the other models. The adapter
module extension also creates a pathway to explore how more compact models can be utilized to
achieve parameter-efficient extension of BERT.

Future work for this study will entail diving into activation networks to analyze the different model
layers affected by our extensions and using these ideas to train across an entire suite of GLUE
tasks. We would also like to experiment with different adapter modules by taking pre-trained task-
specific ones available online.

References

[1] Haoming Jian, Penghcheng He, Weizhu Chen, Xiadong Liu, Jianfeng Gao, and Tuo Zhao.
Smart: Robust and efficient fine-tuning for pre-trained natural language models through princi-
pled regularized optimization. In Association for Computational Linguistics, 2019.

[2] Asa Cooper Stickland and Iain Murray. BERT and PALs: Projected attention layers for efficient
adaptation in multi-task learning. In International Conference on Machine Learning, 2019.

[3] Sylvestre-Alvise Rebuffi, Alkan Bilen, and Andrea Vedaldi. Learning multiple visual domains
with residual adapters. 2017.

[4] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for NLP. 2019.

[5] Gould N. I. Conn, A. R. and P. L. Toint. Trust region methods. In MOS-SIAM Series on
Optimization: Trust Region Methods, 2000.

[6] Gabriel Poesia. CS 224N Default Final Project - Multitask BERT. https://github.com/
gpoesia/minbert-default-final-project) 2023.

[7] Xiaodong. Multi-Task Deep Neural Networks for Natural Language Understanding. https:
//github.com/namisan/mt-dnn, 2020.

[8] Google Research. Adapter-BERT. https://github.com/google-research/
adapter-bert, 2020.

[9] Devlin Jacob, Min-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. 2018.

https://github.com/gpoesia/minbert-default-final-project
https://github.com/gpoesia/minbert-default-final-project
https://github.com/namisan/mt-dnn
https://github.com/namisan/mt-dnn
https://github.com/google-research/adapter-bert
https://github.com/google-research/adapter-bert

	Introduction
	Related Work
	BERT and PALs
	Parameter Efficient Learning for NLP
	Noise Stability Regularization for improving BERT fine-tuning

	Approach
	SMART Framework
	Smoothness-Inducing Adversarial Regularization
	Bregman Proximal Point Optimization

	Adapter Modules
	Implementation

	Experiments
	Datasets
	Hyper-Parameters
	Evaluation
	Analysis

	Conclusion

