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Abstract

Burns et al. (2022) [[1] propose a new method for discovering latent knowledge
within the internal activations of a language model ("LM") in an unsupervised
manner. They propose the Contrast-Consistent Search ("CCS") method to accu-
rately answer "yes-no" questions based on unlabeled model activations, leveraging
logical consistency properties as a "constraint" in their optimization setup. Given
the promising initial results described on the paper and our motivation to explore
the epistemological properties of LMs, we built upon their work and extended the
CCS method to multi-class classification (as opposed to binary). After exploring
various combinations of models, datasets, loss functions, and hyper-parameters
through multiple iterations, we were able to achieve a noteworthy accuracy of
0.436 in the QA multiple choice task by leveraging the RACE dataset.
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2 Introduction

LMs often generate inaccurate text due to their inability to effectively represent the concept of truth.
While these models are trained to internalize this essential attribute, they can still produce erroneous
output when the training objective differs from the actual task requirements. This issue is not
unique to any particular model but rather a function of the training objective, making it increasingly
challenging to mitigate with human supervision, especially in complex domains. Simply increasing
the size of the models is unlikely to address this misalignment (Evans et al., 2021 [2]; Shuster et al.,
2021 [3]).

The development of explainable Al is essential to ensure that these systems reveal their
‘thinking’ completely and faithfully, which is critical to gaining trust and adoption. Along
these lines, self-knowledge is necessary for Al to make accurate predictions about their own
behavior and reasoning, with "awareness" about their core knowledge areas. Coupled with that,
truthfulness is a crucial factor that determines whether Al can provide factually accurate information,
including finding, using, and evaluating source materials correctly (Kadavath et. al (2022) [4]]).
Together, these factors play an essential role in the mitigation of hallucinations and the development
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of more robust and reliable Al models that can operate effectively and ethically in real-world scenarios.

While most current methods for ensuring model accuracy rely on human supervision to de-
fine what constitutes correctness, this approach may not always be feasible or desirable in certain
settings. However, exciting recent research (detailed in the following section) suggests that it may be
possible to achieve truthful modeling without relying on an external source of ground truth or any
form of supervision.

The continued advancement of this question could open up new avenues for developing
more robust and reliable models in scenarios where human oversight is limited or impractical. The
ultimate goal of the work we are expanding is to develop models that are truthful and capable of
accurately assessing their own level of confidence in their knowledge and reasoning. This requires
the ability of Al systems to recognize their own limitations and areas of uncertainty as a fundamental
prerequisite.

3 Related Work

In Discovering Latent Knowledge in Language Models without Supervision, Burns et al. (2022)
[L] introduce a novel approach for unsupervised discovery of latent knowledge within a language
model’s internal activation. Their proposed method, CCS, utilizes logical consistency properties as a
constraint in the optimization setup to enable accurate answering of "yes-no" questions based on
unlabeled model activations.

With a related motivation, Kadavath et. al (2022) [4] explore whether language models can
assess the accuracy of their responses and predict which questions they can answer correctly.
The study finds that larger language models are well-calibrated on various types of multiple-
choice and true/false questions, and the models can predict the probability of their answers being
correct. The paper proposes that these observations could help create more honest models in the future.

Despite the predominant focus on improving Al models through human supervision, there
has been notable research in exploring the potential of Al systems to move beyond direct
supervision. For instance, Christiano et al. (2018) propose Iterated Amplification as a training
strategy that uses no external reward function and progressively builds up a training signal for
difficult problems by combining solutions to easier sub-problems [5]]. Perez et al. (2022) suggest
a new approach to identify harmful behaviors in LMs by "red teaming" (i.e., generating test
cases) using another LM, flagging a wide range of diverse undesirable LM behaviors that can
be fixed before deployment [6]]. Although this approach could potentially broaden the scope of
supervisory applications, most of these proposals have yet to move beyond the theoretical stage, and
it remains unclear how well these methods can generalize. Differently, CSS addresses this issue
as an empirical problem that can be tackled with current models, as opposed to a theoretical evaluation.

Our work builds upon the CCS method described in the original reference paper, which en-
tails training a linear projection of hidden states that remains consistent across negations. However,
we take this approach a step further by extending it from binary to multiclass classification. We
leverage the insight that truth representations can be significant in models and can be extracted
by identifying the principal component of a modified representation space. Our method helps to
advance the research on the recovery of knowledge from model representations, thereby improving
the interpretability of complex models.

4 Approach

Our objective is to use a pre-trained neural language model and the CCS method to predict the correct
answer option for a given set q1, ..., g, of questions with multiple answer options but with only one
that is correct. Like in the original paper, g; needs to be a question (procedural or factual) with a
well-defined answer. We will be using the model’s hidden representations ¢(x) € R on a language
input . The task continues to be answering questions ¢, ..., g, by training a model that has ¢(z) as
its only input.



4.1 Adapted CCS Method

In our reference paper, the original CCS method leverages the idea that truth has structure that can
satisfy consistency properties in a way that few other features in a LM are likely to satisfy. Extending
this idea to the multiple choice answer domain, for some question ¢; with j discrete answer choices
such that p¥ is the probability of k being the correct answer, we have:

k=1

Rather than building contrast pairs for each question g;, we construct contrast groups, with j possible
labels, z¥, each corresponding to a natural language statement. The discrete nature of these labels
means that we can answer a given question g; with all possible answers j, such that only one natural
language statement is true (z£), and j — 1 statements xf (for k # t) that are false.

After some iterations, we also tweaked the original construction of the labels to make it more explicit
that the end of the string refers to the alternative chosen to be the "correct” one in each case. As we
append the identifier of the answer only (i.e., "A", ..., "D" or "0", ..., "3"), including the excerpt "The
correct answer for the question is option" makes it clearer that the last character of
the label has a meaning and is not just a random character.

Implementation following original CSS label construction:

Read the article and select the best answer. nArticle: {{article}}
nQuestion: {{question}} nOptions: {{"A"}}: {{options.0}} \n
{{"B"}}: A{{options.1}} \n {{"C"}}: {{optioms.2}} \n{{"D"}}:
{{options.3}} {{answer}}"

Our implementation:

Read the article and select the best answer. mnArticle: {{articlel}}
nQuestion: {{question}} nOptions: {{"A"}}: {{options.0}} \n
{{"B"}}: A{{options.1}} \n {{"C"}}: {{optioms.2}} \n{{"D"}}:
{{options.3}} \The correct answer for the question is option
"{{answer}}"

For each contrast group {x}, ..., #J }, we construct normalized representations {¢(z}), ..., ¢(27)}

with feature extractor ¢(-). Like in the original CCS method, we normalize each representation ¢(z¥)

independently so that the manipulation done (i.e., identifying the answer {1, ..., j} associated to each
ky.

)

P(af) = =
where {(u!,01), ..., (u?,07)} are the means and standard deviations of all ¢(z¥) fori € {1,...,n}.

Then, we learn a probe py () = o (87 ¢ + b) to represent the probability that the statement z with
normalized hidden state ¢ () is true. We kept the sigmoid implementation used in the original paper.
To define our training objective, we draw inspiration from the original paper and first come up with a

statement that, by the consistency property described before, recognizes that the probabilities need to
sum to 1.

N2
Lconsistency (97 b7 ql) = |:1 - (pe,b(le) + p@,b(xzz) + ...+ p@,b(xg))}
We also define a confidence loss to prevent degenerate solutions where py (%) is the same for all
ke{l,...j}Ge,pop(zh) = %) and to minimize entropy across the probabilities.
. . 2
Lconfidence(ea ba QZ) = { - (pé’b(le) : log(pe,b(mzl)) + ...+ p@,b(mg) : log(Pe,b(»Lz))) }

Hence, the total unsupervised loss is the sum of the consistency and confidence losses, averaged
across all contrast pairs:

1 n
LcssfMC (97 b) = E Z LCOnSistency (97 ba qz) + Lconfidence (67 ba Q1)
=1



Finally, to infer what is the right answer to the question, we output k € {1, ..., j} where:

pos(at) = maz (pos(al) + ..+ pos(al))

S Experiments

5.1 Data

We selected datasets with multi-choice question answering with availability from Hugging Face
and a significant number of academic references. The main tasks to be tested in these datasets are
reading comprehension and commonsense inference. It is worth noting that we don’t have any overlap
in datasets used with the original CCS paper because of our constraint of multiclass classification
(through multiple choice datasets), in contrast to binary classification.

* RACE (Lai etal., 2017): a large-scale reading comprehension dataset with more than 28,000
passages and nearly 100,000 questions. The dataset is collected from English examinations
in China, which are designed for middle school and high school students. [7]

* ARC (Clark et al., 2018): the ARC dataset (the AI2 reasoning challenge) is a comprehensive
collection of 7,787 natural science questions that were designed for use on standardized
tests. These questions encompass a wide range of linguistic and inferential phenomena and
have questions varying in level of difficulty. [8]

* SWAG (Zellers et al., 2018): a large-scale adversarial dataset with 113,000 multiple choice
questions about a rich spectrum of grounded situations. [9]]

e Cosmos QA (Huang et al., 2019): a large-scale dataset of 35,600 problems that require
commonsense-based reading comprehension, formulated as multiple-choice questions. In
contrast to many reading comprehension datasets where the questions focus on factual and
literal understanding of the context paragraph, this dataset focuses on reading between the
lines over a diverse collection of people’s everyday narratives. [[L0]

5.2 [Evaluation method

Similar to the original CCS, we will evaluate our new method with accuracy, i.e. the percentage of
questions that we are able to classify correctly from the test datasets.

When testing CCS, we conduct 10 optimization runs ("tries") using AdamW (Loshchilov & Hutter,
2017) [IL1] with a learning rate of 0.01, and choose the run with the lowest unsupervised loss. Like
the original implementation, we train CCS on all prompts as a single training set and then test it on
the corresponding test split. Differently from the original paper, we chose a 75% / 25% train/test
split.

Inspired by the reference paper, we also run logistic regression (LR) on the training split for each
dataset using ¢(xF) fori € {1,...,n} as the covariates, evaluating on the corresponding test split.

5.3 Experimental details

To optimize multiclass CCS performance, we ran several experiments changing one variable at a
time to understand the model’s accuracy change under each test. We focused our analysis on four
key attributes: (i) datasets, (ii) models we extract the hidden representation ¢(z) from, (iii) CCS loss
function, and (iv) CCS hyper-parameters such as the number of examples used to train CCS and the
number of tries.

Initially, we weren’t getting great results but as we tweaked the experimental setup we increased
significantly (by ~ 10p.p.).

5.4 Results

We started by running the same model (gpt2) will all the datasets so we could identify which datasets
seemed more promising for us to conduct more thorough experimentation. In all tables below, we ran
the experiments with 1, 000 examples, 10 tries, and a 0.01 learning rate, unless stated otherwise. All



numerical values presented in this section represent the mean of the outputs obtained from running
each experiment twice.

Table 1. GPT-2 with all datasets

Model gpt2 gpt2 gpt2 gpt2 Mean
Data race ai2_arc swag cosmos_ga | Mean
Multiclass CCS | 0.24 0.256 0.196 0.24 0.233
LR 0252 0276 0.296 0.248 0.268

After determining that the race (random accuracy but inference-based task) and ai2_arc datasets
had the most potential, we proceeded to test them using various models. However, we faced some
restrictions with the AWS setup, which prevented us from running CCS on some of the models
used in the original paper, such as gpt-j, TOpp, unifiedqa, T5, and deberta. Instead, we conducted
experiments using deberta-mnli and roberta-mnli, which were also featured in the original paper, as
well as smaller versions of the other models.

Table 2. Testing different models with race dataset

Model gpt2  gpt2-1 roberta-mnli distilbert deberta-mnli unifiedqa-t5-sm | Mean
Data race race race race race race
Multiclass CCS | 0.24  0.228 0.264 0.296 0.32 0.204 0.259
LR 0.252 0.248 0.332 0.264 0.436 0.244 0.296
Table 3. Testing different models with ai2_arc dataset
Model gpt2 gpt2-1  roberta-mnli distilbert deberta-mnli  unifiedqa-t5-sm | Mean
Data ai2_arc ai2_arc ai2_arc ai2_arc ai2_arc ai2_arc
Multiclass CCS | 0.256 0.252 0.256 0.272 0.24 0.252 0.255
LR 0.276 0.244 0.256 0.28 0.436 0.28 0.295

Afterwards, we proceeded to test the most favorable model-dataset combinations (race with roberta-
mnli, distilbert, and deberta-mnli, and ai2_arc with deberta-mnli and distilbert) with a larger set of
examples (5, 000). We report the findings of these tests below.

Table 4. Testing promising pairs with 5,000 examples

Model roberta-mnli  distilbert deberta-mnli  roberta-mnli  distilbert | Mean

Data race race race ai2_arc ai2_arc
Multiclass CCS 0.2264 0.2576 0.276 0.228 0.242 0.246
LR 0.2712 0.2416 0.512 0.278 0.25 0.311

Next, we wanted to verify whether using a model fine-tuned for the multiple-choice QA task could
help us achieve higher accuracy. As all the datasets we have selected are complex/ nuanced and
require specific-domain knowledge, we suspected that we were not getting maximum potential
performance with the standard models.

Note that we returned to testing with 1,000 examples: unintuitively (although might have been by
chance), we found that using a higher number of examples didn’t make a significant difference in CCS
(although it was helpful for LR), and using fewer examples enabled us to conduct more experiments.
However, in the final experiment, we reverted back to using a larger set of examples, as it is inherently
beneficial to increase accuracy.

Table 5. Testing models fine-tuned with the datasets that we are using

Model distilbert-race  roberta-race  bert-swag  t5-cosmos | Mean

Data race race swag cosmos_qa
Multiclass CCS 0.228 0.26 0.248 0.292 0.257
LR 0.32 0.42 0.244 0.276 0.315

Then, we identified the most promising dataset-model combinations from Tables 2, 3, and 5, and
experimented with various versions of our loss function. Our objective was to determine the ideal
balance between consistent and informative loss by adjusting their respective ratios.



Table 6. deberta-mnli (with race)
Consistency Loss Weight | 1.0 1.0 1.0 1.0 1.0 0.8 | Mean
Informative Loss Weight 1.0 0.8 0.5 0.3 0.0 1.0
Multiclass CCS 032 0.288 0.332 0356 0.204 0.244 | 0.291
LR 0436 0468 0424 0456 0432 0.392 | 0435

Table 7. t5-cosmos (with cosmos_qa)

Consistency Loss Weight 1.0 1.0 1.0 1.0 1.0 0.8 | Mean
Informative Loss Weight 1.0 0.8 0.5 0.3 0.0 1.0
Multiclass CCS 0.292 0.28 0.244 0.276 0.208 0.252 | 0.258

LR 0.276 0.216 0.264 0.276 0.256 0.268 | 0.259

Table 8. distilbert (with race)
Consistency Loss Weight | 1.0 1.0 1.0 1.0 1.0 0.8 | Mean
Informative Loss Weight 1.0 0.8 0.5 0.3 0.0 1.0
Multiclass CCS 0.296 0.272 0.268 0.248 0.232 0.244 | 0.26

LR 0264 0.24 0.3 0.26 0.3  0.228 | 0.265

Having identified a construction that exhibits significantly superior performance compared to the
others (deberta-mnli with 1.0 consistency as opposed to 0.3 informative losses), we now aim to adjust
the CCS architecture by modifying two crucial hyper-parameters: the number of attempts and the
learning rate.

Table 9. Changing number of tries in CCS

Number of tries 1 5 10 15 25
Multiclass CCS | 0.316 0.346 0.356 0.264 0.362
LR 0496 048 0456 0444 0.436

Having found a superior performance for 25 tries, we fix this hyper-parameter and now evaluate
accuracy under different learning rates.

Table 10. Learning rate

Number of tries | 10~%  10=3 102
Multiclass CCS | 0.284 0.362 0.284
LR 0.488 0.436 0.452

Finally, we have decided to explore a new idea for the model’s architecture. Instead of using the
Multiclass CCS suggested in the Approach section, we aim to determine how accuracy is affected
when we run the regular binary CCS four times for a given question ¢;, each time selecting a fictitious

alternative as the correct answer, producing a fictitious prompt qf with f € {0, ..., 3}.

This strategy, which we call "Multiple-Fold Cross-Validation CCS", involves adding a fictitious
answer after the question and the possible answers to create a new prompt structure that looks
something like: (question) (possible answers) (fictitious answer). For instance, let’s
assume we have the following prompt: "What is the capital of France?" with possible answers (A)
Paris, (B) London, (C) Rome, and (D) Madrid. To implement our proposed architecture, we create

each fictitious prompt qlf by building a contrast pair from each alternative:

* What is the capital of France? A Paris B London C Rome D Madrid.
The correct answer is "A" (which is a natural language statement we denote :L'j)

* What is the capital of France? A Paris B London C Rome D Madrid.
The correct answer is not "A" (which we likewise denote x;)

Like in the original paper, we learn to classify xj' and z; as true or false following their original
consistency and informative losses, finding p(z;") and 1 — p(z;") that represent the probability that
the answer to qf is "Yes". We average these values to find the final prediction p(g;):

#al) = 5 (pd) + 1 plar))



Then, we output the f that corresponds to the highest ﬁ(qu ). Intuitively, this means that after the
individual CCS assessment of each alternative, we choose the correct one based on CCS degree of
confidence. The Multiple-fold Cross-Validation CCS exhibits a consistent performance with the
regular Multiclass CCS, albeit slightly worse.

Table 11. Multiple-fold Cross-Validation CCS

Accuracy
Multiple-fold CCS 0.296
Multiclass CCS 0.362
LR 0.706

6 Analysis

We find that our best performance approximately matches the Stanford AR [12]] model performance on
the RACE dataset (43.2 and 43.3, respectively), exceeds the Sliding Window [13]] model performance,
and nears Gated-Attention [14] performance (within one percentage point). The human performance
on the dataset is 94.5%, indicating that the data is clean, but there is a significant gap between turkers’
performance and human performance.

We have included the performance achieved by BERT models on the RACE dataset [[/]] reference,
even though a direct comparison may not be entirely fair. Nonetheless, it serves as a good benchmark
to keep in mind.

Table 12. Comparison Benchmarks

RACE
Multiclass CCS Best Performance | 43.2
Sliding Window 32.2
Stanford AR 43.3
Gated-Attention 44.1
Turkers 73.3
Human Ceiling Performance 94.5
BERT 72.0
RoBERTa 83.2
DeBERTa 86.8

In hindisght, we acknowledged that selecting the RACE dataset for machine comprehension was more
challenging than anticipated, particularly considering that we would be working with smaller scale
models. We could have chosen alternative datasets such as CNN/Daily Mail, Children’s Book Test,
and Who-Did-What, as demonstrated by the lower accuracy achieved by models such as Stanford
AR and Gated AR on RACE, but these datasets require more complex data structures and model
architectures (because of the variable number of possible answers depending on the question, for
example).

Furthermore, we observed significant variability in the results of running the same experiment
multiple times, which can be reduced by running each experiment multiple times (obs.: we ran each
experiment twice due to time constraints) or by increasing the number of examples used in training
(the variance in results is an indicative of the different levels of difficulty amongst questions; note
that most experiments used 1,000 examples out of the 100, 000 in the dataset). However, we should
also focus on improving our model architecture to minimize this variance in the first place.

Obs.: we included specific insights about each experiment directly in the Results section under
Experiments

7 Conclusion

We generalized the CCS methodology beyond the yes-no question-answering setting, building a
promising tool to improve multi-class classification question-answering while at the same time
studying potential more ambitious applications to the original CCS. Our approach contributes to the



progress in recovering knowledge from model representations, which enhances the interpretability of
complex models.

As highlighted by the original paper, CCS depends on the availability of a specific orientation in the
activation space, which can effectively and consistently differentiate between accurate and inaccurate
inputs. However, this relies on the ability of the model used to get the hidden states to assess the
accuracy of an input. This means that CCS depends on the probes having directionally correct labels
to achieve high precision. The datasets we chose are relatively difficult for the smaller models we
used and don’t seem to meet these circumstances completely.

In addition to replicating the work with a more robust infrastructure, potential avenues for future
work include improving the model reliability and experimenting with different prompt architectures.
We are also excited about the potential application of the method to open-ended questions.
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