
Multi-Task Learning With a BERT-y Good Model
Stanford CS224N Default Project

Nabil Ahmed
Department of Statistics

Stanford University
nabilah@stanford.edu

David Karamardian
Department of Statistics

Stanford University
dk11@stanford.edu

Abstract

We explore methods of fine-tuning Bidirectional Encoder Representations from
Transformers (BERT) embeddings in order to optimize performance for a variety of
downstream tasks, including sentiment analysis, paraphrase detection, and semantic
textual similarity. After implementing a minimalist, working version of BERT,
dubbed miniBERT, we layer in different fine-tuning tactics, like multitask loss and
gradient surgery, to improve performance across all three tasks.

1 Introduction

The arrival of large, pre-trained language models has given birth to the potential for break-throughs
in performance across a spectrum of natural langauge processing tasks. Similar to Sun et al. (2019),
the background and motivation for our paper is to build upon the amazing success of BERT’s
language understanding capabilities and explore its full potential for a variety of downstream tasks
by investigating different fine-tuning methods. Sun et al. (2019) note in their introduction that for
Natural Language Processing, text representation is a critical intermediate step before engaging in
further downstream tasks like text classification. Pre-trained models like OpenAI GPT and BERT
have shown many improvements in this area and offer the benefit of not having to train a model from
scratch. However, the problem we explore is how to optimize BERT for the specific task, or multiple
tasks, at hand.

Optimizing a single network to perform well across multiple tasks presents challenges that we
tackle by experimenting with different fine-tuning protocols. The tasks we seek to optimize for are
sentiment analysis, paraphrase detection, and semantic textual similarity. We begin by implementing
key components of a minimalist version of BERT for just the task of sentiment classification, and
our working version of miniBERT, both with and without fine-tuning, beats baseline performance
measures given in the default project guidelines 1. We then pivot to designing our network architecture
to be able to accommodate all three tasks in parallel, and we fine-tune our network to optimize
performance for all three tasks, leveraging tools like multitask loss (Bi et al., 2022) and gradient
surgery (Yu et al., 2020). Ultimately, after experimenting with the aformentioned techniques, our
final iteration of the model achieves validation results of 0.484 for sentiment classification accuracy,
0.803 for paraphrase detection accuracy, and 0.746 for semantic textual similarity correlation, as
shown in Figure 2. These results place our team at a respectable level on the CS 224N leaderboard.

2 Related Work

Our research was influenced by a number of other works that exist in the context of fine-tuning large
language models for multitask performance. The initial motivation for our paper came from Sun
et al. (2019), who outlined their interest to build upon the amazing success of BERT’s language
understanding capabilities and explore its full potential for text classification by investigating different
fine-tuning methods. For fine-tuning, the authors keep in mind that different layers of the network
capture different levels of information, so the layers should be fine-tuned accordingly depending on
the target task. Different optimization algorithms and learning rates can be leveraged to address this.

Stanford CS224N Natural Language Processing with Deep Learning

Beyond these micro-level strategies, the macro-level strategies they suggest are further pre-training
BERT on the data from the target task distribution, and doing multitask fine-tuning. We found this
paper to be a good starting point for understanding the broader context of our work and establishing
our direction to approach our tasks.

Regarding multitask performance, Bi et al. (2022) propose a framework for multitask learning that
takes into consideration multi-field information into BERT. To train on multiple tasks at once, they
sum up the losses from the individual tasks to get a combined loss. Their approach heavily influenced
our approach for training our model, since we also needed to optimize BERT to perform well across
three separate tasks.

Bi et al. (2022) also reference Yu et al. (2020)’s novel form of gradient surgery, named projected
conflicting gradients (PCGrad). In an effort to optimize performance across a variety of training
tasks, PCGrad aims to deconflict conflicting gradients from the individual tasks during optimization;
for conflicting gradients with negative cosine similarity between two tasks, the gradient of each task
is projected onto the normal plane of the other task’s gradient (Yu et al., 2020). To illustrate, we
would replace the gradient gi from task Ti with its projection onto the normal plane of gradient gj as
follows:

Tj : gi = gi −
gi · gj
||gj ||2

gj

We leveraged the PCGrad repository from (Yu et al., 2020) for easy and efficient implementation of
gradient surgery.

3 Approach

In accordance with Sun et al. (2019) and their efforts to fine-tune BERT, our primary aim for this
project was to try a variety of approaches to see what fine-tuning methods on BERT work best for
achieving high performance across all three tasks of sentiment analysis, paraphrase detection, and
semantic textual similarity. To start, in accordance with the guidelines for the default final project,
we implemented some of the core components of the miniBERT model, including the multi-headed
self-attention layer, other sections to realize the full BERT transformer layer, the sentiment classifier,
and the step function for the Adam Optimizer.

Once we finished implementing a working version of the miniBERT model, we conducted sentiment
analysis on two datasets. For the task of sentiment classification, since we are only classifying
the sentiment of one sentence, we run the sentence through miniBERT and generate a CLS token
embedding that we then run through the sentiment classifier head, a 2-layer neural network that
acts as a binary classifier. We generated two sets of results, one evaluating our model with just
pre-trained weights, and another evaluating our model with embeddings that we fine-tuned on this
task of sentiment analysis. For training purposes here, we used Cross Entropy Loss. The results
compared to baseline accuracy values provided in the project guidelines can be found below in Table
1.

After implementing the core components of the miniBERT model and evaluating its performance on
the task of sentiment classification, we pivoted to adjusting our network architecture to accommodate
the additional tasks of paraphrase detection and semantic textual similarity, as shown in Figure 1.
Since the tasks of paraphrase detection and semantic textual similarity compare two sentences, for
both tasks we run the two sentences being compared to each other separately through the model,
generating a separate CLS token embedding for each sentence. Then, for paraphrase detection, we
concatenate the two CLS token embeddings and run this output through a 2-layer neural network
classifier head, with the final layer acting as a binary classifier. For training purposes here, we used
Cross Entropy Loss. For semantic textual similarity, we run both CLS tokens separately through the
2-layer neural network classifier head, then take the cosine similarity between the two final layers
that are generated. We then multiply this scalar by 5 to re-scale for our task, which has a numeric
continuous label from 0 to 5, and use the Mean Square Error Loss for training purposes.

To fine-tune our model, we leveraged a combination of training on tasks individually, as well as
training on all three tasks simultaneously by computing multitask loss in accordance with Bi et al.
(2022). For sentiment classification and semantic textual similarity, we trained each of these tasks

2

Figure 1: In order to calculate multitask loss during multitask training, we leverage the above
architecture to sum up losses across all three tasks.

individually, backpropagating through the entire network. After fine-tuning on those two tasks
individually, we then fine-tuned on all three tasks concurrently, summing up their three losses to
create a combined multitask loss at the end of each batch, and backpropagating through the entire
network. Since the datasets sizes differed across the three tasks and datasets, we aligned them to
be able to run in parallel by repeating batches in the smaller datasets to match length of the biggest
dataset. During backpropagation, we experimented with leveraging PCGrad gradient surgery (Yu
et al., 2020) as well in order to optimize performance across all three tasks by resolving any conflicting
gradients.

Details for these tasks, their corresponding datasets, evaluation methods, and experiment details can
be found below in Section 2. Results for these tasks can be found in Table 2.

4 Experiments

4.1 Data

For Part 1 of our project, we are using the Stanford Sentiment Treebank (SST) dataset SA (2013) and
the CFIMDB dataset for the task of sentiment analysis. The SST dataset consists of phrases labeled as
negative, somewhat negative, neutral, somewhat positive, or positive. The CFIMDB dataset consists
of movie reviews labeled as positive or negative.

For Part 2 of our project, we are using the Quora dataset Quo for the task of paraphrase detection, as
well as the SemEval STS Benchmark dataset STS for the task of semantic textual similarity. The
Quora dataset consists of 400,000 question pairs with labels indicating whether particular instances
are paraphrases of one another, and the SemEval STS Benchmark dataset consists of 8,628 different
sentence pairs of varying similarity on a scale from 0 (unrelated) to 5 (equivalent meaning).

3

All datasets come with training, dev, and test splits, and all evaluation metrics in this milestone report
are computed on the dev datasets.

4.2 Evaluation Method

For the task of sentiment classification, we used the evaluation metric of accuracy, which measures
whether the model correctly classified a movie review as positive of negative for the CFIMDB dataset,
or as one of the five labels for the STS dataset.

For the task of paraphrase detection, which uses a binary label of ’Yes’ or ’No’ depending on if the
sentences are paraphrases of each other, we also use the metric of accuracy.

For the task of semantic textual similarity, which can produces values ranging from 0 to 5 depending
on the similarity of the sentences within a pair, we compute the Pearson correlation of the true
similarity values against the predicted similarity values.

4.3 Experimental Details

As shown in Figure 2, the Baseline metrics come from our milestone update earlier in the quarter,
when we only trained the three classifier heads individually without incorporating multitask loss
training. Iteration 1 was our first pass at incorporating multitask loss; however, for the semantic
textual similarity task, we did not use the version of Mean Square Error loss that incorporated
cosine similarity between embeddings, and we did not incorporate gradient surgery. For Iteration
2, we incorporated the cosine similarity loss for semantic textual similarity, and for iteration 3, we
incorporated the cosine similarity loss and gradient surgery. The Baseline and Iteration 1 trained on
two epochs of data, and all subsequent iterations trained on 5 epochs of data individually for the tasks
of sentiment classification and semantic textual similarity for phase 1, as well as 5 epochs of data for
all three tasks simultaneously with multitask loss.

4.4 Results

Sentiment Classification Acc. Baseline Results

SST Dataset
Pretraining 0.390 0.399

Finetuning 0.515 0.525

CFIMDB Dataset
Pretraining 0.780 0.796

Finetuning 0.966 0.967

Table 1: Part 1 Results

As shown in Table 1, for the task of sentiment classification for the SST and CFIMDB datasets, our
pretrained and finetuned models all outperform baseline accuracy results provided in Part 1 of the
default project guidelines.

Evaluation Metric Baseline Iteration 1 Iteration 2 Iteration 3
Sentiment Classification Acc. 0.522 0.514 0.499 0.484
Paraphrase Detection Acc. 0.468 0.669 0.791 0.803
Semantic Textual Similarity Corr. 0.007 0.331 0.728 0.746
Overall Score 0.332 0.504 0.673 0.678

Table 2: Part 2 Results

4

As shown in Table 2, our performance across paraphrase detection and semantic textual similarity tasks
increases with each iteration of experiments we conduct to improve the model, but our performance
for sentiment classification decreases with each iteration. This likely due to the increased emphasis
that our subsequent techniques placed on the former two tasks. We also see that while cosine
similarity loss for the semantic textual similarity task enabled a massive lift in performance on that
task, gradient surgery via PCGrad yielded only a marginal gain in performance on the paraphrase task.
The former result makes sense given the mathematical relationship between the cosine similarity and
the Pearson correlation of two vectors (correlation is the cosine similarity between centered versions
of the vectors). The latter result was slightly disappointing, but it did indicate that larger and more
radical changes were needed to achieve the next level of dev set accuracy.

5 Analysis

We present here analysis pertaining to our final and best overall model (model iteration 3). The basic
takeaways are also true for model iteration 2, as gradient surgery had a minimal impact on the results.

We begin by examining the accuracy plots for the first phase of model training when the sentiment
and similarity tasks were trained individually for five epochs. While the model achieves respectable
performance on the sentiment and similarity tasks, it is certainly over-fitting, as the training on the
dev sets reaches its peak after two epochs for the sentiment task and four epochs for the similarity
task. We can also see that the model has yet to converge for these tasks, as the training accuracies are
still increasing as of epoch five. This is acceptable, as the model will continue to improve on these
tasks during the multi-task training phase.

Figure 2: Training Phase 1 - Individual Training on Sentiment, Similarity Tasks

In the second phase of training, we iterate through the three training datasets simultaneously in batches
of size 32 and sum their losses in the manner prescribed by the gradient surgery algorithm. The
paraphrase training dataset is significantly larger than the other two, so we repeat the smaller datasets
to match the size of the paraphrase set. Thus, each epoch in the plot represents one pass through
all observations in the paraphrase training dataset, and within this pass there were simultaneously
multiple passes completed through the other two datasets.

We see that the sentiment and similarity training accuracies increase to nearly perfect within the
first epoch, while paraphrase training accuracy reaches near perfection in the fifth and final epoch.

5

Paraphrase dev accuracy peaks in epoch four, while the other two tasks see little change in their dev
accuracies after the first epoch.

Figure 3: Training Phase 2 - Simultaneous Multi-Task Training

These plots are highly indicative of overfitting. The model is achieving near perfect training accuracies
on each task (which could indicate that it has memorized many of the training examples) while the
dev accuracies are stabilizing at lower levels. The problem is particularly severe on the sentiment
classification task, which is conspicuously the smallest dataset among the three in terms of number
of examples, and least severe on the paraphrase dataset. This leads to ideas for improving model
generalization, including:

• Augmenting the training dataset(s) with additional human-labeled examples
• Augmenting the training dataset with synthetic examples generated by GPT-4
• Sharing model weights between the paraphrase task and the others
• Regularization of model weights

6 Conclusion

Working on this project illuminated the incredible power that large language models yield today, but
it also shed light on the limitations that we face in order to implement them for specific use cases.
Creating a model that performs well across a variety of language tasks presented a unique set of
challenges, and the main limitation we believe we faced was a lack of training data. Especially for
the tasks of sentiment classification and semantic textual similarity, we believe that bolstering our
training datasets for these tasks could have led to considerable gains in performance. Future work
could look at augmenting these training datasets with synthetic data examples generated from another
large language model, such as GPT-4. Stanford’s Alpaca 7B model follows just such an approach.

Despite the data constraints, we were able to improve performance across the tasks of paraphrase
detection and semantic textual similarity by layering in a variety of different techniques. Increasing
the number of training epochs from two to five improved performance, as well as incorporating
multitask loss, rather than just training on all of the tasks individually. Furthermore, implementing
cosine similarity prior to computing Mean Square Error loss for semantic textual similarity led to
improved performance, and incorporating gradient surgery with PCGrad boosted performance as well.

6

Ultimately, we realized the value in conducting a lot of experiments that layer in different approaches
in order to come upon an optimal strategy.

References
First quora dataset release question pairs. https://www.quora.com/q/quoradata/
First-Quora-Dataset-Release-Question-Pairs.

Semantic textual similarity. https://aclanthology.org/S131004.pdf.

2013. Stanford sentiment treebank. https://nlp.stanford.edu/sentiment/treebank.html.

Qiwei Bi, Jian Li, Lifeng Shang, Xin Jiang, Qun Liu, and Hanfang Yang. 2022. Mtrec: Multi-task
learning over bert for news recommendation. In Findings.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. 2019. How to fine-tune BERT for text
classification? CoRR, abs/1905.05583.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
2020. Gradient surgery for multi-task learning. CoRR, abs/2001.06782.

7

https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://aclanthology.org/S131004.pdf
https://nlp.stanford.edu/sentiment/treebank.html
http://arxiv.org/abs/1905.05583
http://arxiv.org/abs/1905.05583
http://arxiv.org/abs/2001.06782

	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation Method
	Experimental Details
	Results

	Analysis
	Conclusion

