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Abstract

Our goal for this project was to leverage powerful pre-trained BERT contextual em-
beddings to simultaneously perform three sentence-level tasks: sentiment analysis,
paraphrase detection, and semantic textual similarity. We first implemented core
components of a BERT model, and achieved similar results to baseline on sentiment
analysis and paraphrase detection. We then improved our multitask model by using
various pooling methods, SMART regularization, and a cross-encoder architecture.
Our best model improve baseline by 0.025, 0.181, and 0.042 for sentiment analysis,
paraphrase detection, and semantic textual similarity, respectively. As time of
writing, we rank number 1 by overall score on both dev and test set leaderboard.

1 Introduction

In recent years, deep learning techniques have revolutionized the field of natural language processing
(NLP), enabling significant improvements in a wide range of NLP tasks. Among the various deep
learning models developed for NLP, the Bidirectional Encoder Representations from Transformers
(BERT) model has gained significant attention due to its remarkable performance across various
NLP tasks. One unique attribute of BERT is its versatility. After being pre-trained on an initial large
dataset, a BERT model can then be fine-tuned using additional data specific to an NLP task. Recently,
researchers have also experimented with specializing BERT by modifying the model architecture.
Both of these methods of specialization have resulted BERT models achieving state-of-the-art results
for many NLP tasks.

For our project, we focus on three specific tasks: sentiment analysis, paraphrase detection, and
semantic textual similarity. Sentiment analysis involves classifying the sentiment of a given text on a
scale from negative to positive. Paraphrase detection involves determining whether two sentences
convey the same meaning or not. And semantic textual similarity involves measuring the degree to
which two sentences are semantically equivalent. We aim to leverage pooling, regularization, and
encoding architectures to develop a BERT model capable of fulfilling all of these tasks simultaneously.

2 Related Work

Core to our project is the BERT model, a transformer model that is designed to understand the context
of words in a sentence by leveraging bidirectional training. [1] After a pre-training step, Devlin et al.
fine-tuned the BERT model for 11 different NLP tasks. The fine-tuned BERT model met and often
exceeded the state-of-the-art for these tasks.
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In 2019, Reimers and Gurevych developed Sentence-BERT [2] — a modification to the original BERT
model that allowed it to predict semantic similarity much more efficiently. While some of the tasks
covered in the original Devlin et al. paper took in a single sentence input, like sentiment analysis,
other tasks like semantic similarity required comparing pairs of sentences. Devlin et al. used a
Cross-Encoder architecture which combines sentence pairs into a single input for BERT. But Reimers
and Gurevych used a Bi-Encoder architecture, which passes each sentence in the pair separately
through BERT. The BERT model would then generate individual sentence embeddings which were
used to predict semantic similarity through cosine-similarity. The authors also applied different
pooling methods to reduce potential information loss in the original BERT model. Sentence-BERT
outperformed many existing methods on several benchmark datasets for sentence similarity and
classification tasks.

Later that year, Munikar et al. [3] devised a method for fine-grained sentiment classification of movie
reviews based on the BERT model. While the original BERT paper focused only on binary sentiment
classification, the work of Munikar et al. demonstrated that such a model could generate accurate
results on a 5-label scale.

3 Approach

3.1 Transformer Encoder

Our transformer encoder is a BERT-Base model based on the work of Devlin et al. At the beginning
of this project, we were provided with starter code for a minimal implementation of the BERT model.
After completing the core components of the minBERT model, we verified our implementation of
the BERT encoder by training it to perform sentiment analysis on movie review data. For this base
sentiment analysis model, we simply used a dropout layer and a linear layer as our classification
head to compute class probability using the input’s [CLS] contextual embedding. We compared our
results with the Dev accuracy baselines provided in the default project handout, confirming that our
implementation was working properly.

We then extended minBERT to accept token type id as input and used it to produce token type
embeddings. This extension enabled us to use a cross encoder architecture (see more in detail in
Section 3.2) for the sentence pair tasks. This BERT-Base encoder was used to produce contextual
sentence embeddings for all of our downstream tasks.

3.2 Bi-Encoder and Cross-Encoder

Figure 1: Architecture illustration for Cross-Encoder and Bi-Encoder for sentence pair taask

Paraphrase detection and semantic textual similarity are sentence pair tasks, which are NLP tasks that
take two pieces of text as inputs. This presents a unique problem for transformer-based architectures,
as vanilla transformers are only designed to handle single sentences. To handle multi-sentence input,
we explored two strategies: an early fusion (Cross-Encoder[1]) and a late fusion (Bi-Encoder[2])
strategy. These strategies are illustrated in Figure 1.

In the Bi-Encoder architecture, we pass sentences 1 and 2 independently to BERT and produce their
corresponding sentence embeddings. Then, in order to perform the classification or regression task,
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we first merge the embeddings using a merge method. This method can be a concatenation, a sum,
a difference, or a distance matrix. We can treat this merged embedding as a representation of the
sentence pair, and use it for our tasks. The Bi-Encoder was used in the Sentence-Bert[2] paper for
sentence pair tasks.

In contrast, the Cross-Encoder architecture passes both sentences into BERT simultaneously by
concatenating them into a single sequence of tokens. We then provide a token type id to the BERT
model to indicate which sentence each input token belongs to. During the token embedding process,
we use the token type id to create a token type embedding and add it to the token embedding.
Instead of producing individual sentence embeddings, the Cross-Encoder architecture produces direct
representations of the sentence pairs. We can then directly apply our classifier on the output hidden
embedding for our downstream task. The Cross-Encoder was used in original BERT [1] paper for
sentence pair tasks.

3.3 Sequence Pooling

When the BERT encoder outputs a sequence of hidden embeddings, we add the [CLS] token before
each sentence token sequence to represent the entire input sequence, which allows BERT to perform
tasks such as classification and sentiment analysis. By using the [CLS] token, BERT can capture
important information from the entire input sequence and use it to make predictions. While using the
[CLS] token as a representation of the input sequence has proven to be effective in various NLP tasks
[4], throwing away the other output sequences from BERT can also result in valuable information
loss. The output sequence from each layer of BERT contains contextualized information that can be
useful for downstream tasks that require a deeper understanding of the input sequence. We explored
two traditional pooling methods to aggregate all output sequences: Average Pool[2], which computes
the average over all output sequences, and Max Pool[2], which takes the element-wise maximum
over all output sequences.

Figure 2: Average Pool, Max Pool, and Attention Pool for Ouput sequence aggregation

In addition, we theorize that not all output sequences share equal importance to summarise the
sentences. Inspired by the attention aggregation mechanism present in graph neural networks [5],
we devised the pooling method Attention Pool. We use [CLS] token as anchor, and then compute
attention coefficients between the [CLS] token, h[cls], and the rest of the output sequences ht:

et =< h[cls], ht > (1)
This indicates the importance of the output sequence embeddings ht to the node [CLS] token. To
make coefficients easily add across different sequences, we normalized attention coefficients et using
the softmax function to obtain the attention weight αt:

αt = softmax(et) =
exp(et)∑T
i=0 exp(ei)

(2)

The attention pool output is computed using the [CLS] token and the weighted sum of the rest of the
output sequences:

hattn = h[cls] + α0h0 + α1h1 + · · ·+ αThT (3)

3.4 SMART

Compared to size of the datatset used for pre-training, the training data for our downstream tasks is
rather small. In addition, the high complexity of the pre-trained model often causes the fine-tuned

3



model to overfit on the training data for downstream tasks and fail to generalize to unseen data. We
observed this behavior in our preliminary experiment, where dev set evaluation metrics got worse
while training set metrics continuously increased. To address this issue, we implemented SMART
[6]: SMoothness inducing Adversarial Regularization and BRegman pRoximal poinT opTimization.

Specifically, given the model f(·; θ) and n data points of the target task denoted by (xi, yi)
n
i=1, where

xi’s denote the embedding of the input sentences obtained from the first embedding layer of the
language model and yi’s are the associated labels, our method solves the following optimization for
fine-tuning:

min
θ

F (θ) = L(θ) + λsRs(θ). (4)

L(θ) is the loss function for our downstream task. λs is a tuning parameter controlling the regulariza-
tion strength. Rs(θ) is our smoothness-inducing adversarial regularization loss:

Rs(θ) =
1

n

n∑
i=1

max
∥x̃i−xi∥∞≤ϵ

ℓs(f(x̃; θ), f(xi; θ)) (5)

x̃ is the perturbed input embedding. ℓs is a function measuring the difference between the output
distribution from the original embedding input and the perturbed embedding input. The core idea
behind this regularization is that if we perturb the input by a small amount, the output logits should not
change too much. Colloquially, this regularization term creates a small "buffer zone" (an infinity-norm
ball) near each data point in embedding space. The output from the embedding within this buffer
zone is enforced to not deviate from the original data points. This prevent our training data points
from ending in the decision boundary, which should help with generalization. See the illustration
from original paper[6] in Figure 3

Figure 3: Adapted from the original SMART paper[6]. Decision boundaries learned without (a)
and with (b) smoothness-inducing adversarial regularization, respectively. The red dotted line in (b)
represents the decision boundary in (a). As can be seen, the output f in (b) does not change much
within the neighborhood of training data points.

We also adapted SMART for our Bi-Encoder setup by perturbing each input separately and passing
them through the encoder twice with their corresponding unperturbed pairs.

3.5 Downstream Tasks Model

We fine-tuned the pre-trained BERT-Base model to maximize performance on three sentence-level
tasks: Sentiment Analysis, Paraphrase Detection, and Semantic Textual Similarity. This was ac-
complished by using different model designs that best applied to each task. We experimented with
different combinations of sequence pooling strategies, sentence pair encoder architecture, and use of
adversarial regularization. We chose the best performing model on dev set as our final downstream
task model design. For more detailed analysis between different strategies, see Section 4.

For Sentiment Analysis, we used the [CLS] token’s pooler output as our sentence embedding. We
then passed the sentence embedding to a classification head consisting of a dropout layer and a linear
layer. We used Cross Entropy Loss [7] and smoothness-inducing adversarial regularization as our
objective function.
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For Paraphrase Detection, we used a Cross-Encoder as our encoder architecture and the [CLS]
token’s pooler output as our sentence pair embedding. We then passed the sentence embedding to a
classification head consisting of a dropout layer and a linear layer. We used Binary Cross Entropy
Loss [7] and smoothness-inducing adversarial regularization as our objective function.

For Semantic Textual Similarity, we used a Cross-Encoder as encoder architecture and the [CLS]
token’s pooler output as our sentence pair embedding. We then passed the sentence embedding to
a regression head consisting of a dropout layer, a linear layer, and a sigmoid activation layer. We
used Mean Square Error Loss and smoothness-inducing adversarial regularization as our objective
function. The original labels were normalized from [0,5] to [0,1].

3.6 Baseline

The authors of the original BERT paper. [1] reported an accuracy score of 0.712 on Quora Question
Pair (QQP) and a Pearson correlation of 0.858 on the SemEval 2017 STS-B, which defined our
baselines for paraphrase detection and semantic textual similarity, respectively. For sentiment analysis,
the authors reported an accuracy score of 0.935 using the Stanford Sentiment Treebank binary (SST-2).
However, this result is not directly comparable to our work, as we used the fine-grained SST-5 corpus
for this project. Instead, a more appropriate baseline is the work of Munikar et al, who reported an
accuracy score of 0.532 on the SST-5 corpus with BERT Base. [3]

4 Experiments

4.1 Data and Evaluation Method

For Sentiment Analysis, we used two different datasets in this project. The first was the Stanford
Sentiment Treebank fine-grained corpus (SST-5), which contains 11,855 sentences collected from
movie reviews found on the Rotten Tomatoes website. Each review has a discrete label ranging from
0 (negative sentiment) to 4 (positive sentiment). The second was the CFIMDB or CF-IMDB dataset,
a set of 2,434 movie reviews collected from IMDB. Each review has a binary label of negative or
positive.

During the verification step, both of these datasets were used to confirm model accuracy. For the
multitask implementation step, we only tested the sentiment analysis model architecture with the
SST-5 dataset. As this is a typical classification task, we used accuracy as our evaluation method.

For Paraphrase Detection, we used the Quora Question Pairs dataset (QQP), which contains over
400,000 question pairs from Quora. Each question has a binary label indicating whether the pair of
questions are paraphrases of one another. We also used accuracy as our evaluation method for this
binary classification task.

For Semantic Textual Similarity, we used the SemEval STS Benchmark dataset, which contains
8,628 different sentence pairs. Each pair has a continuous similarity score ranging from 0 (unrelated)
to 5 (equivalent meaning). Since the label indicates the degree of similarity, we are interested in
evaluating the correlation between prediction and ground truth rather than measuring their absolute
differences. Therefore, we used Pearson correlation as our evaluation method. Given a set p of
predictions pi and a set y of labels yi, with each pi seeking to predict the corresponding label yi, the
Pearson correlation measures the linear correlation between the sets p and y as:

CorrPearson(p,y) =

∑n
i=1(pi − p̄)(yi − ȳ)√∑n

i=1(pi − p̄)2
√∑n

i=1(yi − ȳ)2
(6)

where p̄ = 1
n

∑n
i=1 pi is the sample mean for p and ȳ is defined analogously. Pearson correlation is

commonly used for evaluating STS tasks.

4.2 Experimental Details

For our final models, we initialized the BERT encoder with provided pre-trained weights and allowed
all model parameters to update during the training process. We performed hyper-parameter search
and use dev set performance to determine best training setting for each downstream tasks as follow.
We used an AdamW optimizer with a learning rate of 5e-5, 1e-5, and 1e-4 and a weight decay of
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0.01, 0.01, and 0.02 for SST, QQP, and SemEval, respectively. A cosine learning rate decay with a
linear warm-up of 1 epochs was used for SST and QQP, and a linear warm-up of 2 epochs was used
for SemEval. Batch sizes of 64, 12, and 48 were used for SST, QQP, and SemEval, respectively. A
smoothness-inducing adversarial regularization weight of 5.0, 1.0, and 1.0 were used for SST, QQP,
and SemEval, respectively.

The teaching staff provided splits for all three datasets into Train, Dev, and Test sets. For SST and
QQP dataset, we trained model for 5 epochs on training set. For SemEval, we trained model for 15
epochson trainint set. We saved the checkpoint which achieved the highest corresponding evaluation
metrics on the corresponding Dev set.

All models were trained using a single NVIDIA RTX4090 GPU. The Dev set and Test set results
for our best downstream task model are shown in Table 1. Our team name for the Dev and Test
Leaderboard is Barely Even Reading Text (BERT).

4.3 Best Model Results

Model SST-5 Accuracy QQP Accuracy SemEval Correlation
Baseline

(Devlin, Munikar) 0.532 0.712 0.858

Ours (Dev Set) 0.557 (+0.025) 0.893(+0.181) 0.900(+0.042)
Ours (Test Set) 0.542 0.893 0.895

Table 1: Best BERT Multitask Dev and Test Accuracy and Correlation

As shown in Table 1 above, all of our best models see improvement upon baseline performance. Our
best sentiment analysis model achieves accuracy scores of 0.557 and 0.542 on the dev and test sets,
respectively. This is a 0.025 improvement compared to the baseline. Our best paraphrase detection
model achieves an accuracy score of 0.893 on both the dev and test sets. This is a 0.181 improvement
compared to the baseline. Our best semantic textual similarity model achieves Pearson correlation
scores of 0.900 and 0.895 on the dev and test sets, respectively. This is a 0.042 improvement compared
to the baseline. We believe that our use of a Cross-Encoder architecture and SMART regularization
vastly improved the performance of our models. As time of writing, our submissions rank number 1
for overall score on both the dev and test leaderboards.

4.4 Pooling Strategy Comparison

Pooling Strategy SST-5 Accuracy QQP Accuracy SemEval Correlation
[CLS] Token 0.526(-0.002) 0.781(-0.009) 0.768(-0.105)
Average Pool 0.528 0.790 0.873

Max Pool 0.511(-0.017) 0.789(-0.001) 0.779(-0.094)
Attention Pool 0.518(-0.010) 0.785(-0.005) 0.863(-0.010)

Table 2: BERT Multitask Dev Accuracy and Correlation with different pooling strategy and Bi-
Encoder Setup

In this experiment, we investigate the effectiveness of different pooling methods. Here, the Bi-
Encoder is used for all sentence pair tasks. The pooling strategy that performs best on all three
tasks is Average Pool, which achieves scores of 0.528, 0.79, and 0.873 on SST, QQP, and SemEval,
respectively. However, the second best pooling method varies between different tasks. [CLS] Token,
Max Pool, and Attention Pool are the second best pooling methods for SST, QQP, and SemEval,
respectively. From this result, we believe that only using the [CLS] Token would likely result in some
information loss. It seems that Average Pool is the most effective way to aggregate the full output
sequence from BERT when we use a Bi-Encoder architecture. And while we devised Attention Pool
as a more generalized version of Average Pool, it was unable outperform the Average Pool on all
three tasks.

4.5 Cross-Encoder vs. Bi-Encoder

In this experiment, we compare the performance between the Cross-Encoder and Bi-Encoder archi-
tectures on the sentence pair tasks. The Cross-Encoder performs vastly better than the Bi-Encoder
across both tasks and with different pooling strategies. The Cross-Encoder represents a 0.111 and
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Architecture Pooling Strategy QQP Accuracy SemEval Correlation
Bi-Encoder [CLS] Token 0.781 0.768

Cross-Encoder [CLS] Token 0.892(+0.111) 0.896(+0.128)
Bi-Encoder Average Pool 0.790 0.873

Cross-Encoder Average Pool 0.892(+0.102) 0.891(+0.018)
Table 3: BERT Multitask Dev Accuracy and Correlation with different encoder archittecture and
pooling stradegy

0.128 increase in scores on QQP and SemEval with the [CLS] Token, and a 0.102 and 0.018 increase
in scores on QQP and SemEval with Average Pool. This performance increase is expected, as the
Cross-Encoder can attend tokens between two sentences and establish a better representation for
sentence pairs. We also seethat the [CLS] Token performs slightly better than the Average Pool
when we use a Cross-Encoder. Because the Cross-Encoder has two different token types and a longer
sequence, averaging over the full output sequence might not be advantageous.

4.6 Effect of SMART

SMART Pooling Strategy SST-5 Accuracy QQP Accuracy SemEval Correlation
No [CLS] Token 0.526 0.892 0.896
Yes [CLS] Token 0.557(+0.021) 0.893(+0.001) 0.900(+0.004)
No Average Pool 0.528 0.892 0.891
Yes Average Pool 0.539(+0.011) 0.893(+0.001) 0.894(+0.003)
Table 4: BERT Multitask Dev Accuracy and Correlation with and without SMART

In this experiment, we examined the effectiveness of SMART. For the sentence pair task, we only
used a Cross-Encoder architecture. We see a large improvement using SMART in the sentiment
analysis task. SST-5 Accuracy improves by 0.021 and 0.011 for [CLS] Token and Average Pool,
respectively. We only see small improvement using SMART in QQP and SemEval. This could be
attributed to a much worse over-fitting effect observed when fine-tuning on SST-5 without SMART.
But we do see SMART help our models to generalize better, and all of our best models use SMART
as part of their objective functions.

5 Analysis

In this project, we explored the effectiveness of pooling strategy, sentence pair encoder architecture,
and SMART. We observed Average Pool strategy bring small gain in performance in our base
implementation with Bi-Encoder setup. Average pooling with BERT’s output sequences allows
us to capture the contextualized information present in each token across all the layers of BERT.
Average pooling involves taking the mean of the output vectors across each token in the input
sequence, resulting in a fixed-length vector that summarizes the contextualized information of the
entire sequence. By doing so, we can create a more robust representation of the input sequence that
is not overly sensitive to individual tokens. We also found average pooling is not so as effective
in Cross-Encoder. Average pooling did not work well with Cross-Encoder setups because Cross-
Encoder models are designed to compare pairs of input sequences and make predictions based on the
relationship between the two sequences. We are effectively average over two different token types,
and may result in loss in information.

For sentence pair task, we found that Cross-Encoder perform vastly better than Bi-Encoder. Cross-
Encoder concatenates both sentences as single sentence and pass to the transformer. This process
enable our model attend to tokens between sentences, which could help model understand the
difference between sentence pairs better. Even though Cross-Encoders achieve better performances
than Bi-Encoders, there are also many scenario where Bi-Encoders are beneficial. Cross-Encoder
only work when there exist pre-defined sentence pair, while Bi-Encoder could operate any individual
sentence. For example, if we want to compare similarity of sentences across whole dataset. It
will be much efficient to use Bi-Encoder to produce a sentence embedding for each sentence and
then compare these embedding using distance metrics like cosine similarity. If we want to use
Cross-Encoder in this example, we will need to create

(
n
2

)
sentence pairs.
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During our training process, we observed overfitting problem where model’s performance on the
training data is significantly better than its performance on the dev data. For SST-5 dataset especially,
we saw dev accuracy goes down as train accuracy continuously increase. This behavior could cause
by high complexity of the our BERT encoder backbone. SMART alleviate this issue by introducing a
smoothness-inducing adversarial regularization term in our objective function. The reguarlization
effect is achieved by injecting a small perturbation to the input and encourage the output of the model
not to change much. Therefore, it create small buffer on each training data point and enforces the
smoothness of the decision boundary. This effectively controls model’s capacity.

6 Conclusion

In this project, we fine-tuned a pre-trained BERT model to simultaneously perform three sentence-
level tasks: sentiment analysis, paraphrase detection, and semantic textual similarity. We explored the
effects of pooling strategy, smoothness-inducing adversarial regularization, and encoding techniques
on the performance of downstream task models. Ultimately, we were able to use these techniques to
develop BERT multi-task models that improved upon the baselines set by Devlin and Munikar by
large margin. While pooling had small or unclear effects on model performance, the use of SMART
significantly increased model accuracy on sentiment analysis, and the use of Cross-Encoder vastly
improves performance on paraphrase detection and semantic textual similarity tasks.
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