
Pals and Gradient Vaccine for NLP Multitask
Learning

Stanford CS224N Default Project

Michela Marchini
Department of Computer Science

Stanford University
marchini@stanford.edu

Kate Callon
Department of Computer Science

Stanford University
kcallon@stanford.edu

Hannah Cussen
Department of Computer Science

Stanford University
hcussen@stanford.edu

Abstract

As opposed to the paradigm of finetuning models for individual tasks, multitask
learning trains many tasks at once, learning features general enough to allow them
to perform well across many tasks. This paper explores multi-task learning in the
natural language processing (NLP) tasks of sentiment analysis, paraphrase detec-
tion, and semantic textual similarity (STS). This work mainly explores two methods
for improving multi-task learning on top of the BERT model: an architecture-based
approach and an optimizer-based approach. The architecture-based approach adds
task-specific projected attention layers (PALs) into the BERT model itself. The
optimizer-based approach, called gradient vaccine, addressed gradient conflicts
between tasks. The combination of these two multi-task approaches is able to
make gains in classification accuracy across tasks. Notably, however, ultimately
the largest impact found on the BERT model comes in the form of the task-specific
classification update of cosine similarity for the STS task, highlighting that opti-
mized task-specific procedures and prediction measures are key as first steps in
developing models for multitask classification.

1 Key Information to include
• Mentor: Shai Limonchik
• External Collaborators (if you have any): N/A
• Sharing project: No

2 Introduction

Multitask learning is a setting within machine learning in which the goal is to simultaneously perform
a number of tasks using a single model. As opposed to the paradigm of finetuning models for
individual tasks, multitask learning trains many tasks at once, learning features general enough to
allow them to perform well across many tasks. This paper specifically explores multitask learning
using the BERT model with the goal of improving performances across sentiment analysis, paraphrase
detection, and semantic textual analysis tasks.

Multitask learning has been utilized in various subfields of machine learning for decades. Caruana
(1997) originally motivated multitask learning with the idea that training over related tasks can
give the model better understanding and performance than if it was trained on a single task. As

Stanford CS224N Natural Language Processing with Deep Learning



computational power has grown and machine learning models reach unprecedented sizes, however,
multitask learning has found a new motivation in that it can present a more efficient approach than
deep learning and deep reinforcement learning models on a single task whose data requirements can
make them difficult to generalize and incredibly inefficient to train many times over many individual
tasks (Yu et al., 2020).

There are a variety of current methods for multitask learning which sit at various points in the model
training process. Of the two models explored in this work, BERT and PALs (Cooper Stickland and
Murray, 2019) suggests an architecture-based approach that adds task-specific layers into the BERT
model itself, while gradient vaccine (Wang et al., 2020) works as a part of the optimization step to
update losses. These two approaches have both proven successful in improving multitask-learning
accuracy; however, they have not been combined. By focusing only on a single element of the
multitask learning problem (either the model itself or the optimization method), these approaches fail
to consider the entire scope of the classification task. This project seeks to combine the two methods
to improve both the BERT model and the training optimization process in an attempt to make gains
in multitask classification through utilizing multitask learning at each step of the model creation and
training process.

3 Related Work

Learning several tasks simultaneously creates a complex optimization problem, which may result
in poorer overall performance than learning tasks independently. Multiple multi-task learning
approaches have addressed this by using independent training as a subroutine before consolidating
the independent models (Rusu et al. (2016), Levine et al. (2015)). This approach produces a bloated
multi-task model which relies on separate training for all tasks and therefore does not fully utilize the
efficiency benefits of multitask training (Rusu et al., 2016). Moreover, independently trained and then
composed models cannot benefit from sharing training among similar tasks. The Levine et al. (2015)
paper found that end-to-end multitask learning produced better results and a different set of feature
identifiers than individual task learning, suggesting that unified models detect more relevant features.
This paper was on robotics, but it stands to reason that the same would hold in the NLP domain.

Previous work on multitask learning in the NLP domain includes Collobert and Weston (2008),
which used a single convolutional neural network to perform part-of-speech labeling, chunking,
named entity recognition, semantic role recognition, word-level semantic similarity, and sentence
likelihood (both grammatical and semantic) evaluation. This work was expanded by pretraining with
the language modeling objective by the same team in 2011 (Collobert et al., 2011). This is only one
route of improvement in multitask learning, however. Different ways to improve multitask learning
include alterations to architecture, training curriculum, and optimizer.

Alterations to the architecture include hard parameter sharing, soft parameter sharing, and adding
additional layers in series or in parallel with the BERT blocks. Hard parameter sharing means that
all tasks use the same embedding parameters, while soft parameter sharing means that all tasks get
their own copies of the parameters that are then finetuned, but the parameters are constrained so that
they do not stray too far between tasks. Cooper Stickland and Murray (2019) utilizes hard parameter
sharing, since soft parameter sharing vastly increases computation and storage space requirements.
Additional layers may also be chained to the BERT model on either end (adding them in series) or
inserted within the BERT blocks (in parallel).

Training curriculum refers to the order in which tasks are served to the model for training. McCann
et al. (2018) defines round-robin training as batches being selected from all tasks in a fixed order.
Alternates to round-robin training include interleaved training, where one full epoch of training
occurs of each task before proceeding to the next task, or sequential training, in which one task is
fully trained before proceeding to the next task. However, sequential training can lead to catastrophic
forgetting (McCloskey and Cohen, 1989). Modified round-robin training, also known as annealed
sampling, is also sometimes used (Cooper Stickland and Murray, 2019).

Lastly, the optimizer may be tweaked. A more stable version of standard stochastic gradient descent,
the most commonly used optimizer is Adam (Kingma and Ba, 2014). However, as a descendent of
gradient descent, Adam is still prone to thrashing and conflicting gradients. Yu et al. (2020) posit that
conflicting gradients between tasks is a major source of inefficiencies in multitask learning. They
introduce PCGrad, which performs "gradient surgery" to eliminate gradient conflicts. Though the

2



paper was eventually accepted to NeurIPS 2020, an ICLR reviewer rejected the paper out of concern
with the underlying assumption that gradient conflicts are prevalent and problematic for multitask
learning. The PCGrad work builds off of Chen et al. (2017) and Sener and Koltun (2018), which
present different mathematical approaches to de-conflict gradients. The gradient surgery approach,
in particular PCGrad, has seen some success in applications such as in Bi et al. (2022). Wang
et al. (2020) presents gradient vaccine, a technique that claims to improve upon gradient surgery by
proactively boosting gradients.

4 Approach

This work implements and combines two methods of multi-task learning. On the model level, we
implement PALs layers as introduced in Cooper Stickland and Murray (2019) and on the optimization
level, we implement Gradient Vaccine as proposed in Wang et al. (2020). Our PAL implementation
references and is based upon the code presented in Cooper Stickland and Murray (2019), but
ultimately the implementation is our own.

Figure 1: The PALs architecture adds a PAL and an
Add-Norm to the base BERT block which allowing
each layer to utilize task-specific parameters in its
calculation of hidden states.

PALs are Projected Attention Layers which are
added in parallel to normal BERT layers inside
the BERT model. PALs are task-specific and
take the form

PAL(h) = V DMH(V Eh)

where MH(·) is a low-dimensional multi-headed
attention and V D and V E are encoder and de-
coder matrices shared across layers. As such,
the added complexity is limited as the number
of encoder and decoder matrices added is equal
to the number of tasks. The implementation
presented here creates in total 3 encoder and
3 decoder matrices which are stored in PALs
layers associated with their respective tasks and
shared across all 12 BERT layers. Each BERT
layer now has a list containing one PAL for each
task, allowing it to choose the specific PAL to
use depending on the task at hand. A compari-
son between the BERT and BERT and PALs block architecture can be seen in Figure 1. With the PAL
added, each BERT and PAL block now has the following components: a multi-head self attention
layer, an add-norm that takes the input and output of the multi-head attention layer, a feed forward
layer, a PAL, and an add-norm that takes the output of the feed forward layer and the sum of the
output of the PAL and the input to the feed forward layer.

Gradient vaccine is a modification to an optimization technique known as gradient surgery as proposed
in Yu et al. (2020). The general intuition behind gradient surgery is to resolve a phenomenon known
as "conflicting gradients". Conflicting gradients occur when gradients from different tasks have
negative cosine similarity during training. Especially in areas of high curvature in the optimization
landscape and when the magnitude of the gradients differ significantly, these conflicting gradients
prevent optimal multitask learning by heavily biasing the multitask gradient towards one task and
degrading the performance of another task. In order to prevent conflicting gradients, the gradient
surgery paper proposes a new algorithm known as PCGrad, which projects one of the conflicting
task’s gradient onto the normal plane of another task’s gradient. This method has led to observed
improvement is multitask learning objectives.

However, the PCGrad algorithm makes a very large assumption: any two tasks should have a gradient
cosine similarity of zero after projection. Furthermore, it only modifies gradients with negative cosine
similarity, and does not modify task gradients with detrimentally low positive cosine similarities.
Thus, a new algorithm known as GradVac is proposed in Wang et al. (2020) to address this flaw.
Instead of updating the gradient by projecting one task’s gradient to the normal plane of another,
gradient vaccine alters the gradient such that it matches a certain gradient cosine similarity that
seems "reasonable" for two tasks. Therefore GradVec now allows for alterations of gradients for both

3



negative cosine similarity and detrimentally low positive cosine similarity values between two tasks,
ensuring that optimization progress is being made. Our implementation was rewritten based off of
the Pytorch PCGrad respository Tseng (2020) and a forked repository which added gradient vaccine
to the implementation Nzeyimana (2022). However, key differences in our implementation include
removing the "retain graph" command for the backward call for all losses, setting zero gradients
to "None" for any modified gradients, defining gradient vaccine as a function within the optimizer
instead of a separate class, and rewriting the implementation to handle three tasks. A comparison
between the PCGrad algorithm and the GradVac algorithm are pictured in Figure 2

Figure 2: The PCGrad Algorithm in Comparison to the GradVac Algorithm.
Though the model and training architecture is consistent across the three tasks, there are necessarily
slight differences in the classification functionality as a whole as the tasks differ in input and output.
For sentiment analysis, a dropout layer (p=0.3) is applied to the pooler output of the BERT model
which is followed by a linear layer to output 5 logits, one for each sentiment class. For paraphrase
detection, a single combined output is generated by concatenating the two pooler outputs of both input
sentences. A dropout layer is then applied to the concatenated output and it is passed through a linear
layer to output 2 logits. For both of the above tasks, the largest logit corresponds to the prediction
label for that input, which is compared with the true label of the input to determine the cross entropy
loss. The classification functionality for these two tasks is consistent across all experiments. For
semantic similarity, however, the classification methodology used in the baseline and naive multitask
yielded results far below the baselines of the other two tasks. As such, this functionality was updated
using semantic similarity-specific updates. In the initial methodology the two pooler outputs were
again concatenated and a dropout layer was applied. It was then passed through a linear layer to
output 1 logit which was passed through a sigmoid layer and multiplied by 5 to normalize the it and
keep it within the range 0-5. MSE loss was then used to calculate the loss between this output and the
true ranking. The improved methodology, however, makes use of cosine similarity to vastly improve
accuracy on the semantic textual similarity task. The cosine similarity implementation of the classifier
calculates the cosine similarity between the two pooler output embeddings resulting in an output in
the range [-1, 1]. As the desired output is in the range [0, 5], the output of the cosine similarity is
run through a RELU layer and multiplied by 5 to scale it appropriately. MSE loss is again used to
calculate the loss between this output and the true semantic textual similarity score. In addition to
cosine similarity, multiple negatives ranking loss and triplet loss were also implemented in an attempt
to improve semantic similarity. Multiple negatives ranking loss attempts to minimize the distance
between positive sentence pairs while maximizing the distance between dissimilar sentence pairs.
For this extension, a specialized dataloader was written to retrieve batches containing one data point
with a sentence pair with a similarity label greater than 3 and the rest containing pairs with similarity
labels less than 3. The prediction of the positive sentence pair and negative sentence pair logits were
then calculated using the predict similarity function, and these predictions were used to calculate
multiple negatives ranking loss with the following formula: p − log(en), where p represents the
positive sentence pair prediction and n represents the sum of the negative sentence pair predictions.

Triplet loss is similar to multiple negatives ranking loss, but is specific to sentence embeddings.
It utilizes three sentence embeddings known as anchor, positive and negative. The anchor and
positive embeddings are similar to each other, whereas the negative embedding is dissimilar to the
anchor embedding. Similar to multiple negatives ranking loss, it attempts to minimize the distance
between the anchor and positive embedding and maximize distance between the anchor and negative

4



embedding. This implementation retrieves a sentence pair and uses one sentence embedding as the
anchor and the other as the positive sample. It then retrieves another random sentence and uses the
first sentence as the negative example. The loss is calculated by subtracting the negative embedding
by the positive, and weighting the loss by the anchor and positive label, as the less similar they are
the less the loss obtained should be weighted.

5 Experiments

5.1 Data

To perform multitask learning, we trained on three NLP tasks: sentiment analysis, paraphrase
detection, and semantic textual similarity (STS). The datasets used for sentiment analysis are the
SST dataset (train: 8,544 examples, dev: 1,101 examples, and test: 2,210 examples)Socher et al.
(2013) and the CFIMDB dataset (train: 1701 examples, dev: 245 examples, test: 488 examples) Chen
and Manning (2014). For paraphrase detection, the Quora Question Pairs dataset is used to identify
duplicate questions (train: 141,506 examples, dev: 20,215 examples, and test: 40,431 examples)
DataCanary (2017). Finally, the SemEval dataset is used for STS (train: 6,041 examples, dev: 864
examples, and test: 1,726 examples). May (2021).

5.2 Evaluation method

We evaluate the sentiment analysis and paraphrase detection tasks based on their accuracy. Since
sentiment analysis is a multiclass classification problem, subset accuracy is used. Since STS is a
regression task, the pearson correlation metric serves as the accuracy metric. All 3 datasets compare
the model’s predicted labels to their ground truth labels from the dataset.

5.3 Experimental details

All experiments were run on a Deep Learning AMI GPU PyTorch 1.12.0 image, running Ubuntu
20.04 on an AWS EC2 instance. With the exception of the baseline, all experiments were run with
the finetune option, meaning that the BERT embedding weights are not frozen. All experiments other
than the baseline used fixed-order round robin sampling. Our learning rate is 1e−5, batch size is 8,
number of epochs is 10 and in each epoch we run 18000 batches, as this means the model will see
each data point in each of the tasks at least once for each epoch. The PALs configuration added a
PAL into every BERT layer, so there were 12 total PALs. The PAL size was 204 as suggested in
Cooper Stickland and Murray (2019), so PALs are about 3.7 times smaller than the hidden size of
768. Finally, our training time for the naive multitask model was about 47 minutes per epoch, but
including all of our computations brought the combined model run time up to around 2 hours.

To compare the various improvements made, we created a naive baseline for each task. For each task,
a single trainable layer that post-processed BERT sentence embeddings was added. These layers
were trained using the parameters from above, with the exception that the BERT parameters were
frozen. These layers were trained using sequential sampling (since the shared parameters were frozen,
the level of interleaving of the training curriculum did not matter).

Then, the following experiments were run:

1. Replace sequential training with round robin training (we call this naive-multitask)
2. Replace concatenated linear layer baseline with cosine similarity (on STS only)
3. Negative Sampling (STS only)
4. Multiple Negatives Ranking Loss (stopped early)
5. Triplet Loss (stopped early)
6. Replace standard BERT block with PALs
7. Replace Adam optimizer with Gradient Vaccine Optimizer
8. Combine all promising improvements (PALs, Gradient Vaccine, cosine similarity)

5



5.4 Results

Dev Results

SST Paraphrase STS Overall
Baseline (separate) 0.516 0.783 0.361 0.553
Naive Multitask Model 0.498 0.765 0.364 0.542
Gradient Vaccine Multitask Model 0.494 0.771 0.367 0.544
Pals Multitask Model 0.501 0.773 0.363 0.546
Cosine Similarity Model 0.492 0.769 0.757 0.673
Combined Final Model 0.499 0.787 0.727 0.671

Table 1: Results for each experiment as evaluated on the dev set. Maximum performance is italicized.
Test Results

SST Paraphrase STS Overall
Cosine Similarity Model 0.505 0.501 0.773 0.579
Combined Final Model 0.512 0.500 0.703 0.572

Table 2: Results of selected models on the test set.
Since they were significant implementations, it was disappointing to discover that both pals and
gradient vaccine had little improvement on our accuracies and correlation. However, the improvement
of cosine similarity for the STS dataset led to a more significant improvement than expected. Since
the cosine similarity model and the combined model showed the greatest overall accuracies, we chose
to obtain test results for both. Given the results of the models on the dev leaderboard, the accuracy
for the SST dataset and the correlation for the STS dataset was not unexpected, but the accuracy for
paraphrase detection was significantly worse for both models. Further analysis of these results in
context of our approach can be found in the analysis section.

6 Analysis

Figure 3: The combined and cosine similarity mod-
els vastly outperform all others.

As can be seen above, the multitask model that
achieved the highest accuracy overall was the
combined model which made use of PALs added
inside the BERT model, gradient vaccine for
loss optimization, and cosine similarity as a met-
ric for semantic textual similarity. That this
model performed best out of all the multi-task
approaches is unsurprising as it combined mul-
titask learning improvements on multiple levels,
specifically in the model architecture and the
optimization task. It also used a task-cognizant
approach which aimed to find the best classifica-
tion metric for each task and motivated the use
of cosine similarity for the STS task.

Another clear pattern within the results is that on
the dev set the paraphrase task consistently out-
performs the other two tasks. A reason for this
likely has to do with the fact that the paraphrase
dataset is significantly larger than the dataset for
the other two tasks. For the baseline models which were trained separately, the fact that paraphrase
had more data to train on makes a lot of sense for why it would perform better, however it is also
likely relevant in the disparity of performance in our multitask models. Though our multitask model
employed round robin sampling in order to ensure it saw an equal amount of data from each task,
the Quora dataset for paraphrase detection was over double in size compared to the other two tasks.
When the STS and SST datasets ran out of data, we started the round robin sampling again over the
dataset meaning that though the model saw an equal amount of data from each task, for STS and SST
that data was not always unique. This fact provides a potential explanation as to why paraphrase
detection consistently achieved the highest accuracy. This also explains why there is such a stark
drop in accuracy for the paraphrapse detection task from the dev results to the test results.

6



6.1 PALS

That PALs did not vastly improve the accuracy is not entirely surprising. In the original Cooper Stick-
land and Murray (2019) paper, adding PALs represented a gain of only 1.7 points in accuracy. The
promising, interesting feature of PALs, however, is that they can maintain multitask performance
with lower training time and fewer parameters. This is borne out: the training time for PALS was
almost 50% shorter per epoch than the combined model. A reason why PALs may not improve
much over the naive multitask model is that while the BERT layers are pretrained, the PALs are
not, which may make it difficult for the approach to make significant gains over the fully pretrained
and fine-tuned model. Regardless, the fact that improvements, however small, were made in this
parameter constrained environment is notable.

6.2 Loss

Figure 4: Loss through training epochs of selected
models.

As seen in Figure 4, loss usually decreases until
Epoch 4 or 5, then plateaus. The model only
saves when accuracy on the dev set improves,
and these saves usually occurred at epoch 4 or 5
and sometimes would not occur again even after
the full 10 epochs of training had passed. For
this reason, stopping training prematurely was
determined to be acceptable, so long as epoch 4
had already completed. We believe that overfit-
ting may happen between epochs 5 and 9. No-
tably, this is not the case for the combined model,
which improved at epoch 9 as can be seen in 3.
This implies that the combination of the added
extensions may make the model less likely to
overfit to the data.

6.3 Gradient Vaccine

(a) The number of times a conflicting gradient is sensed
and fixed by gradient vaccine goes down every epoch.
It is insignificant when compared to the total number of
gradient computations done.

(b) The majority of task conflicts in the first
epoch occurred between the STS and Para-
phrase Detection tasks.

Figure 5: Gradient Vaccine statistics

Gradient vaccine did not have a large impact on the accuracy. This points to an concern with the
assumption that underpins these gradient-altering techniques for multitask learning: the assumption
that gradients between tasks do conflict, and that this causes detrimentally low cosine similarity
objectives which degrade overall performance. Our data does not support this assumption: after
adding a metric to keep track of the number of gradient fixes, gradient vaccine only altered 2000
out of a possible 54,000 gradient update steps in the first epoch, and altered less than 0.5 percent
of the gradients for the remaining epochs. (Figure 5a). From this, we can conclude that the tasks
overwhelmingly do not cause conflicting updates, so gradient-editing techniques are not very useful.
As stated in Wang et al. (2020), not only do gradient similarities reflect language proximity, but

7



there is also a correlation between gradient similarities and model quality. This causes us to draw
the tentative conclusion that these tasks may be too similar to have gradient conflicts. Logically, this
makes sense. If sentences are semantically similar, they are also likely paraphrases of one another.
Since these two tasks are similar, their gradients likely rarely conflict, as they will likely concur
on shared parameter updates. However, in analysis of the gradient changes that were made, the
paraphrase and similarity tasks had the greatest gradient updates between them, as pictured in Figure
5b. Since gradient vaccine targets task gradients which have less than their "similarity goal", it
makes sense that gradient vaccine would largely target the paraphrase and similarity task gradients
since these tasks should have the greatest "similarity goal". Ultimately, however, this concentration
on certain tasks is not important given the sparse amount of gradient updates total. In terms of
future work, the hyperparamter β used to support calculations for an exponential moving average of
the cosine similarity goal between tasks could be manipulated to see if this would result in greater
gradient updates.

6.4 STS Improvement

The modification with the greatest gain in accuracy with comparison to both the separate and multitask
baselines, was replacing the baseline linear layer for STS prediction with a cosine similarity metric.
The baseline concatenated the two BERT embeddings of the input sentences, then did a single
feed-forward layer to output a single regression prediction. Concatenating the pooler outputs of the
two input sentences introduces no inherent metric of comparison between the two. If we conceive
of the pooler outputs in semantic embedding space, which is a reasonable conception given the
embedding task, it stands to reason that semantically similar sentence vectors should exist close to
one another directionally, which is the metric that cosine similarity measures. As such, calculating
and optimizing the loss over the cosine similarity of the inputs will allow the model to better learn
semantic textual similarity than optimizing over a low-rank representation of the concatenation of the
two inputs. That this extension only significantly impacted STS scores makes sense as it only touches
the prediction step for the STS task, so we would not expect it to have huge cross-task impacts.

Additionally, as stated in the approach, while implementations for multiple negative ranking loss and
triplet loss were written, ultimately they were not included in our final model due to poor results.
After conducting short experiments with our STS baseline, multiple negatives ranking loss achieved
a dev accuracy of 0.008 and triplet loss achieved a dev accuracy of 0.116 compared to the baseline
of 0.341 after 1 epoch. Further runs of both losses only resulted in degradation to this accuracy.
Since STS has a continuous range of labels instead of a two (a positive and a negative), both losses
arbitrarily defined the threshold for a positive label to be three or greater. However, this lack of
distinct positive and negative labels could be a large reason for the lack of effectiveness for both
losses in improving STS. Future work may include altering the positive threshold or applying these
losses to the paraphrase detection task instead, since it only has two potential labels.

7 Conclusion

This work explored the effects of alterations to architecture, loss, training curriculum, and optimizer
for multitask learning. Ultimately, multiple negatives ranking loss and triplet loss were not fruitful
avenues to pursue improvements on the tasks of sentiment analysis, paraphrase detection, and STS.
The most significant explorations were into adding cosine similarity, gradient vaccine, and PALs.

Cosine similarity was the single most impactful addition made, and it only effected the STS task.
From this, the conclusion can be drawn that making sure the architecture reflects the structure of the
task is a more significant contributor than adding additional layers, tweaking the loss, or tweaking
the optimizer. The other significant conclusion of this work is that, for at least the three tasks we
explored, gradient conflicts are not a large source of inefficiencies in multi-task learning. Therefore,
the additional computational complexity added by techniques like gradient surgery and gradient
vaccine are likely not worthwhile for these tasks. Further work in Gradient Vaccine would be to
compare metrics of task similarity with the observed number of task-task conflicts.

Though this work does not show PALs as being particularly instrumental in improving performance
it was shown to maintain accuracy, which was notable. Further work in PALs could involve a more
complete experimental exploration of the tradeoff between number of parameters and performance.

8



References
Qiwei Bi, Jian Li, Lifeng Shang, Xin Jiang, Qun Liu, and Hanfang Yang. 2022. MTRec: Multi-task

learning over BERT for news recommendation. In Findings of the Association for Computa-
tional Linguistics: ACL 2022, pages 2663–2669, Dublin, Ireland. Association for Computational
Linguistics.

Rich Caruana. 1997. Multitask learning. Machine Learning, 28:41 – 75.

Danqi Chen and Christopher Manning. 2014. A fast and accurate dependency parser using neural
networks. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 740–750, Doha, Qatar. Association for Computational Linguistics.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. 2017. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. CoRR, abs/1711.02257.

Ronan Collobert and Jason Weston. 2008. A unified architecture for natural language processing:
Deep neural networks with multitask learning. In Proceedings of the 25th International Conference
on Machine Learning, ICML ’08, page 160–167, New York, NY, USA. Association for Computing
Machinery.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel P.
Kuksa. 2011. Natural language processing (almost) from scratch. CoRR, abs/1103.0398.

Asa Cooper Stickland and Iain Murray. 2019. Bert and pals: Projected attention layers for efficient
adaptation in multi-task learning. In International Conference on Machine Learning.

DataCanary. 2017. Quora question pairs.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. 2015. End-to-end training of deep
visuomotor policies. CoRR, abs/1504.00702.

Philip May. 2021. Machine translated multilingual sts benchmark dataset.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. 2018. The natural
language decathlon: Multitask learning as question answering. CoRR, abs/1806.08730.

Michael McCloskey and Neal J. Cohen. 1989. Catastrophic interference in connectionist networks:
The sequential learning problem. volume 24 of Psychology of Learning and Motivation, pages
109–165. Academic Press.

Antoine Nzeyimana. 2022. Pytorch-pcgrad-gradvac-amp-gradaccum/antoine nzeyimana.

Andrei A. Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Kirk-
patrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. 2016. Policy
distillation.

Ozan Sener and Vladlen Koltun. 2018. Multi-task learning as multi-objective optimization. In
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1631–1642, Seattle, Washington, USA. Association for Computational Linguistics.

Wei-Cheng Tseng. 2020. Weichengtseng/pytorch-pcgrad.

Zirui Wang, Yulia Tsvetkov, Orhan Firat, and Yuan Cao. 2020. Gradient vaccine: Investigating and
improving multi-task optimization in massively multilingual models. CoRR, abs/2010.05874.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
2020. Gradient Surgery for Multi-Task Learning.

9

https://doi.org/10.18653/v1/2022.findings-acl.209
https://doi.org/10.18653/v1/2022.findings-acl.209
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
http://arxiv.org/abs/1711.02257
http://arxiv.org/abs/1711.02257
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1145/1390156.1390177
http://arxiv.org/abs/1103.0398
https://kaggle.com/competitions/quora-question-pairs
https://doi.org/10.48550/ARXIV.1412.6980
http://arxiv.org/abs/1504.00702
http://arxiv.org/abs/1504.00702
https://github.com/PhilipMay/stsb-multi-mt
http://arxiv.org/abs/1806.08730
http://arxiv.org/abs/1806.08730
https://doi.org/https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/https://doi.org/10.1016/S0079-7421(08)60536-8
https://github.com/anzeyimana/Pytorch-PCGrad-GradVac-AMP-GradAccum
http://arxiv.org/abs/1511.06295
http://arxiv.org/abs/1511.06295
https://proceedings.neurips.cc/paper/2018/file/432aca3a1e345e339f35a30c8f65edce-Paper.pdf
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://github.com/WeiChengTseng/Pytorch-PCGrad.git
http://arxiv.org/abs/2010.05874
http://arxiv.org/abs/2010.05874

	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	PALS
	Loss
	Gradient Vaccine
	STS Improvement

	Conclusion

