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Abstract

Parameter averaging has shown promising results as a method of transferring
learned capabilities in models in a non-learning setting. In this project, we attempt
to explore the use of parameter averaging across models with a shared structure as
a means to increase model performance. Specifically, we attempt to independently
finetune BERT across three tasks — sentiment classification, paraphrase detec-
tion, and semantic equivalence detection — and use Fisher-weighted parameter
averaging as introduced by Matena and Raffel (2021) to create a final model that
performs well across all three tasks. We implement the same experiment with the
parameter averaging method of model soups proposed by Wortsman et al. (2022) to
benchmark the usefulness of Fisher-weighted averaging. Furthermore, to evaluate
the uniqueness of parameter averaging as a whole, we also implement multitask
learning in a gradient-based setting with round-robin style training and gradient
surgery Yu et al. (2020) to serve as baselines of other performance-focused frame-
works. We evaluate the performance of each method through three uncorrelated
measurements and provide in-depth analysis of the performance of each method
through ablation studies. We find that parameter averaging through Greedy soups
yields the most optimal model in terms of average task performance, matching
98.9% of the performance of the best single-task models. In contrast, our experi-
ments show that parameter averaging through Fisher-weighted averaging fails to
increase performance in a multitask setting over its best candidate model.

1 Key Information to include
• Mentor: Gabriel Poesia

2 Introduction

The modern paradigm of NLP has become one of learning through distinct phases of pre-training
and fine-tuning. Large, resource-rich institutions push out increasingly larger models pre-trained on
increasingly larger datasets that are then fine-tuned on smaller subsets of data for domain specific
tasks by smaller groups or individuals. The sheer size of these models make pre-training them
unfeasible on an individual basis. Furthermore, this paradigm raises some natural questions. How can
we train one model to do well across multiple tasks? In other settings, how can we derive joint-task
performance from multiple fine-tuned models?
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Matena and Raffel (2021) attempts to explore alternatives from gradient-based fine-tuned learning in
the context of transfer learning through parameter merging. When merging multiple candidate models,
they use a candidate model’s Fisher information matrix to scale how much weight its parameters get
in the resulting end model. Their findings show promising results for Fisher-weighted averaging, but
they note that their results are preliminary. Additionally, they only explore Fisher-weighted averaging
in the context of multiple models trained on intermediate tasks; we want to explore Fisher averaging
in the context of multiple multitask models.

In this work, we investigate parameter averaging through Fisher-weighted averaging and model
soups in the context of model multitask learning. We first train multiple models across the tasks of
sentiment classification, paraphrase detection, and semantic textual similarity. We then explore the
use of parameter averaging for increasing model performance with unseen data across all three tasks.

3 Related Work

Wortsman et al. (2022)’s methodology of "model soups" demonstrated the use of parameter averaging
to increase model performance. They found that averaging the weights of multiple fine-tuned
models with different hyperparameter configurations can increase model accuracy and robustness.
Specifically, they found success with "greedy soups", where models were merged by iteratively
including candidate models that improve accuracy on held-on out data. "Greedy soups" showed
performance benefits in both accuracy and robustness to distribution shifts when compared to picking
the individual model with the highest accuracy.

As opposed to "greedy soups", Matena and Raffel (2021) proposed Fisher-weighted averaging, a
novel methodology for parameter averaging that weights candidate models’ parameters according to
their Fisher information matrix. The Fisher information matrix, formally defined as the covariance
matrix of a model’s score function, can be interpreted as the sensitivity of a model’s likelihood
function with respect to each of its parameters. Matena et al. interprets the Fisher information matrix
as the Laplace approximation of the model’s posterior distribution. Thus, Fisher-based merging can
be viewed as maximizing the resulting model’s posterior distribution with respect to the candidate
models. Matena et al. found that Fisher-weighted averaging outperformed gradient-based learning in
four out of the seven benchmarks they tested.

Matena and Raffel (2021) uses Fisher-weighted averaging to merge models trained on intermediate
tasks and Wortsman et al. (2022) uses greedy soups to merge models trained with different hyper-
parameter configurations. Both works demonstrate promising results for parameter averaging as a
method to increase model performance and robustness to out of distribution data for a particular task.
We extend on their findings by evaluating parameter averaging in a multitask setting.

4 Approach

To evaluate parameter averaging in a multitask setting, we train and evaluate a pretrained BERT model
on the tasks of sentiment classification, paraphrase detection, and semantic textual similarity (Devlin
et al., 2018). We use HuggingFace’s BERT base model uncased with a task-specific head for each task
as outlined in figure 1. The sentiment classification head takes in BERT’s sentence embedding and
applies a linear layer and softmax to generate predicted probabilities for each sentiment class. The
paraphrase detection head takes in two BERT sentence embeddings and applies mean-pooling and a
multilayered perceptron (MLP) to predict if one of the sentences is a paraphrase of the other. The
semantic textual similarity head takes in two BERT sentence embeddings and applies mean-pooling,
a linear layer, and cosine similarity to identify the semantic similarity of the two sentences.

4.1 Baselines

We utilize 4 baselines to contextualize our experimental findings. First, we finetune 3 BERT base
models independently across all three tasks to create three model baselines, each one finetuned on
one task. We evaluate each model on the task it was trained on to provide a single-task baseline for
each task. For our last baseline, we train one BERT base model round-robin style where the model
trains on each task sequentially within one epoch.
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Figure 1: Task-Specific Output Heads

4.2 Gradient Surgery

In addition to round-robin style training, we implement gradient surgery from Yu et al. (2020) to
help evaluate the uniqueness of parameter averaging. Before applying gradient updates, we compute
the loss for a batch of training examples from each task and then backpropagate to construct the
model’s computation graph for each task. However, before applying gradient updates, we project
each task’s gradient onto every other task’s gradients on a per-parameter basis, and subtract any
conflicting projections to align the direction of all gradient updates.

On top of the architecture proposed by Yu et al. (2020), we add a hand-tuned weighting parameter to
individually weight the contribution of each task’s gradient in the final gradient computation.

4.3 Model Soups

We implement "greedy soups"-based parameter averaging from Wortsman et al. (2022) as one method
of parameter averaging across already trained models. In line with their "greedy soups" algorithm,
we sort candidate models in decreasing order of their average accuracy on the validation splits of our
three tasks and iterate through each model, only adding adding a candidate model to our "soup" if its
addition increases the resulting model’s average accuracy. To compute the resulting model from our
included candidate models, we compute the mean of all included candidate models’ parameters.

Figure 2: Greedy soups pseudocode

4.4 Fisher-Weighted Averaging

As opposed to model soups, we implement Fisher-weighted averaging as proposed in as proposed in
Matena and Raffel (2021). As opposed to model soups which computes the resulting model based
off an unweighted average, Fisher-weighted averaging computes a weighted average of candidate
models based off an approximation of the candidate models’ Fisher information matrices. Storing the
true Fisher information matrix requires O(|θ|2) space complexity (where θ represents the model’s
parameters), so we approximate it by only calculating the diagonals of the Fisher information matrix
as:

F̂θ =
1

N

N∑
i=1

Ey∼p(y|xi;θ)[(∇θ log p(y|xi))
2] (1)
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Figure 3: Fisher-merging pseudocode

To maximize the resulting model’s posterior distribution with respect to the candidate models, we
compute θ∗ = argmaxθ

∑M
i=1 λi log p(θ|θi, F |i), which has the closed form solution:

θ∗(j) =

∑M
i = 1λiF

(j)
i θ

(j)
i∑M

i = 1λiF
(j)
i

(2)

where λi is a hyperparameter that is hand-tuned to weigh model-importance during merging such that∑
i λi = 1. An intuitive way to think of Fisher-Weighted averaging is that Fisher-weighting gives the

output’s ’dependence’ on each parameter.

In order to compute equation 1 in the context of semantic similarity, we attempted to quantize the
output of our model’s STS head into discrete outputs. Our initial experiments showed that this led
to a steep performance decline, and therefore, we extend the original paper by instead estimating
the posterior distribution of STS with a Gaussian Kernel with a mean of the regression output and
sampling a few points to bootstrap the Fisher information matrix.

5 Experiments

We design our experiments with three research questions in mind:

RQ 1: Can we match single-task training performance in a multitask setting?
RQ 2: Can parameter averaging increase performance in a multitask setting?
RQ 3: Can Fisher-weighted averaging increase performance over other parameter averaging methods
in a multitask setting?

We discuss each research question throughout our experimental results and analysis and directly
answer them in our conclusion.

5.1 Data

We will be using the SemEval STS Benchmark Dataset (STS) for the task of semantic equivalence,
the Quora Dataset for Paraphrase Detection (QDPD) for the task of paraphrase detection, and the
Stanford Sentiment Treebank (SST) for the task of sentiment classifcation. Additionally, for certain
experiments, we use the Stanford Natural Language Inference (SNLI) corpus for further pretraining.

5.2 Evaluation method

We will evaluate model performance on SST and QDPD using accuracy on each dataset. For the
STS dataset, we calculate the Pearson correlation of predicted similarity to true similarity instead of
accuracy. As a measure of robustness across tasks, we will compute performance for every model
across all validation sets of SST, QDPD, and STS to quantify performance in a multitask setting.
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5.3 Experimental details

Unless otherwise stated, all experiments are ran over the course of 10 epochs with a learning rate
of 1e−5 and a dropout rate of 0.3. All experiments ran were "fine-tuning" experiments in that we
updated the parameters of our pretrained BERT model at training time. The MLP in the paraphrase
detection head has a hidden layer size of 256; all other heads have a hidden layer size of 128. Finally,
all experiments utilize weight decay with λ = 0.1.

The specific training details vary across experimental runs; we experiment with round-robin style
training and joint multitask learning with gradient surgery as outlined in sections 4.1 and 4.2. When
merging models with model soups and Fisher-weighted averaging, we follow the procedures as
outlined in 4.3 and 4.4, respectively.

When running experiments with gradient-surgery, we experiment with different weightings on each
task’s gradients.

For specific experimental runs, we experiment with intermediary task training our model on the SNLI
dataset before training on SST, QDPD, and STS. When training on the SNLI dataset, we train our
model on sentence classification for 20 epochs with the same hyperparameters as above.

In other runs, we implement SMART regularization with Kullback-Leibler divergence as outlined in
Jiang et al. (2020) to explore the impact of input-based regularization in a multitask setting.

5.4 Results

Table 1: Results for experiments evaluated on the dev splits of task datasets.
Experiment SST QDPD STS Avg
Single-task training on SST 0.491 N/A
Single-task training on QDPD 0.764 N/A
Single-task training on STS 0.801 N/A
Round-robin multitask training 0.439 0.736 0.620 0.598
Gradient-Surgery multitask training 0.473 0.727 0.796 0.665
Gradient-Surgery w/ SMART 0.478 0.748 0.790 0.672
Gradient-Surgery w/ SNLI intermediary training 0.476 0.761 0.790 0.676
Greedy soups Merging* 0.480 0.758 0.795 0.678
Fisher-weighted Merging* 0.478 0.753 0.778 0.670

*Note: The Greedy soups and Fisher-weighted averaging trials were conducted by merging the three
Pareto-optimal multitask models for each task (the three Gradient-surgery models listed above). More
explanation is given in the analysis in section 6.

5.4.1 Single-Task Results

In order to find an optimal baseline results for each task, we trained models with various hyperparam-
eters. For SST, we found that changes in the prediction head architecture had little effect on model
performance. As such, we stuck to one linear layer with softmax to achieve our best result.

When training paraphrase detection, we experimented with multiple depth-configurations but found
that prediction head depth had little impact on the results. We experimented using cosine similarity
between sentence embeddings for paraphrase detection, but found that using an MLP yielded the best
results.

For STS, we implemented the Siamese BERT architecture from Reimers and Gurevych (2019), and
used cosine similarity to determine the similarity of sentences. After analyzing our model’s output,
we deduced that our model struggles to produce embedding pairs that have high cosine similarity,
despite the sentences having high similarity indexes (4.0-5.0). We hence apply a clamp function on
top of our cosine similarity to make the conditions for similarity more lenient. We find that adding
clamping resulted in a 6% boost in performance. We provide in section 6.2 a comparison of the
model accuracy on STS when applying various non-linear activations, ReLU, clamp(0, 0.9), and
clamp(0, 0.8), after Cosine Similarity.
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We note that none of the multitask models were able to outperform the best single-task training
benchmarks. However, the average performance across the best single-task models is 0.685, indicating
that our best multitask model (Greedy soups merging) matches 98.9% performance of its single-task
counterparts.

5.4.2 Multitask Results

All of our multitask methods out-perform the round-robin baseline. For the standard Gradient-Surgery
without SMART regularization or SNLI intermediary task training, we weight the gradients of SST,
QDPD, and STS as [0.5, 1, 1], respectively. During experimentation, we found that the gradients of
SST can be quite dominating, especially with respect to the gradients of STS, so proportionately
muting SST-related gradients benefited average task performance. In turn, our gradient-surgery model
had the best multitask performance on STS dev set Pearson correlation.

Implementing SMART regularization led to incremental benefits in SST and QDPD accuracy over
standard gradient surgery. Input-based regularization makes sense in a multitask setting, as the
distribution of inputs that the shared-BERT model will encounter will naturally be wider than in a
single task setting. As such, SMART regularization increased average task performance by 1%.

Adding intermediary task training on SNLI led to increased performance on QDPD by approximately
5%. Reimers and Gurevych (2019) saw a 1-2% performance boost on semantic textual similarity
prediction when first training on SNLI before STS with their S-BERT architecture. Our results show
a slight decrease in STS performance, but we believe this is a natural byproduct of the increase in
performance on QDPD.

Greedy soups merging saw the best SST accuracy and best average task performance out of all
multitask models. Greedy soups was able to find a point in the error-basin of candidate models that
was lower than any individual model, further supporting its merits in finding unique minima over
gradient-based learning even in a multitask setting.

Fisher-weighted averaging did not see exceptional performance in any metric. We do note that it
does out-perform standard Gradient-Surgery by 1%, but it does not out perform its candidate models.
We also experimented with Fisher-weighted merging across the three single-task baselines which
yielded poor performance across all results. We believe that Fisher-weighted averaging struggles in a
multitask setting, which we elaborate further on in the analysis section.

6 Analysis

6.1 Paraphrase Detection

For paraphrase detection, we initially experimented with using cosine similarity on BERT sentence
embeddings to detect paraphrases. However, after optimizing our STS head (which also utilized
cosine similarity), we found that model performance on QDPD using cosine similarity was negatively
correlated with model performance on STS using cosine similarity. We believe that sharing similarity
metrics across tasks does not hold out in a multitask setting; optimizing the sentence embedding space
for cosine similarity in a paraphrase-based context detracts from optimizing the sentence embedding
space in a similarity-based context. As a result, we found that using an MLP for paraphrase detection
gave us the best performance without sacrificing STS performance.

6.2 Semantic Textual Similarity

Our initial experiments demonstrated that our STS head struggled to identify similar sentences.
Because the STS head uses cosine similarity, a similarity score of 5 would only correspond to two
nearly-identical sentence embeddings in a 256-dimension space (which, in a gaussian setting, would
occur with a probability of 0). As such, we decided to implement clamping, where our maximum
cosine similarity (corresponding to a prediction of 5 in the context of STS) would be less than 1.
After examining the MSE loss for examples of differing similarity as demonstrated in figure 4b, we
found clamping to be especially useful for correctly identifying similar examples.
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(a) Accuracy (b) MSE Loss

Figure 4: STS Metrics across different nonlinearities

6.3 Greedy Soups

Our findings support much of the arguments that Wortsman et al. (2022) make in their justification
for model soups. Whereas Wortsman et. al argues the competitive of model soups compared to
model ensembles; our experiments demonstrate a unique advantage of model soups over ensembles:
multitask performance. Our three tasks differ in both output format and input format; making
ensembling techniques like mixture-of-experts routing impractical. Instead, model soups gives us the
advantage of aggregate model performance across multiple tasks.

It is important to note, however, that we use greedy soups to combine models trained in a multitask
setting. Models trained in a single-task setting lie in different loss landscapes, which means that
averaging them yields generally meaningless results, as we’ll elaborate further on in the next section
on Fisher-weighted averaging.

In the context of aggregating model performance, greedy soups yielded the best average performance
across all three tasks, indicating that greedy soups found a more optimal point in the "error basin"
of all three tasks than gradient-based learning. When merging, we merged the three Pareto-optimal
multitask models for each task — the three Gradient-surgery models listed in table 1. Through that,
we see the biggest advantage of parameter averaging in a multitask setting: task balancing.

Gradient-based multitask learning inherently favors one task over another, even when aligning the
gradients of all tasks in the same direction with gradient surgery (Yu et al., 2020). Javaloy and Valera
(2022)’s Rotograd takes this a step further by homogenizing task gradients to the same magnitude.
Through our experimentation, we found homogenizing task gradients to not work well; different
tasks have different loss landscapes and learning progression.

As such, when experimenting with gradient surgery, we found the performance of tasks to vary across
trials; certain trials may do relatively better in SST, whereas others do better in QDPD, and others in
STS. However, we hypothesize that parameter averaging through greedy soups confers a method to
find a more optimal point in the joint error basis across all three tasks.

We do not provide ablation studies for greedy soups as the algorithm itself only includes candidate
models that increase dev split accuracy.

6.4 Fisher-weighted Averaging

We initially attempted Fisher-weighted averaging with three single-task trained models. However,
our intial experiments showed extremely poorly performance; the resulting model performed the
same as a random guessing for both QDPD and STS. In context, this makes sense. Averaging models
produces a resulting model that lays between the error basins of its candidate models. Since all three
tasks were trained on a single-task, each task’s error basin was reached independent of the other tasks
— meaning that the space in between their error basins would lack any significance in a multitask
setting.
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As such, we turned to Fisher-weighted averaging with multitask models. We merged the same
three models as we did for our greedy soups model. In order to perform Fisher-weighted avraging
over STS-B, Matena discretized the task, turning it into a classification task instead of regression.
Our experiments show that this heavily degrades accuracy, and as such, we propose a method for
performing Fisher-weighted averaging over regression tasks. Instead we approximated a candidate
model’s posterior distribution for the similarity head by applying a Gaussian Kernel with a mean set
to the regression output.

Quantitatively, the Fisher-weighted resulting model performs worse than the Greedy soup model or
the optimized Gradient-surgery models. We hypothesize that a Fisher-weighted averaging doesn’t
translate well in a multitask setting because of the uniqueness of posterior distributions across
different tasks. Furthermore, the increased width of the input distribution in a multitask setting makes
bootstrapping the Fisher-information matrix less effective than it would be in a single-task setting
(even on top of having to approximate the STS probability distribution).

As such, in a multitask setting, we find greedy soups to be a superior method of parameter averaging
compared to Fisher-weighted averaging. As demonstrated in the ablation study in table 2, Fisher-
weighted averaging fails to match the performance of the best candidate model.

Table 2: Ablation study for Fisher-weighted Averaging
Experiment SST QDPD STS Avg
Gradient Surgery-base (Model 1) 0.473 0.727 0.796 0.665
Gradient Surgery w/ SMART (Model 2) 0.478 0.748 0.790 0.672
Gradient Surgery w/ SNLI (Model 3) 0.476 0.761 0.790 0.676
Fisher-weighted Merging w/ Model 1 and 2 0.489 0.745 0.780 0.671
Fisher-weighted Merging w/ Model 1 and 3 0.480 0.755 0.778 0.671
Fisher-weighted Merging w/ Model 2 and 3 0.470 0.753 0.788 0.670
Fisher-weighted Merging all three models 0.478 0.753 0.778 0.670

7 Conclusion

In this project, we explore the use of parameter averaging to increase performance in a multitask
setting. We use our experiments to explore three research questions:

1. Can we match single-task training performance in a multitask setting?
To a certain degree, yes. We demonstrate that our greedy-soups model matches 98.9% of
the average performance of its best single-task counterparts.

2. Can parameter averaging increase performance in a multitask setting?
We found that parameter averaging through "greedy soups" yielded the most optimal multi-
task model in the joint error basin of all three tasks.

3. Can Fisher-weighted averaging increase performance over other parameter averaging
methods in a multitask setting?
Our experiments showed that Fisher-weighted averaging yielded worse performance than
greedy soups. It is important to note that we bootstrap the diagonals of the Fischer infor-
mation matrix and approximate the posterior distribution for STS. Our results may not be
directly applicable to an experiment that directly computes the whole Fisher information
matrix. Regardless, we still believe that our experiments serve as a fair demonstration of
Fisher-weighted averaging as outlined in Matena and Raffel (2021) in a multitask setting.

In the process of answering those questions, we explore the intricacies of multitask learning and
the tasks of sentiment classification, paraphrase detection, and semantic textual similarity. In the
future, we want to experiment with more esoteric combinations of candidate models with greedy
soups. Further work could also be done in evaluating parameter-averaged multitask models in the
context of robustness to out of distribution data.
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