BERT Multi-Task Cosine Surgery: Applying Cosine
Similarity and Gradient Surgery in a BERT
Multi-Task Fine-Tuning Setting

Stanford CS224N Default Project

Graciela Smet Nick Walker
Department of Computer Science Department of Computer Science
Stanford University Stanford University
gsmet@stanford.edu nhwalkl13@stanford.edu

Abstract

When optimizing for performance across multiple tasks, separate models could be
trained for each or one model could be used to address the tasks simultaneously.
Previous literature has shown that learning efficiency and performance can be
improved in the latter approach as related tasks are trained together. In this paper,
we explore a round robin training implementation of multi-task learning in a BERT
fine-tuning setting, attempting to achieve the best development and test accuracy
across our three tasks of sentiment analysis, paraphrase detection, and semantic
textual similarity (STS). We use the base BERT model parameters without fine-
tuning, simply pushing them through untrained linear layers of the appropriate
size, to establish a baseline. To perform the different tasks, our model includes
separate classification "heads" that use the BERT embedding outputs to ouput a
label. We experiment with three model variations in which we add the following
to round robin: gradient surgery, leveraging cosine similarity in the STS head,
and combining these two approaches. Additionally, we perform hyperparameter
tuning experiments within the gradient surgery and cosine similarity variations, and
combined the best hyperparameter choices into a singular "holy grail" model for
each. Overall, we found that the gradient surgery and cosine similarity approaches
greatly improved performance but that the combination of the two led to worse
performance. These findings support gradient surgery’s success in mitigating
the conflicting gradient problem in multi-task settings and cosine similarity’s
effectiveness as a metric in semantic textual similarity in a BERT fine-tuning
multi-task setting. Furthermore, we contribute to existing literature by finding
that the combination of the two approaches yields worse results and by finding
hyperparameters optimizing the task at hand.

1 Key Information to include

* Mentor: Xiaoyuan NI
» External Collaborators (if you have any): N/A
* Sharing project: N/A

Stanford CS224N Natural Language Processing with Deep Learning



2 Introduction

As machine learning engineers have succeeded in creating narrow models that perform well at a
singular task, the next frontier has been exploring singular models that perform well at several
tasks at once. This is what we aim to do with this paper: generalizing a basic BERT model to
perform well in the 3 tasks of sentiment classification, paraphrase detection, and similarity detection,
which we attempt to achieve through multitask training with a variety of approaches to determine
the best combination of hyperparameters and prediction strategies. While there are a myriad of
potential options to improve BERT’s performance on such tasks, we chose a very specific subset and
created a thorough experiment plan to optimize our performance and develop a strong multitasking
strategy. Our general approach involved implementing round-robin multi-task training for 3 separate
classification heads and to run fine-tuning to propagate our changes throughout the BERT model so
that the embeddings perform better in our tasks. Our motivation behind this approach was to create
well-tuned prediction heads that generalize well to our selected tasks. First, we were inspired by
related work on cosine similarity to explore a variation of this approach that used cosine similarity
in the head of the similarity detection head instead of a linear layer. Then, we were inspired by
related work on gradient surgery to explore using this new technique instead of loss sum to update
our model’s parameters. Finally, we attempted combining these two variations. Throughout this
process, we conducted thorough hyperparameter tuning investigations to determine how different
parameters affected our performance, noting how these impacts differed between the two variations
and attempting to determine the best strategy combining the various techniques we explored.

3 Related Work

With respect to multi-task learning, previous researchers have cited its positive effects for performance
and data efficiency (Crawshaw, 2020). Multi-task learning can help related tasks learn together
efficiently and is especially helpful for tasks in which not much data is available.

Additionally, researchers have experimented with gradient surgery in multi-task learning and applied
cosine similarity approaches within the STS head. Namely, gradient surgery for multi-task learning
was explored (Yu et al., 2020) and shown to help solve the issue of conflicting task gradients in the
multi-task setting. Since the separate tasks don’t necessarily have gradients that all are non-conflicting
(i.e. have non-negative cosine similarity), they can work against one another when the model is
attempting to learn parameters that will perform well on each task. To solve this, when tasks have
gradients that conflict, we project the gradient of each task onto the normal plane of the gradient in
the other task so that the conflicting component is removed. This results in less interference between
the gradients when the model is learning and we can expect better results. Furthermore, cosine
similarity related techniques were explored in (Reimers et al., 2019) in which the STS task was
approached through the use of CosineEmbeddingLoss in which sentences that are equivalent have a
cosine similarity of 1 and those that are unrelated have a cosine similarity score of 0.

Looking at this previous work in which multi-task learning was shown to be effective and gradient
surgery and CosineEmbeddingloss separately improved deep learning NLP tasks, we explore
approaches that combine these. In our first improvement over the baseline, we use round robin in
a multi-task setting involving our three tasks of interest, taking inspiration from the previous work
showing multi-task learning to be effective. With respect to the work regarding cosine, we don’t
leverage CosineEmbeddingloss, but in our first model variation we do use cosine similarity with
MSE loss within the STS head to enjoy some of the same performance benefits reported in the
previous work cited above when cosine similarity was involved in the form of CosineEmbeddingLoss.
Meanwhile, in our second variation we apply gradient surgery on top of round robin to rederive the
benefits found in the original paper. Finally, we take inspiration from all of our approaches inspired
by these separate works and combine them in our third model variation.



4 Approach

Our approach to the problem of improving base BERT’s performance on involved experimenting
with different kinds of heads for the 3 tasks, different approaches to gradients, and adjusting our
approach as we went to reflect the most successful strategies.

* General Approach: Linear Heads With Round Robin Multi-Task Training

For our first approach, we implemented the 3 task heads using almost identical approaches.
The sentiment classification was the blueprint: generating embeddings using BERT, applying
a dropout layer, then using a linear layer to output logits for the 5 sentiment classes. The
paraphrase and similarity detection heads both followed a similar strategy to handle the
two-sentence input and output a singular logit: we began by concatenating the two input_ids
and the two attention_masks, then generated the embedding using BERT, applied dropout,
and finally used a linear layer to output a singular logit. We used cross-entropy loss for the
sentiment classification head, binary cross-entropy loss for the paraphrase loss, and MSE
loss for the similarity loss. In each training epoch, we evaluated a batch from each of the 3
dataloaders, added together the 3 losses, then took a step, evaluating our model on the dev
sets in each epoch to determine which model to save.

 Variation 1: Introducing Cosine Similarity to the Semantic Text Similarity (STS) Head
Next, we experimented with introducing cosine similarity into the semantic textual similarity
heads instead of using a linear layer. For this approach, we gathered BERT embeddings
for the two input_ids and the two attention_masks separately, then calculated the cosine
similarity and clamped its output using ReLU. Finally, we scaled this output by 5 to match
the expected label outputs. As before, our gradient was updated after each set of batches.
We experimented first with using this approach on both sentiment and paraphrase heads but
quickly discovered it only provided benefits in the sentiment prediction, and so centered our
experiments around this. We then experimented with adding learnable linear and nonlinear
layers after fetching the embeddings and before calculating the cosine similarity to see if
these extra parameters improved performance, with increasing epochs, and with different
dropout rates.

¢ Variation 2: Introducing Gradient Surgery

Next, we experimented with using gradient surgery to update our parameters instead of
the loss sum used in the previous approaches. We used Wei-Cheng Tseng’s public GitHub
repo to implement this approach. Here, all the classification heads remained using the
linear layer approach: gathering a single embedding (by concatening two sentences when
necessary), applying dropout, and applying a linear layer to output the correct number
of logits. Similarly to approach 2, we also experimented with increased epochs, dropout
parameter tuning, and adding learnable linear and nonlinear layers before doing the final
classification to see if extra parameters increased performance.

* Variation 3: Combining STS Head Cosine Similarity and Gradient Surgery
Finally, we experimented with combining both variations 1 and 2 into a singular model that
combines the new cosine similarity approach for STS with the gradient surgery technique to
evaluate combined performance.

5 Experiments

5.1 Data

We used three datasets to train and evaluate our model, one for each task in our BERT model, which
were all provided in the default starter code:

¢ We used the Stanford Sentiment Treebank (SST) dataset to fine-tune and test our model for
sentiment classification. Each example in this dataset is a single sentence with a discrete
label from O to 5 to reflect how negative (0) or how positive (5) the sentence is.



* We used the Quora Dataset to fine-tune and test our model for paraphrase detection. Each
example in this dataset is a pair of two sentences labeled discretely with a 0 or a 1 to reflect
whether the sentences are/aren’t paraphrases of one another.

¢ We used the SemEval STS Benchmark Dataset to fine-tune and test our model for sentence
similarity. Each example in this dataset is a pair of two sentences labeled with a continuous
label from O to 5 to reflect how similar (5) or dissimilar (0) the sentences are.

5.2 Evaluation method

We decided to use a simple qualitative evaluation method to assess the performance of our various
models on the three tasks: the overall accuracy on the dev set of each included dataset. For sentiment
classification and paraphrase detection, we calculated our accuracy using the number of labels we
correctly predicted, and for similarity detection we calculated accuracy using the Pearson correlation
coefficient.

5.3 Experimental details

We ran a series of experiments guided by the first two variations detailed above. Within these
variations, we explored hyperparameter tuning through adjusting the number of epochs, the dropout
rate, and the amount of added neural network layers within the classification heads. To isolate these
parameters for exploration, for each of the approaches we did a series of experiments freezing all
parameters but one to discover how we might improve further on our approaches.

For the epoch parameter, we experimented with running 10 and 20 epochs in each model
variation. For the dropout parameter (used in our prediction heads), we experimented with dropout
rates of 0.3, 0.5, and 0.8 for each model variation. Finally, for additional learnable layers (we defined
one "learnable layer" as applying a linear layer, a ReLU, then a dropout layer), we experimented with
adding 1 or 2 learnable layers to each model variation.

After finding which parameters performed the best in each variation, we created a "holy
grail" for each model variation using the best parameters to see if we could outperform the baseline.

Note that we did not perform these experiments on the third model variation (combining cosine
similarity and gradient surgery) because we found that it consistently performed far worse than the
other variations. This is discussed shortly below in "Variation 3: Combining the Cosine Head and
Gradient Surgery."

5.4 Results
Baseline Approach

For our baseline approach, we set up the linear heads used in the general approach, left them untrained,
and simply predicted the labels for the three tasks using the base BERT embeddings. As expected,
BERT performed very poorly with the untrained prediction heads, but we will use these accuracies as
our baseline to compare how our approach and variations were able to provide performance increases.

Results
dev SST | dev para | dev STS | Overall
0.144 0.547 -0.019 0.224




Variation 1: Introducing Cosine Similarity to the Semantic Text Similarity Head

Hyperparamater tuning: Changing dropout rate:

Variables Fine-tune Results
epochs | Head NN Layers | dropout | dev SST | dev para | dev STS | Overall
10 None 0.3 0.501 0.831 0.676 0.669
10 None 0.5 0.498 0.830 0.700 0.676
10 None 0.8 0.490 0.828 0.700 0.672

Adding the cosine head and training the model was able to immediately improve the performance
of our model, as expected. A 0.5 dropout rate likely did the best as it was enough to provide a
regularizing effect in the heads while still capturing much of the information from the previous layers.
The marginal performance differences between dropout rates is likely because the dropout is only
occurring over the relatively shallow classification head neural layers.

Hyperparamater tuning: Changing epochs

Variables Fine-tune Results
epochs | Head NN Layers | dropout | dev SST | dev para | dev STS | Overall
10 None 0.3 0.501 0.831 0.676 0.669
20 None 0.3 0.498 0.857 0.726 0.693

By running more epochs, we were able to increase our performance over the previous best established
by the dropout parameter tuning. This was what we expected as our model had more opportunities to
fine-tune both the BERT parameters and the classification head parameters for the tasks at hand.
Overfitting was avoided due to dropout layers and we saw the expected effect of our neural network
leveraging the additional training to perform even better. However, we were surprised to see the
magnitude of the increase being so great. This is likely due to the high number of parameters needing
time to be learned and the relatively low epoch count of 10 didn’t provide a sufficient amount of
updating to fully leverage the many parameters.

Network tuning: Adding learnable layers
One LL = an added linear layer, ReLU layer, and dropout layer

Variables Fine-tune Results
epochs | Head NN Layers | dropout | dev SST | dev para | dev STS | Overall
10 None 0.3 0.501 0.831 0.676 0.669
10 1 LL in STS head | 0.3 0.501 0.845 0.793 0.713
10 1 LL in all heads | 0.3 0.511 0.834 0.669 0.671
10 2 LL in all heads | 0.3 0.505 0.841 0.535 0.627

Adding extra learnable layers afforded yet another significant performance improvement. We
were surprised that adding a learnable layer to only the STS head was able to yield such a large
improvement, which we suspect is because the cosine head in this variation currently has no learnable
parameters. In adding this, we allow our model to adjust both the embeddings and the parameter
in this layer to increase performance. We suspect that the experiments with even more learnable
parameters suffered either from an insufficient number of epochs or from overfitting.



Holy Grail model

For the holy grail model for this approach, we took what we learned from the variable experiments
and ran a model for 30 epochs with a learnable layer added to the STS head and with a dropout rate
of 0.5 since these were the most effective parameter combinations for this variation.

Variables Fine-tune Results
epochs | Head NN Layers | dropout | dev SST | dev para | dev STS | Overall
10 1 LL in STS head | 0.5 0.515 0.880 0.558 0.651

We were disappointed to find that our Holy Grail experiment performed worse than the previous
best performance for this variation, which achieved when running 10 epochs with extra learnable
parameters on the STS head. This is likely because increasing the number of epochs caused overfitting
in our data. Additionally, this could be because our method of taking the best hyperparameters from
different experiments strips them of the context in which they performed so well. Meshing these
things together isn’t guaranteed to provide better results, demonstrating the complexity of neural
network hyperparameter tuning. Nonetheless, we were still able to see which hyperparameters
performed best on their own and leave this as a helpful starting point for future researchers.

Variation 2: Introducing Gradient Surgery

Hyperparamater tuning: Changing dropout rate

Variables Fine-tune Results
epochs | Head NN Layers | dropout | dev SST | dev para | dev STS | Overall
10 None 0.3 0.500 0.853 0.864 0.739
10 None 0.5 0.504 0.855 0.860 0.740
10 None 0.8 0.515 0.838 0.862 0.738

Immediately upon implementing gradient surgery with the linear heads, we were able to surpass the
previous best accuracies achieved by the first variation. We found again that impact of dropout rate
on performance was marginal but nevertheless optimized when set to 0.5, which we expected and
believe is because of similar reasons to the hypothesis outlined in variation 1.

Hyperparamater tuning: Changing epochs

Variables Fine-tune Results
epochs | Head NN Layers | dropout | dev SST | dev para | dev STS | Overall
10 None 0.3 0.500 0.853 0.864 0.739
20 None 0.3 0.509 0.870 0.861 0.747

Once again, running the experiment for more epochs allowed us to realize a significant improvement
in our overall model performance. We were surprised by how quickly the gradient surgery approach
was improving upon the original variation, and we again suspect that allowing our model to train for
longer allowed it to better adjust the embeddings and learnable layers. While we didn’t necessarily see
improvements across all individual task performances, we can’t exactly determine how the different
tasks are affected since we are training multiple tasks at once and increases in performance on one
task can be relatively greater than those of others. However, gradient surgery helps prevent conflicting
gradients which likely allowed for even better results over the additional epochs.



Network tuning: Adding learnable layers
One LL = an added linear layer, ReLU layer, and dropout layer

Variables Fine-tune Results
epochs | Head NN Layers | dropout | dev SST | dev para | dev STS | Overall
10 None 0.3 0.500 0.853 0.864 0.739
10 1 LL in all heads | 0.3 0.505 0.842 0.866 0.738
10 2 LL in all heads | 0.3 0.488 0.865 0.764 0.739

Through these experiments, we observed that changing the number of learnable parameters only
offered marginal performance improvements, despite us believing that more layers would allow the
network to perform even better. We suspect that either these added layers haven’t had enough time to
learn and that more training time will improve the performance or that different approaches than those
in this paper must be tried (i.e. we’ve nearly maximized performance for this particular experiment).

Holy Grail model

For the holy grail model for this approach, we took what we learned from the variable experiments
and ran a model for 30 epochs and with a dropout rate of 0.5. Since the model performed similarly
whether we added no additional parameters or if we added 2, we ran the Holy Grail model with 2
additional layers on each, hoping to see the additional epochs help train the additional learnable
parameters.

Variables Fine-tune Results
epochs | Head NN Layers | dropout | dev SST | dev para | dev STS | Overall
30 2 LL in all heads | 0.5 0.501 0.870 0.869 0.747

We were slightly disappointed to find that, while our holy grail model performed very well, it did not
surpass the original best score that was achieved when running 20 epochs during the epoch training
test. Perhaps this suggests that we simply need more epochs to push past the plateau, and future work
might explore running for more epochs or attempting ensembling with randomized restarts, as we
may be stuck in a local minima.

Variation 3: Combining the cosine head and gradient surgery

Variables Finetune Results
epochs | Head NN Layers | dropout | dev SST | dev para | dev STS | Overall
10 None 0.3 0.518 0.375 0.171 0.355

We were surprised to see that combining the two variations resulted in a model with abysmal
performance scores. Because of these initial results, we were uninspired to continue down this route
and we leave this space open for further exploration. We suspect that the poor performance was
related to the gradient from the STS head being affected/corrupted from the non-PyTorch methods
applied within that head to the cosine similarity, like the scaling by 5. Since cosine similarity was
used, it’s also possible that there was a disconnect between the output of this head (being related to
cosine similarity) and the actual gradient that had only to do with the linear layers applied before the
cosine similarity was computed.

6 Analysis

Through our thorough experiments for each approach, we were able to generate some key takeaways
based on the hyperparamater values to better understand how such changes affected our network.
The variation of our model that used gradient surgery was overall the most effective, achieving our
highest accuracy scores and placing us relatively high on the multitask performance leaderboards for
the dev and test sets of the Default Final Project.

While this performance was exciting, we also learned much about our how our model works through
its successes and failures. In both of our variations, increasing the number of epochs had a massive



impact on the performance of the model, whereas changing dropout rate had minimal effects.
The first effect is likely because more epochs allows our model to gain a better understanding of
the semantic meaning of the training data and has more opportunities to fine-tune the BERT and
classification head parameters, while the second effect is likely because various dropout rates would
have been sufficient for preventing overfitting here and thus that once we include dropout in the first
place, changing its rate has little effect. For the cosine similarity experiments, adding additional
learnable parameters in our prediction heads only yielded performance results when added to the
similarity predictor, which is likely because the cosine head alone has no learnable parameters in its
most basic state, thus adding extra layers allows both the embeddings and the layer parameters to
update to increase performance. On the other hand, adding learnable layers to the gradient surgery
variation did not have large effects on outcome. This could be because there weren’t enough epochs
or parameters (we only added a maximum of 2 layers) for the network to take advantage of.

Finally, the combination of the two variations failing shows that simply stacking various techniques
on top of each other doesn’t always work and our model is not responsive to this.

7 Conclusion

The main findings of our project were discovering the successes and limitations of various
combinations of cosine similarity/gradient surgery strategies and hyperparameter adjustments.
Through our experiments, we found that we achieved the highest performance on an extended (with
classification heads for each task) BERT model that was trained round-robin style using gradient
surgery across 3 different datasets and using linear prediction heads with dropout rates of 0.5 over 20
epochs.

In addition to creating a BERT model that performed very well on the 3 tasks, our research
and experimentation uncovered some important information about hyperparameter tuning. We
discovered that, in a model like this with shallow prediction heads, the selected dropout rate had
little effect on the performance regardless of other strategies involved. Through our experiments
with the cosine head, we discovered the importance of having learnable parameters in the prediction
heads, uncovered by the large performance increase when we added a linear and a non linear layer
to the cosine head. Overall, we learned of the importance of high numbers of epochs to give the
model a sufficient amount of time to train as well as the power of gradient surgery as an approach for
maximizing multitask performance.

Another important takeaway was that combining these two variations (to produce the third
variation) did not work, demonstrating that different techniques in neural networks that independently
improve performance can’t be blindly combined without careful tuning.

Avenues for future work include further explorations of hyperparameter combinations, since we
discovered through our Holy Grail models that parameters that performed well in isolated conditions
didn’t necessarily perform well when merged together. Future research might also include further
exploration/tuning of the 3rd variation, which we were unable to deeply explore but could potentially
yield high performance with similar hyperparameter tuning.



References

[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.

[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.

[3] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. CoRR, abs/2001.06782, 2020.

[4] Wei-Cheng Tseng. Weichengtseng/pytorch-pcgrad, 2020.
[5] Rich Caruana. Multitask Learning, pages 95—133. Springer US, Boston, MA, 1998.

[6] Asa Cooper Stickland and Iain Murray. BERT and pals: Projected attention layers for efficient
adaptation in multi-task learning. CoRR, abs/1902.02671, 2019.

[7] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. CoRR, abs/1908.10084, 2019.

[8] Chunjie Luo, Jianfeng Zhan, Lei Wang, and Qiang Yang. Cosine normalization: Using cosine
similarity instead of dot product in neural networks. CoRR, abs/1702.05870, 2017.

[9] Michael Crawshaw. Multi-task learning with deep neural networks: A survey. CoRR,
abs/2009.09796, 2020.



	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

