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Abstract

In this paper, we compare three approaches to multi-task learning, where a single
model is able to learn multiple related tasks simultaneously. These are namely the
classic approach where we aim to optimize the sum of the tasks’ losses all together,
a round robin approach where we cycle optimizing each task’s loss, and a gradient
surgery approach which aims to capture the shared structure of these multiple tasks
while not letting their conflicting components interfere with training. We find that
gradient surgery performs the best in a multi-task learning model, and we were
able to achieve a an overall test score of 0.637 across three NLP tasks.

1 Key Information
e Mentor: Xiaoyuan Ni

2 Introduction

Multi-task learning (MTL) is a subfield of machine learning in which a single model with a set of
task-specific heads is able to tackle multiple downstream tasks. While traditionally a separate model
would be trained for each objective, MTL has gathered increased interest in recent years due to it
theoretically being able to provide stronger performance on the set of downstream tasks, relative
to individual training, while also being space-efficient and data-efficient (Fifty et al., 2021). By
sharing parameters across tasks which are trained over data from across tasks, MTL is able to learn
an expressive representation of the space of all downstream tasks with fewer parameters and less data
in total. Additionally, MTL is generally applied when dealing with similar classification tasks with a
shared underlying structure, such as multiple language tasks which can share the same underlying
word embeddings, meaning that the commonalities across tasks can be exploited for increased signal
(Ito et al., |2022). As described in the widely cited |(Caruanal(1997), MTL "improves generalization
by using the domain information contained in the training signals of related tasks as an inductive
bias...while using a shared representation; what is learned for each task can help other tasks be
learned better."

That being said, minimizing multiple distinct objective functions with a set of largely shared
parameters poses a challenging optimization problem in practice. In a MTL model, it is not
uncommon to observe that each individual task gradient is nonzero, yet the optimizer stalls and makes
little progress despite being nowhere near a critical point in the optimization space. It is also not
uncommon to see that the model ends up performing very well for one task, or a group of especially
related tasks, but very poorly for all other tasks. A known, but not fully understood, cause of these
phenomena is the "conflicting gradients" problem. This problem arises from gradients varying in
magnitude and pointing in different directions such that they cancel each other’s components out or
dominate one another (Liu et al.,|2021). However, there has been a wide variety of proposals to
decrease the impact of the conflicting gradients problem on MTL models. These range from specific
changes to certain model’s architectures (Devin et al.| | 2016) to changes in the way loss is computed
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and gradients are backpropogated (Chen et al.,[2018)). The latter set of proposals which are agnostic
to model architecture are of special note due to their generalizability; MTL has been applied across a
wide variety of subject areas and fields, from natural language processing (NLP) for social media
moderation (Zhang et al., 2023)) to computer vision (CV) for identifying celebrities (Vandenhendel
2022), across which many different types of model architectures are used.

In this paper, we specifically analyze the use of MTL as it applies to building upon a pre-
trained BERT model and perform well on three different NLP tasks: Sentiment Analysis (SST),
Paraphrase Detection (PARA), and Semantic Textual Similarity (STS). We do this by finetuning
BERT’s sentence embeddings while training task-specific heads to convert each task’s input to logits.
We test and compare different model-agnostic solutions for the conflicting gradients problem as it
applies to these tasks. Namely we will try a "classic approach,” where we process one batch from
each task simultaneously by computing our loss function as the sum of the individual loss functions;
and a "gradient surgery" modification to the classic approach (PCGrad) to directly improve upon the
classic approach with respect to the conflicting gradients problem; and a "round-robin approach,”
where the optimizer steps once per task and rotates between tasks. We find that perturbations in
where gradients are evaluated allows the round robin approach to perform stronger on average than
the traditional approach which is more susceptible to conflicting gradients, but gradient surgery
builds upon the traditional approach by directly reducing the conflicts in gradients while maintaining
their shared components and structure.

3 Related Work

Devlin et al.| (2019) describes the BERT model which serves as the backbone of our model.
It describes self-attention mechanism the Transformer which makes fine-tuning this model
straightforward for many downstream tasks. The model accepts task-specific inputs and labels and
allows for finetuning all of its embedding representations for sentences end-to-end. At the output
layer, the [CLS] representation just needs to be taken and fed into a task-specific head, which itself
contains trainable parameters, for classification on any given task. The paper goes on to fine-tune
BERT individually for eleven different tasks. Given how its [CLS] representations can be easily fed
into multiple task specific heads, it is a natural step to attempt to finetune BERT with MTL.

Yu et al| (2020) attempts to formally define and theoretically understand the conflicting gra-
dients problem in for the classic approach of MTL, where the sum of individual loss functions are
minimized, and proposes the PCGrad gradient surgery solution to simultaenously reduce conflicting
gradients and preserve their shared signal. PCGrad is notable because it fits right in between the
backpropogation mechanism and optimizer to directly modify gradients and remove their conflicting
components. Specifically, it projects each gradient onto the planes normal to the other gradients.
While this paper does an excellent job defining the problem and its proposed solution and demon-
strates that it achieves great performance on average, one area where it was limited was in its practical
analysis of the conflicting gradients problem. We naturally hope to add to this practical analysis
in this paper by examining conflicting gradients arising from specific examples in our training process.

Our work is also inspired by McCann et al.| (2018), which introduces to us a round-robin
batch-level sampling approach for MTL as applied in the realm of NLP to achieve stronger
performance on 10 tasks simultaneously than individual training with their same model.

4 Approach

To begin, we built on top of a template provided by the default final project instructions and imple-
mented key aspects of the original BERT model, including multi-head self-attention as well as a
Transformer layer. We also implemented our own AdamW optimizer for training purposes. From
here, we were able to feed inputs for the SST, PARA, and STS tasks into a tokenizer for a token
representation, which when run through the pretrained BERT model we could extract their [CLS]

representation, which we call the "BERT embeddings," to feed into task specific classification heads
which we defined for each of our three tasks. We were then be able to train several different models
based on each of our MTL approaches in order to train these task-specific heads, as well as finetune
the BERT embeddings.
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Figure 1: Our end-to-end model. Inspired by Figure 1 in|Zahera and Sherif (2020).

4.1 MTL Approaches

We explored 3 main approaches to MTL, and we ensured that the model at least performed better
than a minimum baseline of random guessing for each approach, as well as the base BERT model,
as described in We also ensured that finetuning the BERT embeddings with any of these
approaches performed better than just using the pretrained weights.

In the case of the classic approach, we simultaneously processed one batch from each task,
calculating loss as

L= CLsst+ Lpara+ LsTs, (H
and stepping the optimizer to update all shared parameters, as well as our task-specific heads.

In the case of our gradient surgery approach using PCGrad, we continue to use the same
loss function as described by but we directly modify the gradients associated with each
task in hope of reducing conflicting gradients. We implement this ourselves by modifying the
provided code in |Yu et al.| (2020) to form a wrapper around our AdamW class which allows it to
intercept gradients and modify them before passing them to the step function. Specifically, it iterates
over all pairs of gradients g;,9; € {VLssr,VLpara, VLsTs} andif g} - g; < 0, where g is the
updated gradient so far for g;, then the key modification,

s_ w90

is made. That is, whenever two gradients conflict, we project them onto each other’s normal planes.

In the case of the round-robin approach, we cyclically repeated a three-step update process
on one batch from each task, where the loss on optimizer step i € {1, 2,3} was computed as

LssT ifi=1
Li={Lpapa ifi=2 3)
Lors ifi=3,

updating our shared parameters at each step and the task-specific heads at the respective task’s step.



4.2 Task-Specific Heads

In designing our task-specific heads, we iterated on many different designs and adapted based on
their relative performance on the dev split when using the classic MTL approach.

For the SST head, given a single input sentence, we wanted to output five logits represent-
ing a multinomial probability distribution for classifying the sentence into five classes of negative
to positive sentiment. We used dropout, followed by a linear layer cutting dimensionality in half,
followed by ReLU activation, followed by dropout, followed by a linear layer boiling everything
down to five non-normalized logits, which we applied softmax activation to normalize. We then
used multi-class cross-entropy against one-hot labels to compute loss, since we are solving a basic
multi-class classification problem. Through experimentation, we observed that this two-layer model
outperformed a similar one-layer or three-layer model across all tasks on the dev set by 3% accuracy,
as desired (see [Evaluation Method).

Number of Layers [SS5T Accuracy
1 0.506
2 0.536
3 0.512

Table 1: Impact of number of layers on dev SST accuracy with classic approach, for example.

For the PARA head, given two input sentences, we wanted to output a single logit representing the
Bernouli probability that the two sentences are paraphrases of one another. We used a dropout on
both inputs, followed by the same linear layer on both inputs, followed by ReLU activation, followed
by concatenating these results, followed by dropout, followed by a linear layer boiling everything
down to a single non-normalized logits, which we applied sigmoid activation to normalize. We then
used binary cross-entropy against binary labels to compute loss, since we are solving a basic binary
classification problem. Through experimentation, we observed that this model outperformed models
where we added more layers to either the individual-sentence stage or to the fused-sentence stage of
the model in each approach by up to 3% accuracy, as desired (see [Evaluation Method)).

For the STS head, given two input sentences, we wanted to output a single logit rating that
two sentences are similar on a scale of one to five. We used a dropout on both inputs, followed by
computing their cosine similarity, which we applied ReLU activation to normalize into the zero to
one range and then multiply by five. We then used MSE against 5-ary labels to compute loss, since
this objective by definition aims to maximize correlation between our predictions and the labels, as
desired (see|Evaluation Method).

4.2.1 Fusing Sentences and Cosine Similarity

For the PARA and STS tasks, we had to determine how to best fuse the two input representations.
We considered the best options for both tasks among summing their hidden representations and
applying a linear layer, concatenating their hidden representations and applying a linear layer,
applying cosine similarity directly on their embeddings, or applying cosine similarity on their
hidden representations. That is, for two (unbatched) inputs with embeddings c¢;,c2 € R"™ and
respective hidden representations i1, ho € R™ and some arbitrary weight matrices W* € R™*",
W = [W1 W3] € R™*2" we want to decide between the following options, respectively:

W (hy + ha) = Wy + W hy, @
w [Zﬂ = (W, W3] {Zﬂ = Wihs + Wahs, )
cos(be, e,) = m, (6)

hi-h
cos(On, py) = m @)

We ran experiments trying each combination of measurements for the PARA and STS tasks and
ultimately decided to go with the second option above (Equation 5) for PARA and the third option



above for STS. This makes some intuitive sense, as STS is a task which takes into
account total sentence similarity, which one can get an understanding of by looking at the similarity
of the sentence embeddings directly. On the other hand, just one word can transform two sentences
from paraphrases to complete opposites, so cosine distance makes less sense for the PARA task, and
instead we use an interaction layer with concatenation for greater expressivity associated with Wy
not necessarily equalling W, unlike the sum method.

Method PARA Accuracy
Sum 0.556
Concat 0.734
Cosine Embeddings 0.460
Cosine Hidden States 0.312

Table 2: Impact of fusing method on dev PARA accuracy with classic approach, for example.

Method 5TS Correlation
Sum 0.222
Concat 0.233
Cosine Embeddings 0.613
Cosine Hidden States 0.314

Table 3: Impact of fusing method on dev STS correlation with classic approach, for example.

4.3 Hyperparameter Optimization

When configuring our models, we had a range of hyperparameters to optimize. We identified the
most important relevant hyperparameters to be our batch size, which affects both training time and
generalization (Keskar et al., |2017); our dropout layer probabilities and AdamW weight decays,
which can balance out overfitting (Lengerich et al.,|2021); and our learning rate, which affects both
training time and the optimality of our final set of weights (Wu et al., 2019). In order to optimize
their hyperparameters, we wrote an original script from scratch that was able to perform a grid
search for the best hyperparameters for each model we developed. Each combination of plausible
hyperparameter values were tested and the combination which completed with the highest dev set
performance was chosen.

Specifically, we performed a grid search across the following arrays of values recommended by
Turc et al.[(2019) for finetuning BERT: batch sizes in B = [8, 16, 32, 64, 128], dropout probabilities
in D = [0.1,0.3,0.5,0.7], learning rates in R = [3e — 4, le — 4,5e — 5,3e — 5], and weight
decays in W = [0,1e — 5,1e — 4,1e — 3,1e — 2]. In total, our grid search covered up to
|IBx D x Rx W|=5%4x4x%5=400 combinations to find the optimal hyperparameters

A= Cngmax/\e(BxDxRxW)peTf()‘) ®)

for each approach we tested, where perf(\) is the averaged performance metric (described in
[Evaluation Method) achieved on the dev set with model hyperparameters A.

S Experiments

5.1 Data

For the SST task, we use the provided Stanford Sentiment Treebank Dataset with the following splits:
train (8,544 examples), dev (1,101 examples), and test (2,210 examples). Each datapoint consists
of a sentence and an associated integer label from one to five rating how negative or positive the
sentence’s associated sentiment is.

For the PARA task, we use the provided Quora Dataset with the following splits: train



(141,506 examples), (20,215 examples), and test (40,431 examples). Each datapoint consists of a pair
of questions and an associated binary label stating whether the two questions are paraphrases of one
another.

For the STS task, we use the provided SemEval STS Benchmark Dataset with the follow-
ing splits: train (6,041 examples), dev (864 examples), and test (1,726 examples). Each datapoint
consists of a pair of sentences and an associated label on a scale of one to five rating how semantically
similar the two sentences are.

5.2 Evaluation Method

As described in the default final project instructions, we keep track of the accuracy of predictions
for the SST task, the accuracy of predictions for the PARA task, the correlation of predictions to
labels for the STS task, and most importantly the average of these metrics. We also record the
individual training curves for each task over time for, as well as sample a few task gradients, for
analysis purposes.

5.3 [Experimental Details

Using our hyperparameter grid search script, we determined that the optimal hyperparameters for
each model were the same: a batch size of 32, a dropout probability of 0.5, a learning rate of 3e-5,
and an AdamW weight decay of 1e-2. However, we found that we had to limit the batch size to 16
for the model using the gradient surgery approach due to computational limitations, since gradient
surgery required storing two times the gradients at any step (the set of modified gradients and the
set of original gradients), as described in The paper referenced with regards to our
chosen hyperparameter search space also recommended a maximum of 10 epochs when finetuning
BERT-like models for experimentation (Turc et al.||2019). Also note that in practice, we only trained
on a randomly sampled 6,041 examples per task train set within each epoch, in order to account for
differences in dataset size without favoring one task’s progression over that of another task.

5.4 Results

Final test set score (gradient surgery approach chosen): SST Accuracy: 0.533 Paraphrase Accuracy:
0.751 STS Correlation: 0.626 Overall score: 0.637.

Model

Train 55T Accuracy

Train PARA Accuracy

Train 5TS Correlation

Train Average Performance

Random Guess [Baseline) 0.200 0.500 0.000 0.233
Base minBERT (Baseline) 0.500 0.500 0.000 0.467
Classic Approach 0.752 0.547 0.879 0.859
Gradient Surgery Approach 0.762 0.5956 0.886 0.868
Round Robin Approach 0.764 0.542 0.887 0.864

Table 4: Performance of models on train sets for the SST, PARA, and STS tasks.

Model Dev S5T Accuracy |Dev PARA Accuracy |Dev STS Correlation |Dev Average Performance

Random Guess [Baseline) 0.200 0.500 0.000 0.233
Base minBERT (Baseline) 0.515 0.500 0.000 0.338
Classic Approach 0.536 0.734 0.613 0.628
Gradient Surgery Approach 0.532 0.747 0.645 0.641
Round Robin Approach 0.747 0.504 0.608 0.620

Table 5: Performance of models on dev sets for the SST, PARA, and STS tasks.

The above two tables show that on the dev set, the three MTL approaches were able to achieve
stronger accuracy on the SST task than the Base minBERT model that was finetuned on just the
SST task. This is an example of how MTL allows different NLP tasks to learn better from one
another through a shared representation of language, specifically the BERT embeddings in this case.
Furthermore, all approaches fared much better than random guessing, as desired.

The results above also align with the view that the classic approach to MTL may be espe-
cially prone to conflicting gradients, given that it had the lowest performance on the dev set out of the
three approaches examined. On the other hand, the round robin is able to perform marginally better
due to evaluating different task gradients at slightly different locations in the parameter space, having



an optimizer step in between each gradient computation, which may lead to less conflicting gradients.
However, the gradient surgery task performed by far the best overall, perhaps because it was able to
negate some of the conflicting gradients that the classic approach suffered while maintaining a better
shared structure than the round robin approach by evaluating gradients as a sum all together.

Interestingly, the round robin approach yielded notably superior performance on the SST
task relative to the other approaches. The reason for this may be that the round robin approach is
biased in the direction of the first (which also happens to be the largest) SST gradient, since a step for
the SST task is made before any other tasks are considered, whereas the other two approaches always
step in a direction taking all gradients evaluated at one point in the parameter space at the same time.

6 Analysis

6.1 Conflicting Gradients: Individual Task Training
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Figure 2: Task training curves for classic, gradient surgery, and round robin approaches.

The character of the above individual task curves tend to reflect the MTL approach used, as expected.
The classic approach at first improves its performance on all three tasks simultaneously, but at one
point it clearly succumbs to the conflicting gradient problem, and both the PARA and STS training
curves seem to completely level off while the SST curve dominates. The round robin approach has
very chaotic training curves, as the optimizer takes turns stepping in each task’s gradient direction, and
in some cases, as we see at the end with SST, taking a step in one particular direction in the parameter
space will inflict poor performance for the other curves, rather than focusing on maintaining a shared
structure among tasks. The gradient surgery approach not only has the highest average performance,
but it also has the smoothest training curves which all appear to continue to increase up through
the last epoch of the experiment, being able to simultaneously capture shared structure and discard
conflicting components of gradients, though it does tend to train slower after a while.

6.2 Conflicting Gradients: An Example

At the beginning of the training cycle for each model, we considered its response to the following
inputs for the three tasks:

1. SST - Input: "As an actress, Madonna is one helluva singer." Label: "4."



2. PARA - Input one: "Who is the most famous contemporary singer/band in German-speaking
world?" Input two: "Who is your favorite singer/band from your country?" Label: "0."

3. STS - Input one: "Red-shirt leader calls not to oppose army." Input two: "Beijing not to
send army." Label: "0.6."
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Figure 3: Projected gradients for SST, PARA, and STS tasks given the above.

Above, we have plotted the respective task-specific gradients given the above, projected onto the
subspace spanned by two random parameters for visual purposes. We have the cosine distance
of full PARA and STS gradients as 0.7, while their cosine distances with the full SST gradient is
negative, similar to what the figure above depicts. Clearly, the PARA and STS gradients here have
shared structure, and this is something we notice quite a bit given the relative similarity of semantics
and paraphrasing, whereas the SST gradient is strongly conflicting. The frequency with which this
happens may explain why our models in general performed more poorly on the SST task than the
other two tasks, both in absolute terms and relative to improvement over our baselines. In this specific
case, the conflict is perhaps caused by the PARA task wanting to push two positive terms apart
(also having to do with singing like the SST task), as well as the STS task wanting to push two
negative terms apart. And in line with our results, the gradient surgery approach makes the greatest
improvement in average performance after its optimization step for this set of examples, removing
the conflicting components of the gradients and moving in a direction straight up with respect to
the subspace depicted above, whereas both the classic and round robin approaches move a lot more
sharply left and drive the SST accuracy down.

7 Conclusion

In summary, we have shown that MTL has the potential to achieve greater performance on a set of
similar tasks than individual training does, while also needing less data and taking up less space,
due to its ability to share common goals of the tasks between shared parameters. Using different
approaches to MTL to finetune a BERT model to perform well on three downstream tasks, we
showed that gradient surgery can perform better than a round robin approach or the classic approach
to MTL due to its ability to abate the conflicting gradients problem, though it can train slower. We
achieved an overall score of 0.637 across the SST, PARA, and STS tasks using a basic model with
the help of MTL with gradient surgery.

Due to time and compute constraints, the amount of epochs the models were trained for
were smaller than desired, and we only saw part of the whole picture. We also did not get the
chance to explore other techniques which tackle conflicting gradients with GradNorm which learns
meta-parameters to weight the task gradients differently over time (Chen et al., 2018)); this would be
especially useful to investigate in the future in the context of this paper, given that the SST task here
seemed to be dominated by the other two tasks.
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