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Abstract

Denoising diffusion probabilistic models (DDPMs) [1]] have seen explosive growth
in the past few years, especially in the domain of image synthesis. Due to the nature
of DDPMs, these methods are especially well suited for modelling continuous
data. Despite recent work showing that DDPMs outperform other state-of-the-art
methods in image synthesis [2], there is limited work applying diffusion methods to
the domain of language modelling. We propose a method that uses latent diffusion
models for language modelling. Using a sentence autoencoder architecture [3]], we
map sentences to a continuous latent space and perform diffusion over the latent
space.
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2 Introduction

Language modeling is a crucial task in natural language processing research, especially with the
recent increase in attention to the field due to the incredible performance from models trained on
internet scale data. Recent state-of-the-art language modeling methods have been dominated by
transformer-based methods, with representative works such as GPT [4], BERT [5] and RoBERTa [6].
The field of generative Al has seen a recent resurgence with a series of work proving that diffusion
models have the ability to outperform other state-of-the-art architectures in the domain of image
synthesis [2]. However, there is currently limited work in applying advances in diffusion models to
the domain of language modeling.

Applying diffusion models to language modeling is challenging due to the discrete nature of language
data. Although DDPMs have shown to work well on image data, the distribution of image data and
language data is fundamentally different. Current representative works in applying diffusion models
to the domain of language modeling include Diffusion-LM [[7] and DiffuSeq [8]. Both methods apply
diffusion models at the level of word embeddings. Since the word embedding space is continuous,
training diffusion models on this data leads to great results. However, in order to map the diffused
embeddings back to words, a rounding procedure must be performed, as there is no gaurantee that
the diffusion samples are going to be identical to word embeddings.

Recent work has shown that latent diffusion models can lead to faster and better diffusion sampling
[9]. In our method, we take inspiration from these methods and apply latent diffusion to language
modeling. We first use a VAE in order to encode sentences into a continuous latent space using the
method proposed by Bowrman et al. [3] and train a diffusion model to learn the data distribution of
the resulting latents.
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3 Related work

Diffusion models. Recently, explosive advances in diffusion models have led to a shift in generative
models utilizing denoising diffusion probabilistic models (DDPMs) as their backbone. Representative
work by Ho et al [1] established the mathematical foundation of such models in the context of image
generation. Later work showed that DDPMs have the ability to outperform state-of-the-art methods
in image synthesis tasks (most state-of-the-art techniques up until then utilized GANs) [2]. With this
in mind, diffusion models have shown a great deal of potential in the space of generative modelling.
Qualitatively, DDPMs have shown the ability to generate samples with higher diversity, in contrast
to GANs which empirically suffer from mode-collapse. Our method aims to leverage the recent
advances in diffusion models for the task of language modelling.

Variational autoencoders. Another popular generative modelling method is the variational autoen-
coder (VAE). VAEs are a type of deep generative model that has shown effectiveness in learning a
complex probability distribution and generating high-fidelity samples. First proposed by Kingma and
Welling [[10], VAEs are autoencoder architectures trained using variational inference. Prior work has
shown that VAE effectively maps a data distribution to a lower-dimensional regularized probability
distribution (usually a Gaussian). However, VAEs have shown to suffer from posterior-collapse, a
phenomenon that occurs when the input signal is not being properly represented by the encoded latent.
In order to combat this, prior work [11] has shown that adding a weighting term to the KL-divergence
loss allows the latent distribution to train freely. In our work, we also explore the use of different 3
values during training, and even a dynamic scheduler for annealing the values of 5.

Latent diffusion models. Although diffusion models have shown great potential for generative
modeling, sampling diffusion models are a painfully slow process due to the method’s nature. While
other generative methods such as VAEs and GANs only require a single pass through a network with
a randomly generated latent code, sampling a DDPM requires many passes through the denoising
network before a reasonable output is formed. In order to tackle this problem, recent work has shown
that training a DDPM to learn the lower dimension latent distribution of an autoencoder allows for
much more efficient training and inference while also maintaining high-fidelity generations. We also
choose to leverage latent diffusion models in our method. However, the motivation behind our choice
does not stem from efficiency, but the fact that the latent space of a VAE is continuous. Language
data is often discrete, and DDPMs empirically struggle with discrete data, and have only shown to
perform well for continuous data. Our method leverages an autoencoder to first map the data to a
continuous space, which can then act as training data for the generative DDPM.

Language diffusion models. Recent work has applied diffusion models in the domain of language
modeling, and in some cases even achieving state-of-the-art results. Representative work in the field
by Li et al. [7] has shown that applying diffusion models at the word embeddings level leads to
impressive results. Another work by Gong et al. [8] also explores diffusion at the embedding level.
Although word embeddings lie in a continuous space, mapping from DDPM-generated samples to a
word embedding requires rounding. For our method we wish to look at diffusion at the sentence level,
which means that we do not have to do any rounding operations during training, and the diffusion
model output latents can be directly decoded.

4 Approach

Applying diffusion models to language modelling is inherently challenging due to the discrete nature
of language data. Therefore, our approach aims at first mapping our training data into a continuous
space that is better suited for diffusion modelling. Our method takes inspiration from the popular
StableDiffusion [9] latent diffusion method, where a pretrained autoencoder architecture maps images
to a latent space, from which diffusion modelling is then performed. In our case, we use a sentence
variational autoencoder (VAE) as proposed by [3] in order to map a set of sentences into a continuous
latent space. After training the VAE on a given dataset, we encode sentences from this dataset into
the latent space using the trained encoder. This set of latent vectors will act as the target distribution
for our diffusion model.
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Figure 1: Sentence VAE overview.

4.1 Diffusion model preliminaries

Recent work has shown that diffusion models can achieve state-of-the-art quality for image generation
tasks [2]. Specifically, Denoising Diffusion Probabilistic Models (DDPMs) implement image synthe-
sis as a denoising process. DDPMs begin from sampled Gaussian noise 7 and applies T' denoising
steps to create a final image xy. The forward diffusion process ¢ is modelled as a Markov chain
that gradually adds Gaussian noise to a ground truth image according to a predetermined variance
schedule 31, 8o, ..., Br

Q($t|mt71) =N (wt; V1= piri_y, BtI) (D

The goal of DDPMs is to train a diffusion model to revert the forward process. Specifically, a function
approximator €4 is trained to predict the noise € contained in a noisy image x; at step t. €4 is
typically represented as a convolutional neural network characterised by its parameters ¢. Most
successful models train their models using a simplified variant of the variational lower bound on the
data distribution:
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Following previous work, we use a standard U-Net to represent €,. In our case, we wrote a custom
diffusion pipeline, that involves modelling the forward process and a training objective that aims to
model the reverse denoising process.
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Figure 2: Diffusion model overview. Figure from Ho et al. [1]]

4.2 Diffusion for language modelling

Recent work has shown the diffusion models can be adapted for language modelling. In fact,
representative work done by Li et. al [7]] has shown that diffusion models can outperform previous
state-of-the-art methods in conditional text generation. The authors chose to directly diffuse word



vectors in their approach, and their key to overcoming the discrete nature of language data was
to clamp and round the diffused embedding vectors to the nearest word embedding to map the
continuous space into the discrete vocabulary space.

Our method differs from the method proposed by Li et. al [7], in that we use the VAE to map an
entire sentence to a continuous space and directly perform diffusion on this latent space. This means
that during the diffusion process, we do not need to do any rounding, instead, the raw output from the
diffusion model is the latent vector being passed into the trained decoder.

4.3 Baselines

Following the work in [3]], we use the standard VAE model proposed in their paper as our primary
baseline. This is a reasonable baseline since this project aims at investigating whether the diffusion
model is able to leverage the latent space created by an auto-encoder. Note that this baseline produces
samples by sampling a Gaussian distribution and using them as latents for sentence generation. We
compare our methods that use a diffusion model for sampling latents instead.

5 Experiments

5.1 Data

For our experiments, we use the Penn TreeBank [12]] dataset which consists primarily of articles from
the Wall Street Journal. We made a modification to the dataset by removing all consecutive <UNK>
and N tokens in the dataset. We found that without performing this augmentation to the data, the
trained model has a tendency to generating many consecutive <UNK> tokens during the decoding
stage.

We train our VAE with the train split which contains approximately 40000 sample sentences. For
each trained VAE, we then freeze the encoder and encode all the train sentences to obtain a latent
mapping to each sentence in the dataset. These latents are then passed into the diffusion model for
training.

Latent vectors serving as diffusion model data is normalized to have a mean of 0.5 and variance of
0.5, which is consistent with most diffusion model training regimes.

5.2 [Evaluation methods

We evaluate our method for language modeling compared against the stock VAE method using
MAUVE score, perplexity, and human evaluation.

MAUVE Score. The MAUVE Score is a metric for open-ended text generation that compares
the learnt distribution from a text generation model to the distribution of human-written text using
divergence frontiers computed in a quantized embedding space [[13]]. The MAUVE score is bounded
between 0 and 1 where a score of 1 indicates perfect alignment between the text generation model’s
distribution and the distribution of human-written text.

Perplexity (PPL). Perplexity measures how likely the generated samples are according to an
autoregressive language model. We use GPT2-Large to compute perplexity [[14]. Perplexity is
formally defined as the exponentiated average negative log-likelihood of a sequence. Therefore, if we
have a tokenized sequence X = (z¢, z1, ..., z:), then the perplexity of X is,

1 t
PPL(X) = exp {—t > logpo (i | $<i)}

where log pg (z; | £«;) is the log-likelihood of the i token conditioned on the preceding tokens z ;
according to our model. Generally speaking, a lower PPL value indicates better performance for a
language model.

Human Evaluation. Human evaluation is the “gold standard" for assessing the performance of a
language model. To perform human evaluation, we asked 4 individuals to rate the quality of various



Model Parameters Evaluation Metrics

Model Type Mean Length
Latent Size  Beta PPL|] MAUVE1 Human Eval 1
Reference - - 349.3 0.946 8.05 2091
16 264.9 0.114 4.62 18.08
Baseline VAE 64 Anneal 209.9 0.095 4.71 18.96
256 216.1 0.058 4.16 16.53
le-5 409.8 0.236 5.81 24.99
16 le-4 402.7 0.271 4.23 22.12
le-3 428.2 0.291 5.18 22.32
Anneal 2454 0.137 5.03 19.14
le-5 723.6 0.151 4.41 28.30
Diffusion Model 64 le-4 703.7 0.166 5.24 22.85
le-3 749.2 0.226 341 24.71
Anneal 262.1 0.094 3.06 20.44
le-5 735.6 0.164 4.13 26.75
256 le-4 759.4 0.176 4.02 26.67
le-3 720.6 0.241 3.62 24.34
Anneal 255.7 0.075 3.59 17.59

Table 1: Comparison of MAUVE, perplexity scores from our model vs. the VAE

outputs from 1 - 10 based on a how fluent, coherent, and grammatically correct each output was.
Then, we average the score of the four individuals to create one final human evaluation score per
output. Due to the cost of human evaluation, fifteen random samples were selected from each model.

5.3 [Experimental details

We trained the VAE on the PTB dataset and trained a diffusion model on the resulting latents computed
from sentences in the training set. Unlike the original work, we chose to use GRUs instead of LSTMs
for the encoder and decoder of the VAE. We trained our model with a learning rate of le-3.

For the diffusion model, we decided on a standard U-Net, with 3 down/upsampling steps trained at a
learning rate of le-3.

To create a reference for our metrics, we calculate perplexity and MAUVE score on PTB. The
reference perplexity is calculated by averaging the perplexity of each sentence within PTB’s test set.
The reference MAUVE score is calculated from a comparison of 1000 randomly sampled sentences
from PTB’s train set and 1000 randomly sampled sentences from the test set.

5.4 Results

The results of our models and hyper-parameters are displayed in Table|l| The model with the best
PPL performance was the baseline VAE with a latent size of 64. The model with the best MAUVE
performance was our diffusion based model with a latent size of 16 and /3 of 1e-3. The model with
the best human evaluation performace was our diffusion based model with a latent size of 16 and
of le-5.

We can also qualitatively review some of the generations from each model. In Table [2| we show
samples from PTB’s test set, generations from the baseline VAE using a latent size of 64, and
generations from our diffusion based model with latent size 16 and /5 of le-3.

6 Analysis

There are several interesting observations in our results. First, the annealed ( values tend to perform
better in terms of PPL for our diffusion based models. The 3 value is used to balance the reconstruction



Reference Text (Test Set)

Generations from Baseline VAE

Generations from Diffusion

speculators are calling for a
degree of liquidity that is not
there in the market

but the company said it
wouldn’t be able to sell three
shares

nonetheless the company has
a rationale for the past two
weeks to discuss the com-
pany’s future problems

futures traders say the s&p
was <unk> that the dow
could fall as much as N
points

the best way to keep the
<unk> of the <unk> is in the
best way

in an interview with the secu-
rities exchange officials said
they didn’t want to take ad-
vantage of the currency

canada savings bonds are ma-
jor government instruments
for meeting its financial re-
quirements

the issue is a sign of a big
wall street journal’s very very
painful securities firms

the big board’s efforts to re-
vive the stock market’s third-
quarter earnings

japan’s opposition socialist
party denied that its legis-
lators had been <unk> by
<unk> owners

but the pilots have agreed
to pay the company’s suit in
the suit filed suit against bell-
south and other bidders

bankers trust that its offer
to buy back from n but the
company’s problems weren’t
fully accurate by mr . edel-

man

Table 2: Generations from the stock VAE and our latent diffusion model.
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Figure 3: Ablations on 3 for both Perplexity and MAUVE Score

error and the KL divergence term in the VAE objective function. By annealing £3, the diffusion model
should be learning a disentangled representation of the data in a more stable manner. This seems
to have an advantage in terms of PPL over setting a discrete value to the importance of the KL
divergence term relative to the reconstruction error.

The second interesting behavior from our diffusion models is that the MAUVE score tends to be
higher for fixed 3 values as apposed to annealing. It might be the case that a fixed value of beta
strikes a better balance between the reconstruction error and the KL divergence term, which results in
a better representation of the semantic similarity between words.

To better understand how our § and latent size parameters affected the performance of our diffusion
based models, we performed an ablation on each.

6.1 Ablations on 3

We illustrate the effect on PPL and MAUVE by varying /3 in Figure[3] Generally speaking, varying /3
doesn’t seem to cause significant change in PPL. Varying 5 does seem to have a much greater effect
on the MAUVE score given a fixed latent size. A higher value of 8 more strictly enforces the KL
divergence term, which can create a more disentangled latent space representation of the data since
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Figure 4: Ablations on Latent Size for both Perplexity and MAUVE Score

each dimension of the latent space corresponds to a specific, independent feature or attribute of the
data. This disentangled representation can help the model to capture more abstract semantic concepts
and capture the semantic similarity between words, which can lead to a better MAUVE score. Note
that the original sentence VAE paper [3]] uses an annealed 3 schedule, where they gradually increase
[ during training. We implement this annealed 8 schedule and compare it with a constant 3. Please
refer to the original paper by Bowman et al. [3]] for full implementation details.

6.2 Ablations on Latent Size

We investigated the effect of varying the latent size on PPL and MAUVE. For fixed 8 models,
a smaller latent size seems to correspond to lower PPL values and higher MAUVE scores. For
annealed (3, the latent size does not seem to change the PPL values significantly. It does seem to be
inversely proportional to the MAUVE score, however. Generally speaking, smaller latent sizes tend
to correspond to stronger PPL. and MAUVE performance metrics. The regularization from a smaller
latent size could help with the model’s generalizability.

6.3 Length of Generated Sequences

Previous research has shown that as the length of generated text increases, there is an expected
decrease in quality of PPL and MAUVE [13]]. In Table[I] we include the average lengths of generated
sequences from our various models. We see that our diffusion based models produce longer sequences
on average compared to the baseline, which makes it harder for our diffusion based models to perform
equally as well on PPL and MAUVE score. Although that is the case, our diffusion based models are
still able to outperform the baseline in terms of MAUVE and human evaluation.

7 Conclusion

In this paper, we devised a latent diffusion model for language modelling using a sentence autoencoder
architecture. We were able to map sentences to a continuous latent space and perform diffusion
over the latent space to generate sequences of text. Our results were able to outperform baseline
VAE’s on MAUVE score and human evaluation. Due to computing constraints, we were only able
to perform coarse ablations on 3 and latent size hyper-parameters. It would be interesting to do a
more fine-grained ablation study to understand the relationship between the hyper-parameters and
metrics better. It would also be interesting to test other datasets. The PTB dataset contains quite a
lot of financial jargon, and its reference text has a relatively high perplexity score. Testing larger
datasets with lower diversity could be more beneficial for diffusion based approaches. It could also
be worthwhile to test consistent architectures for the baseline as well as diffusion models to provide
for a better direct comparison.
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