
BERT’s Mean Teacher and Multitask Fine-Tuning
Stanford CS224N Default Project

Anthony Qin
Department of Computer Science

Stanford University
antqin27@stanford.edu

Kevin Tran
Department of Computer Science

Stanford University
ktran25@stanford.edu

Abstract

This project explores different approaches for improving the performance of BERT
on three downstream tasks: sentiment analysis, paraphrase detection, and semantic
textual similarity. We start by implementing a minimalist version of BERT as
our baseline, and then fine-tuning and extending the model to create sentence
embeddings that perform well across all three tasks simultaneously. We explore
approaches such as balanced round-robin fine tuning, mean teacher algorithm, and
adjusting hyperparameters such as loss, batch size, and learning rate decay. Our
experimental results show a significant performance increase over the baseline,
demonstrating the effectiveness of our approach and its potential applications in
various natural language processing tasks.

1 Key Information to include
• Mentor: Candice Penelton
• External Collaborators (if you have any): n/a
• Sharing project: n/a

2 Introduction

In this project, we tackle the NLP problem of building a model to simultaneously perform well on
not just one but multiple sentence-level tasks, namely sentiment analysis, paraphrase detection, and
semantic textual similarity. We achieved this by implementing important components the BERT
model (Devlin et al., 2018) and extending upon it to achieve improved results across all three tasks.

For sentiment analysis, our goal was to classify a text’s polarity on a range from 0 (Negative) to 4
(Positive). For paraphrase detection, our goal was to find paraphrases of texts in a large corpus of
passages, specifically whether two questions were paraphrases of each other. For semantic textual
similarity, our goal was to capture the notion that some texts are more similar than others by evaluating
it on a scale from 5 (same meaning) to 0 (not at all related).

Using pre-trained weights loaded into our BERT model, we first performed sentence classification on
the Stanford Sentiment Treebank (SST) dataset and the CFIMDB dataset. Then, we experimented
with multi-task finetuning BERT’s contextualized embeddings to simultaneously perform well on
the three aforementioned multiple sentence-level tasks using the SST, Quora, and SemEval STS
Benchmark Datasets. We experimented with in-domain and cross-domain fine-tuning by training
on each dataset individually then in an unbalanced as well as balanced round-robin style. We
experimented with different loss functions on each task and with varying hyperparameters. We
also implemented the mean teacher algorithm to address overfitting in our multitask BERT model,
where the teacher model’s parameters are an exponential moving average of the student model’s
weights, and the consistency loss is calculated using Bregman Proximal Point Optimization with
either mean squared error or KL divergence. (Tarvainen and Valpola, 2018). Among all these
approaches, we found a batch size of 8, balanced round-robin style with Mean Teacher, cross-entropy

Stanford CS224N Natural Language Processing with Deep Learning

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Figure from (Devlin et al., 2018)

loss on sentiment analysis and paraphrase detection, and a MSE loss on semantic textual similarity to
significantly improve model performance across the three downstream tasks.

3 Related Work

Bidirectional Encoder Representations from Transformers (BERT) is a transformer-based model that
generates contextual word representations (Devlin et al., 2018). Released in 2018, BERT took a large
leap forward for contextual word embeddings, large language models, and foundational models by
making use of deeply bidirectional word representations and a transformer backbone. Unlike previous
language representation models (Peters et al., 2018a; Radford et al., 2018), BERT is designed to
pretrain deep bidirectional representations from unlabeled text by jointly conditioning on both left
and right context in all layers, allowing the model to be fine-tuned with just one additional output
layer to create state-of-the-art models for a wide range of downstream tasks, three of which we
explored in this project: sentiment analysis, paraphrase detection, and semantic textual similarity. It
uses a masked language model (MLM) pre-training objective that enables the representation to fuse
the left and the right context as well as a next sentence prediction task that jointly pretrains text-pair
representations.

Our work is also inspired by Sun et al. (pages 194–206. Springer, 2019) and Jiang et al. (2019). Sun
et al. (pages 194–206. Springer, 2019) investigated how to maximize the utilization of BERT for the
text classification task and explored several ways of fine-tuning BERT to enhance its performance,
from which we drew inspiration. Tarvainen and Valpola (2018) proposes a new method for semi-
supervised deep learning called Mean Teacher, which improves upon a previous method called
Temporal Ensembling. Mean Teacher uses two models: a student model that is trained on both
labeled and unlabeled data, and a teacher model that is an exponential moving average of the
student model’s weights. The paper shows that using the teacher model as a target for consistency
regularization improves the performance of the student model, especially when there are few labeled
examples available.

4 Approach

4.1 minBERT

Our baseline is Devlin et al. (2018)’s BERT, much of it provided by the CS224N staff. We imple-
mented the Multi-head Self-Attention, the Transformer Layer, and the Adam Optimizer. For more
details on the architecture, we refer the reader to the default project handout. We trained minBERT on
the SST and the CFIMDB datasets using both pre-trained and fine-tuned embeddings for sentiment
classification. Our results are as follows:

• Pretraining for SST: Dev Accuracy: 0.392
• Pretraining for CFIMDB: Dev Accuracy: 0.788
• Finetuning for SST: Dev Accuracy: 0.511
• Finetuning for CFIMDB: Dev Accuracy: 0.976

2

4.2 Single-task Fine-Tuning

As a first attempt to improve our BERT baseline on multiple downstream tasks, we first tried
fine-tuning our model on each dataset individually: SST, Quora, and SemEval.

For fine-tuning on the SST and Quora datasets, we used Cross Entropy loss as sentiment analysis
and paraphrase detection are classification problems. We chose to use MSE loss for fine-tuning on
the SemEval dataset because semantic textual similarity is a regression problem with a continuous
variable output.

4.3 Round-robin Multi-task Fine-Tuning

Next, we implemented round-robin multitask fine-tuning to fine tune our model on all three datasets
at once. We used the same losses: Cross Entropy loss for SST and Quora, and MSE loss for SemEval.
Since the size of each dataset are different, we experimented with multiple different architectures.

First, we attempted to use the entirety of each dataset in our training, meaning that after one dataset is
exhausted, the epoch would not complete until the largest dataset is also exhausted. We experimented
with varying batch sizes for each dataset, as the batch size didn’t matter since each dataset would be
ran to completion.

Then, we experimented with using balanced round-robin multitask fine-tuning by setting the size of
each dataset to the size of the smallest datsaset, SemEval, and taking a random sample of that size
from each dataset. We used the same batch size across all three datasets in this scenario (either size 8
or 32). This way, the model is trained evenly across all three datasets and doesn’t favor the bigger
datasets/tasks over the others.

As we experimented with balanced round-robin multitask fine-tuning, we tried different ways of
keeping track of the loss and gradient descent. Initially, we summed together all three of the task
losses and took one big step afterwards for each batch. Then, after changing the STS loss from Cross
Entropy to MSE, we adjusted our update to take a small step after every task, so we took three small
steps instead of one big step for each batch (using a specialized loss of Cross Entropy for SST and
Paraphrase, MSE loss for STS).

4.4 Mean Teacher

Figure 2: Illustration of the Mean Teacher Algorithm, showing both supervised classification and
unsupervised consistency losses. Figure from (Tarvainen and Valpola, 2018)

In our project milestone, we faced a challenge of overfitting, where our multitask BERT model was
performing well on the training data but not on the test data. To address this issue, we implemented
an extension using the mean teacher algorithm.

In our mean teacher algorithm implementation, our multitask BERT model plays two roles: the
teacher model and the student model. Both models share the same architecture but have different
parameters. The student model is our unmodified multitask BERT model, and the teacher model’s

3

parameters are an exponential moving average of the student model’s weights. This approach aims to
make the teacher model more stable and less prone to overfitting.

The idea behind the mean teacher algorithm is that models that are consistent with their past predic-
tions are more likely to generalize well on new data. Therefore, we use the teacher model to enforce
consistency on the student model’s predictions. We accomplish this by using Bregman Proximal
Point Optimization to calculate and minimize a penalty that penalizes the student model’s Bregman
divergence, which is a measure of the distance between the teacher and student model’s logits.

We calculated this divergence, called consistency loss in our referenced paper, varying between mean
squared error or Kullback-Leibler divergence. Mean squared error measures the distance between the
student and teacher model’s prediction logits, while KL divergence is a statistical measure of how
much information is lost when using the student’s prediction instead of the teacher’s. Because KL
divergence is not symmetric (KL(Q|P) ̸= KL(P |Q)), we used the sum of both KL divergences as
our consistency loss.

In the mean teacher algorithm, the student model can learn from both supervised and unsupervised
data. The supervised loss is the typical loss used, either MSE or Cross Entropy loss on labeled data.
In addition, consistency loss is introduced by the mean teacher algorithm, which measures how well
the student model agrees with the teacher model.

By learning from a more consistent teacher model, we hope to reduce overfitting and increase accuracy
while not needing as much labeled data. The mean teacher algorithm is a promising extension that
improved the performance of our multitask BERT model in downstream tasks.

5 Experiments

5.1 Data

For sentiment analysis, we used the Stanford Sentiment Treebank (SST) dataset 1 (splits: 8,544 train,
1,101 dev, 2,210 test) and the CFIMDB dataset (splits: 1,701 train, 245 dev, 488 test). Given text, it
classifies its polarity: negative, somewhat negative, neutral, somewhat positive, or positive.

For paraphrase detection, we used the Quora Dataset 2 (splits: 141,506 train, 20,215 dev, 40,431
test). Given a question pair, it determines whether the different questions were paraphrases of each
other (classification).

For for semantic textual analysis, we used the SemEval STS Benchmark Dataset 3 (splits: 6,041
train, 864 dev, 1,726 test). Given two phrases, it determines on a scale from 5 (same meaning) to 0
(not at all related) if the phrases are related to each other.

5.2 Evaluation method

We evaluated our model by performing inference on the held-out dev sets from Stanford Sentiment
Treebank, and Quora, and SemEval STS Benchmark Datasets. We compared the prediction accuracy
to those of our baseline models as well as to each other to learn what changes we made were
beneficial.

Finally, we ran our model on the test sets from Stanford Sentiment Treebank, and Quora, and SemEval
STS Benchmark Datasets and evaluated on the test set accuracy and correlation scores.

5.3 Experimental details

In both single and multi-task portions of our project, the training tasks were ran for 10 epochs. We
applied dropout to BERT’s pooled outputs, with a probability of 0.3. We used flat learning rates of
1e-3 for pretraining, and 1e-5 for finetuning. For the single task classifier, we used a batch size of 8,
while for the multi-task classifier, to accommodate memory limits we used batch sizes of 8, 32, and
64 depending on the dataset (specified in the results).

1https://nlp.stanford.edu/sentiment/treebank.html
2https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
3https://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark

4

https://nlp.stanford.edu/sentiment/treebank.html
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark

5.4 Results

We present the compiled results of our models on the development set in Table 1. The results
can largely be split into two sections: single-domain fine-tuning on one dataset and round-robin
fine-tuning on all three datasets. It is apparent that with single-domain fine-tuning, the model’s
performance largely favors the domain it was trained on, as expected. In round-robin fine-tuning,
we observed a significant performance boost after switching from uneven to even fine-tuning across
the three datasets. It makes sense that round-robin fine-tuning on uneven datasets resulted in bad
performance of the model on STS, as the SemEval dataset is the smallest of the three. Amongst the
even dataset round-robin models, we observed only small changes in performance with the exception
of round-robin with mean teacher, which helped the model generalize better.

We present our best model’s performance on the test set in Table 2. It is expected that our model
performs slightly worse on the test set because it is completely new data. Its results mostly resemble
that of the dev sets with the exception of STS.

Table 1: Performance of various models on SST, Paraphrase, and STS development sets

Model description dev SST dev Para dev STS dev average
Finetuned on only SST (baseline) 0.516 0.463 0.248 0.409
Finetuned on only SST w/ Mean Teacher 0.515 0.475 0.245 0.417
Finetuned on only Para w/ Mean Teacher 0.197 0.823 0.388 0.469
Finetuned on only STS w/ MSE Loss & Mean Teacher 0.203 0.594 0.722 0.506
Round Robin w/ Uneven Dataset & Batch Sizes 0.305 0.455 0.019 0.260
Round Robin w/ Even Dataset Sizes & Batch Size 8 0.490 0.748 0.613 0.617
Balanced RR w/ Even Dataset, Specialized Loss 0.493 0.748 0.654 0.632
Balanced RR w/ Mean Teacher, Even Dataset, Specialized Loss 0.519 0.746 0.727 0.664

Table 2: Performance of best model on SST, Paraphrase, and STS test sets

Model description test SST test Para test STS test average
Balanced RR w/ Mean Teacher, Even Dataset, Specialized Loss 0.529 0.744 0.677 0.650

6 Analysis

In this section, we offer analysis of our main extensions of BERT for performing well simultaneously
on three downstream tasks: single-domain fine-tuning, balanced and unbalanced round-robin fine-
tuning, different batch sizes, specialized loss, and mean teacher.

6.1 Single-domain fine-tuning

We observe that training on only one dataset can lead to improved performance on that specific task
but can lead to degradation in performance on other tasks. For example, the model finetuned on only
Para dataset with Mean Teacher performed well on Para dataset but poorly on SST and STS datasets.
Similarly, the model finetuned on only SST dataset showed poor performance across all metrics.
This suggests that training on a single dataset can lead to overfitting, which reduces the model’s
generalization ability to other datasets. Hence, it is crucial to use multiple datasets and appropriate
finetuning techniques to improve the model’s performance on multiple tasks.

6.2 Unbalanced/balanced Round-robin Fine-tuning

We observe that with round-robin fine-tuning, it performs even worse than single-domain fine-tuning
due to the uneven distribution of training on the different sized datasets, leading to poor generalization.
This is made especially apparent by the model’s poor performance on the STS dataset as the SemEval
dataset is the smallest of the three.
However, switching to training the same amount on each dataset (balanced to the size of the smallest
dataset, SemEval), resulted in a significant increase in performance as the model is fine-tuned evenly
across all three tasks.

5

6.3 Different batch sizes

Figure 3: Experiments with varying batch size

In our experiments, we found that using a smaller batch size, such as 8, led to better performance
than using a larger batch size, such as 32 or 64. This is likely due to the fact that a smaller batch
size allows the model to see a more diverse set of examples in each batch, which can lead to better
generalization. Additionally, using a smaller batch size can lead to a more stable training process, as
it reduces the likelihood of the model getting stuck in a poor local minimum.

6.4 Specialized Loss

Figure 4: Experiments with varying loss function

The specialized loss function we experimented with was Mean Squared Error (MSE) loss for the STS
dataset. As our baseline, we originally used cross-entropy loss for all three prediction tasks, however,
using cross-entropy loss for the STS dataset treats it as a classification task, which may not be the
most appropriate choice. Using MSE loss for the STS dataset, on the other hand, explicitly optimizes
the model to predict continuous scores, which is a more appropriate choice for this task.

Our experiments showed that using MSE loss for the STS dataset improved the model’s performance
on this task, on par with the mean teacher method. Additionally, using mean teacher in conjunction
with the specialized loss function further improved the model’s performance on all three tasks,
suggesting that using a specialized loss function can be beneficial when fine-tuning BERT on multiple
tasks.

6.5 Mean teacher

In our experiments, we used Mean Teacher to improve the generalization ability of our model when
fine-tuning on multiple tasks. To calculate the Bregman divergence between the student and teacher
model’s logits, we experimented with using two different divergence functions: KL divergence and
MSE divergence.

Interestingly, we found that using KL divergence led to a significant improvement in performance
over using MSE divergence. This result is contrary to the findings in the original Mean Teacher paper,
where the authors reported that MSE divergence showed better performance. The exact reason for
this discrepancy is unclear, but it is possible that the nature of our dataset, architecture, and prediction
task favored KL divergence over MSE divergence.

6

Figure 5: Experiments with mean teacher

Overall, our observations suggest that using KL divergence to calculate the Bregman divergence in
Mean Teacher can lead to improved performance on multiple downstream tasks when fine-tuning
BERT. In our case, using KL divergence led to better performance, but this may not be the case for
all datasets and prediction tasks. It is therefore important to experiment with different divergence
functions to determine the most appropriate choice for a given task.

7 Conclusion

In this project, we implemented a BERT model and extended upon it to simultaneously perform
well on sentiment analysis, paraphrase detection, and semantic textual similarity. We show that a
model with round-robin multitask fine-tuning on even datasets across the three domains and mean
teacher with specialized losses for each task performs significantly better than the baseline on all three
tasks, achieving strong results: SST/Para/STS/total 0.519/0.746/0.727/0.664 on the dev leaderboard
and SST/Para/STS/total 0.529/0.744/0.677/0.650 on the test leaderboard. In future work, we are
interested in experimenting with extensions such as further pre-training, perhaps on external datasets
in the target domains, as well as gradient surgery multi-task fine-tuning.

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of

deep bidirectional transformers for language understanding.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Zhao Tuo. 2019.
Smart: Robust and efficient fine-tuning for pre-trained natural language models through principled
regularized optimization.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. 2018a. Deep contextualized word representations for natural language under-
standing. page 353–355.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language
understanding with unsupervised learning.

Chi Sun, Qiu Xipeng, Yige Xu, and Xuanjing Huang. pages 194–206. Springer, 2019. How to
fine-tune bert for text classification?

Antti Tarvainen and Harri Valpola. 2018. Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results.

7

http://arxiv.org/abs/1703.01780
http://arxiv.org/abs/1703.01780

8 Appendix

Figure 6: Comparing Category Training and Test Accuracies

To better understand the performance of our model, we examined it to determine whether the
misclassifications were due to underfitting or overfitting. Underfitting occurs when a model is too
simple and fails to capture the complexity of the data. As a result, it performs poorly both on the
training and test data. Overfitting, on the other hand, occurs when a model is too complex and
captures noise in the training data. We were concerned that our task specific classifiers were very
simple, and our test error may have been due to underfitting rather than overfitting.

We examined the difference between training and test accuracy and found that while all three training
accuracies were between 90 and 95%, the test accuracies were between 50% and 75%. To address
the issue of overfitting, we implemented the mean teacher method, and exposed the model to more
training data. Despite our best efforts to optimize our model, we found that it was still overfitting,
albeit significantly less than with just pure dropout as regularization.

We also tried implementing gradient decay, which is a technique that reduces the magnitude of the
gradient over time to improve model performance. We tested values of 0.01 and 0.1, but found that
they had minimal effect on both training and test accuracies. Despite these challenges, we remain
optimistic about our model’s performance and are open to explore other optimization techniques to
reduce overfitting.

8

	Key Information to include
	Introduction
	Related Work
	Approach
	minBERT
	Single-task Fine-Tuning
	Round-robin Multi-task Fine-Tuning
	Mean Teacher

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Single-domain fine-tuning
	Unbalanced/balanced Round-robin Fine-tuning
	Different batch sizes
	Specialized Loss
	Mean teacher

	Conclusion
	Appendix

