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Abstract

Intent classification is an important natural language understanding task which
involves identifying all the supported intents, referred to as in-domain, from user
utterances while also detecting and rejecting out-of-domain, or OOD, user intents.
The purpose of this project is to investigate how effective pre-trained large language
models such as BERT or GPT are for intent classification when fine-tuned on
specific in-domain datasets. We implemented and evaluated minBERT pretrained
and fine-tuned models on CLINC dataset [1]. We implemented OOD detection
methods based on [1, 2, 3, 4]. We also fine-tuned multiple large language models
from HunggingFace, both encoder-based and decoder-based, and evaluated their
performance based on the same CLINC dataset. We present detailed findings from
our extensive evaluations.

1 Key Information to include

• Mentor: Irena Gao

2 Introduction

With the increasing popularity of intelligent devices like chatbot and voice-enabled personal assistants,
understanding the intent behind the user utterance, a.k.a intent classification, becomes increasingly
important. Moreover, these devices are increasingly being used in open environments with personal
or new vocabulary, and even new intents that are out of the original model design scope. Thus, it
becomes more and more challenging to accurately understand the user intents. On one hand, it needs
to ensure high accuracy when classifying the supported intents (in-domain (IND)), and on the other
hand, it needs to be able to correctly identify and reject (out-of-domain (OOD)) intent. Basically
it requires the model to know the boundary between what it knows and what it does not know. If
the models cannot detect OOD effectively, the consequences can range from giving wrong answer
to a non harmful question (in a socialbot), to giving factually wrong results to user search query
(eg., based on ChatGPT due to its hallucination), to more serious mistakes like allowing intelligent
Robot to perform physical attack to human (due to unwanted arm movement). It is highly desirable
to design natural language understanding models such as intent classifiers that can perform well for
both in-domain prediction and OOD detection.

Recently we are witnessing the explosive development of large language models, from BERT [5]
to GPT[6]. These foundational models are trained on huge amount of data. Because of that, these
pre-trained large models have demonstrated to be able to greatly improve task-agnostic few-shot
performance. They allow quick generalization of machine learning models. However, these models
are focused on task agnostic performance. When used for a specific task, fine-tuning is required
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which is a process that updates the weights of a pre-trained model by training on a new labelled
dataset for your specific task, for example, an intent classifier for a particular domain.

In this project we are interested in studying when large pre-trained models are used to fine-tune intent
classifier for specific tasks, how well these models can help addressing the OOD problem.

3 Related Work

Intent Classification is one of the most important natural language understanding tasks [7]. Various
models have been proposed to encode the user utterance for intent classification, from RNN [8],
enriched word embeddings [9] to BERT based model [5].

OOD Detection has been studied for many years since [10]. Authors in [11] built an SVM classifier
trained on in-distribution (IND) data and randomly selected OOD data. More recently [12] have also
studied this problem in Question-Answering systems.

On the other hand, some researchers in computer vision have created techniques that rely on either
calibrating the confidence of predicted classes (ODIN) [2] or constructing a Gaussian model using
features extracted from neural network hidden layers (Mahalanobis) [3]. Monto-Carlo Dropout (MC
dropout) [4] approximates Bayesian inference to learn deep learning model uncertainty and its recent
investigation in Transformer models [13].

From dataset point of view, CLINC [1] is a benchmark dataset that allows intent classifiers to be
tested on both IND prediction and OOD detection performance. For OOD performance, there are
different evaluation metrics that have appeared in literature [2, 3, 14].

We implemented these methods and evaluation metrics in this project. We will provide many more
details in later sections for some of the above mentioned related work.

4 Approach & Implementation

We have finished the following main implementation tasks: (1) minBERT function implementation as
described in default final project, even though this is not strictly related to our project; (2) multiple out-
of-domain detection methods and evaluation metrics implementation based on literature [1, 2, 3, 4].
(3) Hugging Face implementation that leverages Hugging Face APIs (e.g., Tokenizer, Trainer, etc.) to
enable the training and evaluation (both in-domain and out-of-domain evaluation) of various Hugging
Face models. We have also fine tuned multiple encoder and decoder models from HuggingFace and
evaluated their performance on CLINC datasets [1].

minBERT: Following the default final project instructions, we implemented the below functions:

• bert.py including attention function inside BertSelfAttention, BertLayer class, BertModel
embed class. We refer to the Hugging Face code https://github.com/huggingface/
transformers/blob/main/src/transformers/models/bert/modeling_bert.py
for our own implementations. We passed the sanity_check.py.

• optimizer.py including the step function for Adam optimizer class. We refer to the
PyTorch source code https://github.com/pytorch/pytorch/blob/master/torch/
optim/adam.py for our own implementation. We passed the optimizer_test.py.

• classifier.py including BertSentimentClassifier class.

We have trained both minBERT-pretrain model and minBERT-finetune model with hyperparamters
described in section 5 experimental details. Even though it is not within the scope of our project, as
further sanity check, we are able to reproduce the sentiment classification on both the SST and the
CFIMDB datasets.

Hugging Face Model Implementation: First, we implemented sequence classification
task training and testing code in huggingfaceSequenceClassification.py using Hug-
ging Face functions including tokenizer, trainer and model APIs. Our implementation is
generic for sequence classification tasks based on different language models. Specifically,
huggingfaceSequenceClassification.py reads the config files encoder_models.config
and decoder_models.config. In addition to in-domain test, we also implemented out-of-domain
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detection test code via our implemented OOD detection method and evaluation code in ood/ folder
which we will introduce in the rest of this section.

Moreover, for GPT-2 generation model, we use the run_clm.py in Hugging Face to finetune the
model and we implemented gpt2_inference.py to generate text using the finetuned GPT-2 model.

For GPT-3 generation model finetuning and inference, we created OpenAI account and used its APIs
in https://platform.openai.com/docs/guides/fine-tuning.

Out-of-domain Detection Methods: First, we implemented the following deterministic
OOD detection methods. For each data sample x, we implemented the following meth-
ods in ood/ood_detection.py for Hugging Face models as well as the corresponding
ood/ood_detection_minbert.py that is compatible with minBERT implementation. (l is the
output logits in the last layer of neural networks, and f is the feature in the penultimate layer before
the last linear classifier layer.

• Confidence Score: Confidence(x) = max[softmax(l(x))]

• Entropy Confidence Score: Entropy(x) = Entropy[softmax(l(x))]

• ODIN Confidence Score [2]: ODIN(x) = max[softmax(l(x)/T )] with large temperature
scale T (In our experiment, we evaluate on different T = 10, 100, 1000, 1000).

• Mahalanobis distance [3]: SMaha(x) = maxi −(f(x)− µc)
TΣ−1(f(x)− µc) where µc

and Σ are the class mean and the covariance matrix.

µc =
1

Nc

∑
i:yi=c

f(xi), Σ =
1

N

∑
c

∑
i:yi=c

(f(xi)− µc)(f(xi)− µc)
T

We refer to the following code https://github.com/pokaxpoka/deep_Mahalanobis_
detector for our implementation.

We also implemented Monte-Carlo Dropout (MC Dropout) with the dropout rate p [4, 13]. Let xh be
the outputs of the hth layer of the network. MC dropout considers a dropout mask Mh drawn from
the Bernoulli distribution:

xh = σ(xh−1|Wh,Mh), Mh ∼ Bernoulli(1− p)

MC dropout can be used at both training and inference stages for each dropout layer of the network
and subsequently provides an ensemble of models parameterized by these dropout masks.

We use the following OOD detection scores/methods on T stochastic passes of MC dropout models.

• Sampled maximum probability (MaxProbMC): maxAverage[softmax(l(x))]

• ODIN1000MC: maxAverage[softmax(l(x)/T )] with temperature scale T = 1000

• Entropy: Entropy[Average[softmax(l(x))]]

We refer to the following code https://github.com/s-nlp/certain-transformer for our
implementation.

Out-of-domain Evaluation Metrics: Next, we implemented the out-of-domain detection evaluation
metrics commonly used in [2, 3, 14]. Our implementation is in ood/ood_metrics.py.

Let TP, TN, FP, and FN denote true positive, true negative, false positive, and false negative.

• EER (Equal Error Rate): is the error rate when false positive rate (FPR=FP/(FP+TN)) is
equal to the false negative rate (FNR=FN/(TP+FN)). ERR is the lower the better)

• FPR95: is the FPR (the probability that an OOD utterance is misclassified as in-domain)
when the true positive rate (TPR=TP/(TP+FN)) is as high as 95%. FPR95 is the lower the
better.

• Detection Error: is the minimum misclassification probability with different thresholds. It
is also the lower the better. Based on [2], it is defined as follows:

min
δ

{δ(1− TPR) + (1− δ)FPR}
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• AUROC is the Area under the Receiver Operating Characteristic Curve which plots TPR
against the FPR with different thresholds. It is the higher the better.

• AUPR: is the Area under the Precision-Recall Curve which plots the precision (TP/(TP+FP))
against recall (TP/(TP+FN)) with different thresholds. It is the higher the better. AUPR IN
and AUPR OUT are when AUPR is used for IND and OOD data samples respectively.

EER, AUROC, and AUPR IN, AUPR OUT are all threshold-independent metrics.

5 Experiments

We run our experiments on Lambda Tensorbook laptop with Nvidia GeForce RTX 3080 16G RAM
GPU. We set up the conda environment cs224n_dfp for model training and evaluation environment
following the minBERT default final project instruction. We also installed additional python libraries
(e.g., numpy, math) needed for out-of-domain detection implementation.

Data: CLINC dataset [1] is a benchmark NLU dataset that was collected in the same style made by
real users of task-oriented systems. The queries cover 150 intents, plus out-of-scope queries that do
not fall within any of the 150 in-scope intents. We use the CLINC plus version in Hugging Face
datasets https://huggingface.co/datasets/clinc_oos. In our model training, we only use
15,000 train in-domain training data and select the model with the best accuracy on 3,000 validation
data. We then test the in-domain performance on 4,500 in-domain test data and the out-of-domain
detection performance on 1,000 out-of-domain test data. (Note that we do not use the 250 train and
100 validation out-of-domain data in either model training or testing.)

Evaluation Method: For in-domain classification evaluation, we use the accuracy metric. For out-
of-domain detection evaluation, we use EER, FPR95, detection error, AUROC and AUPR IN/OUT
metrics as described in section 4.

We evaluate on the models listed in Table 1. We consider two types of models, encoder models
that only use Transformer encoders (a.k.a. representation model) and decoder models that only use
Transformer decoders (a.k.a. generation model). For both encoder and decoder models, we evaluate
in-domain classification and out-of-domain detection performance using their Sequence Classification
model versions. For decoder models, we further use them to generate text and then leverage these
generated texts to evaluate in-domain classification and out-of-domain detection performance.

Table 1: Summary of Models used in Our Experiment

Model Type Model Size Pretraining data

Encoder model

Albert 46MB BookCorpus, English Wikipedia (16GB of text)
BertBase 419MB BookCorpus, English Wikipedia (16GB of text)
BertLarge 1.3GB BookCorpus, English Wikipedia (16GB of text)

RoBertaLarge 1.4GB BookCorpus, English Wikipedia, CC-News, OpenWebText, Stories
(160GB of text)

MegatronBert 1.3GB BookCorpus, English Wikipedia, CC-Stories, RealNews, OpenWeb-
text (174GB of deduplicated text)

Decoder model

GPT2Small 488MB WebText (40GB of text)
GPT2Medium 1.4GB WebText (40GB of text)

GPT3 175GB Books, articles, websites, and other texts ( 570GB of text)

Experimental Details: We first processed CLINC dataset for the aforementioned different models:
(1) Sequence Classification model in prepare_clinc_huggingface.py and (2) decoder generation
model in prepare_clinc_gpt.py which generates the following format of training data:

"<sentence>. ask for <label text>"

where <label text> is the label name of each class in CLINC dataset. To use decoder generation
model generated texts, we consider two ways: string matching with label text and feed augmented
utterance (original utterance+generated text) into a classification model.

For all models, we finetune the whole model using CLINC dataset. We use learning rate 2e-5, batch
size 64 to train each model 10 epochs. For each model, we run experiments 3 times then report the
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mean and standard deviation of all evaluation metrics across the 3 models. For each model, we use
the model checkpoint with the best in-domain classification accuracy on the validation dataset, to
evaluate in-domain classification and out-of-domain detection.

For Monte-Carlo Dropout method, we only use MC dropout during model inference. We replace the
dropout in all layers and for each model we run 3 stochastic passes by sampling the dropout masks.
We then use the method in 4 on 3 stochastic models to detect OOD.

For GPT3 finetuning, we follow the instruction from OpenAI https://platform.openai.com/
docs/guides/fine-tuning, using the prepared data described in experiment details in section 5.
We use OpenAI default hyperparameters. After we finetuned GPT3, we wrote GPT3 inference in
gpt3_finetuning/gpt3_inference.py. We generate text of maximum length 5 since the longest
label text is 5.

6 Experimental Results & Analysis/Findings

Table 2: In-domain Classification Results

Model Type Model Training Data
In-domain Accuracy(↑)

Validation Test

Encoder Classifier

Albert

Original Training data

94.18±0.74 93.38±0.13
BertBase 96.82±0.02 96.19±0.05
BertLarge 97.00±0.05 96.49±0.13

RoBertaLarge 98.19±0.16 97.09±0.22
MegatronBert 97.97±0.05 97.32±0.04

MegatronBert GPT2 Medium Generated Text 57.79±0.44 59.37±0.02
MegatronBert GPT2 Medium Augmented Text 98.21±0.06 97.21±0.01

Decoder Classifier
GPT2Small

Original Training data
93.70±0.14 93.82±0.06

GPT2Medium 96.80±0.05 96.16±0.08

Decoder Generation GPT2Medium
Original Training data

- 28.91±0.03
(String matching) GPT3 - 96.80±0.01

6.1 In-domain Classification Performance Analysis

Table 2 shows the in-domain classification accuracy of both encoder and decoder classifier (sequence
classification) models. We have the following observations:

• Encoder classifier has slightly better in-domain accuracy than decoder classifier. This is
because encoder models target on learning better representations of the whole sentence.

• The larger the model size is, the higher in-domain accuracy is (with marginal improvement).
For similar size models, the model pretrained on larger corpus has better in domain accuracy
than those pretrained on smaller corpus (e.g., MegatronBert > RoBertaLarge > BERTLarge).

• When using decoder GPT2 generated texts (both only generated text and augmented utter-
ance) to train an additional encoder classifier MegatronBert, in-domain accuracy is worse
than only using original CLINC training data. This is because oftentimes the generated text
interpreted some other relevant meaning of the input sentence which confuses the additional
classifier model. Below is an example:

"how do germans say goodnight. ask for greeting"

In this example, while greeting is relevant to the sentence, only using "greeting" as training
data in the additional classifier will lose the translation semantics in the original sentence.

• Compared to similar size of classifier models, decoder generation model has worse accuracy
when using string matching between generated text and label text. GPT3 finetuned model
has much higher in-domain accuracy than GPT2 medium model.

6.2 Out-of-domain Detection Performance Analysis

For out-of-domain detection, we evaluated the following types of models.
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Table 3: Encoder-based Classification Model Out-of-Domain Detection Results

Model OOD Method EER(↓) FPR95(↓) DET ERR(↓) AUROC(↑) AUPR IN(↑) AUPR OUT(↑)

Albert

Confidence 11.50±0.14 27.74±0.74 11.27±0.28 94.47±0.41 98.52±0.20 80.86±0.10
Entropy 10.60±0.28 22.98±1.32 10.49±0.24 95.04±0.40 98.67±0.18 82.77±0.47
ODIN10 10.37±0.38 23.74±1.55 10.12±0.32 95.29±0.39 98.78±0.14 82.79±0.40

ODIN100 10.40±0.42 23.76±1.44 10.12±0.31 95.31±0.38 98.79±0.13 82.82±0.40
ODIN1000 10.40±0.42 23.76±1.43 10.13±0.31 95.31±0.38 98.79±0.13 82.79±0.40
ODIN10000 10.40±0.42 23.75±1.43 10.13±0.31 95.31±0.38 98.79±0.13 82.37±0.42
Mahalanobis 9.70±0.00 20.04±0.01 9.40±0.00 95.91±0.14 98.97±0.05 83.54±1.08
MaxProbMC 26.67±2.50 69.95±4.21 26.21±2.17 80.45±2.66 94.20±0.83 47.33±4.16

ODIN1000MC 29.53±2.17 79.44±1.62 29.24±2.30 76.73±2.74 93.19±1.05 39.55±2.34
EntropyMC 30.50±3.54 79.61±3.84 30.10±3.49 75.81±3.95 92.90±1.17 39.29±4.56

BertBase

Confidence 8.77±0.19 16.22±0.49 8.75±0.22 96.48±0.11 99.07±0.06 87.38±0.40
Entropy 8.57±0.33 13.69±0.39 8.46±0.26 96.87±0.13 99.16±0.06 89.15±0.20
ODIN10 8.20±0.00 13.28±0.21 7.94±0.04 97.07±0.16 99.23±0.07 89.23±0.20

ODIN100 8.17±0.09 13.28±0.12 7.86±0.01 97.07±0.17 99.22±0.07 89.26±0.17
ODIN1000 8.17±0.09 13.28±0.11 7.86±0.00 97.07±0.17 99.22±0.07 89.23±0.17
ODIN10000 8.17±0.09 13.28±0.11 7.85±0.01 97.07±0.17 99.22±0.08 88.86±0.17
Mahalanobis 7.80±0.14 13.08±0.13 7.69±0.10 97.22±0.04 99.34±0.00 86.74±0.91
MaxProbMC 9.13±0.09 16.76±0.04 8.83±0.11 96.60±0.06 99.11±0.03 87.71±0.27

ODIN1000MC 8.27±0.05 14.19±0.66 7.82±0.22 97.07±0.10 99.26±0.03 88.64±0.09
EntropyMC 8.53±0.09 13.83±0.26 8.09±0.07 97.07±0.11 99.25±0.04 89.46±0.04

BertLarge

Confidence 7.53±0.33 13.06±2.05 7.26±0.36 97.16±0.17 99.29±0.07 89.57±0.11
Entropy 7.17±0.38 11.25±0.67 7.06±0.31 97.47±0.12 99.36±0.06 91.19±0.09
ODIN10 6.77±0.24 9.90±0.06 6.64±0.25 97.67±0.12 99.42±0.07 91.37±0.06

ODIN100 6.77±0.24 9.86±0.12 6.62±0.26 97.68±0.12 99.42±0.07 91.40±0.06
ODIN1000 6.83±0.19 9.86±0.12 6.62±0.26 97.68±0.12 99.42±0.07 91.38±0.06
ODIN10000 6.83±0.19 9.86±0.13 6.62±0.26 97.68±0.12 99.42±0.07 91.12±0.06
Mahalanobis 6.30±0.00 8.74±0.54 6.15±0.05 97.90±0.02 99.50±0.00 91.55±0.29
MaxProbMC 7.80±0.28 14.23±1.49 7.62±0.31 97.29±0.18 99.36±0.06 89.48±0.29

ODIN1000MC 6.90±0.14 10.41±0.71 6.80±0.25 97.79±0.15 99.49±0.05 90.90±0.38
EntropyMC 7.47±0.09 11.16±0.06 7.19±0.14 97.63±0.11 99.43±0.04 91.37±0.22

RoBertaLarge

Confidence 7.83±0.09 12.42±0.40 7.70±0.19 97.35±0.07 99.30±0.06 91.16±0.10
Entropy 7.73±0.09 11.58±0.34 7.58±0.20 97.51±0.07 99.33±0.06 92.18±0.04
ODIN10 7.40±0.28 10.86±0.56 7.27±0.25 97.66±0.06 99.37±0.05 92.56±0.10

ODIN100 7.33±0.24 10.87±0.58 7.26±0.25 97.66±0.06 99.37±0.05 92.57±0.10
ODIN1000 7.33±0.24 10.87±0.58 7.26±0.25 97.66±0.06 99.37±0.05 92.55±0.11
ODIN10000 7.33±0.24 10.87±0.58 7.26±0.25 97.66±0.06 99.37±0.05 92.30±0.13
Mahalanobis 6.37±0.05 8.32±0.02 6.05±0.03 98.39±0.02 99.60±0.01 94.31±0.00
MaxProbMC 8.23±0.24 15.21±0.41 8.04±0.15 97.16±0.05 99.27±0.02 90.24±0.25

ODIN1000MC 7.27±0.05 11.19±0.84 7.13±0.07 97.63±0.01 99.38±0.06 92.01±0.16
EntropyMC 8.03±0.09 13.50±0.71 7.76±0.07 97.43±0.05 99.28±0.03 91.95±0.24

MegatronBert

Confidence 6.80±0.00 9.33±0.69 6.61±0.13 97.92±0.02 99.48±0.02 92.26±0.32
Entropy 6.60±0.14 9.02±0.76 6.49±0.14 98.11±0.01 99.52±0.02 93.38±0.31
ODIN10 6.27±0.24 8.31±0.58 6.14±0.16 98.19±0.02 99.54±0.03 93.53±0.22

ODIN100 6.27±0.24 8.28±0.58 6.14±0.16 98.19±0.02 99.54±0.03 93.54±0.22
ODIN1000 6.27±0.24 8.28±0.58 6.15±0.16 98.19±0.02 99.54±0.03 93.52±0.22
ODIN10000 6.27±0.24 8.28±0.58 6.14±0.16 98.19±0.02 99.54±0.03 93.35±0.24
Mahalanobis 5.90±0.14 7.06±0.33 5.75±0.08 98.38±0.05 99.61±0.01 93.42±0.42
MaxProbMC 7.47±0.38 11.51±0.84 7.17±0.29 97.70±0.06 99.44±0.00 91.38±0.39

ODIN1000MC 6.53±0.33 8.92±0.53 6.36±0.33 98.07±0.02 99.53±0.02 92.69±0.43
EntropyMC 7.27±0.38 10.42±0.41 7.12±0.26 97.95±0.01 99.48±0.03 92.93±0.25

6.2.1 Encoder Classifier Models

Results are shown in Table 3. We summarize the following findings from Table 3.

• In general, larger models have better OOD detection performance. For models of similar size,
the models pretrained on larger size of text corpus have better OOD detection performance.

• Among all OOD detection methods, model feature based OOD detection method Maha-
lanobis performs better than other OOD methods which are based on the last layer logits.
This is because the model features are well trained during the model pretraining while the
logits are mainly dependent on the new linear classifier layer that was not pretrained.
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• Among all logits based OOD methods, ODIN performs best. Different temperature scales
T only have little impact on the OOD detection performance, especially when T is large
enough (e.g., T > 100).

• MC Dropout with MaxProb score function is less effective than the baseline confidence
based method for Transformer models. When combining with ODIN, the performance
improves but still worse than ODIN without MD dropout. For less capable models such as
Albert, MC dropout leads to a significant OOD detection performance drop. This might be
because we only use MC dropout during inference due to the limited time and resources.

• For small size models, better OOD detection methods (e.g., ODIN, Mahalanobis) will
provide more OOD detection performance gain.

6.2.2 Decoder Classifier Models

Since the decoder classifier model does not have the sentence based feature, we only test on logits
based OOD methods. As shown in Table 4, we find that most observations are similar to encoder
classifier models.

Table 4: Decoder-based Classification Model Out-of-Domain Detection Results

Model OOD Method EER(↓) FPR95(↓) DET ERR(↓) AUROC(↑) AUPR IN(↑) AUPR OUT(↑)

GPT2Small

Confidence 11.87±0.09 25.62±0.20 11.46±0.18 95.03±0.11 98.76±0.02 79.36±1.14
Entropy 10.33±0.19 18.84±0.11 10.04±0.34 95.82±0.06 98.94±0.01 81.99±0.77
ODIN10 9.83±0.47 19.88±0.29 9.67±0.43 95.93±0.08 98.95±0.08 81.88±0.74
ODIN100 10.00±0.42 20.58±0.51 9.91±0.37 95.83±0.11 98.91±0.09 81.70±0.72

ODIN1000 9.97±0.52 20.54±0.53 9.91±0.38 95.82±0.11 98.90±0.10 81.69±0.72
ODIN10000 9.97±0.52 20.54±0.53 9.91±0.38 95.82±0.11 98.90±0.10 81.65±0.72

MaxProbMC 11.77±0.24 24.33±0.44 11.46±0.12 95.14±0.14 98.72±0.05 81.99±1.58
ODIN1000MC 10.57±0.09 20.78±0.14 10.39±0.05 95.59±0.03 98.86±0.08 82.60±1.29

EntropyMC 10.27±0.09 19.36±0.16 10.12±0.11 95.77±0.16 98.91±0.02 83.65±1.73

GPT2Medium

Confidence 9.13±0.38 18.53±0.99 8.55±0.26 96.93±0.12 99.29±0.02 88.00±0.85
Entropy 8.70±0.28 14.71±0.85 8.25±0.24 97.40±0.09 99.39±0.02 89.90±0.80
ODIN10 7.30±0.14 10.22±0.71 7.06±0.12 97.63±0.14 99.40±0.08 90.96±0.36
ODIN100 7.17±0.24 10.15±0.87 7.08±0.17 97.54±0.17 99.37±0.09 90.79±0.34

ODIN1000 7.17±0.24 10.13±0.91 7.09±0.18 97.53±0.17 99.36±0.09 90.77±0.33
ODIN10000 7.17±0.24 10.13±0.92 7.09±0.18 97.53±0.17 99.36±0.09 90.67±0.31

MaxProbMC 9.57±0.19 18.52±1.54 9.03±0.06 96.71±0.08 99.22±0.01 87.96±0.54
ODIN1000MC 7.97±0.09 12.00±0.36 7.68±0.18 97.28±0.18 99.31±0.08 90.09±0.01

EntropyMC 8.30±0.00 13.17±0.68 8.17±0.00 97.31±0.02 99.35±0.00 89.93±0.45

6.2.3 Decoder Generation Model + String Matching

For GPT3 generated text, we consider it matches the label text if the label text is a substring of the
generated text since GPT3 may generate additional words with similar semantic meanings which
do not affect the classification accuracy. We also compute the averaged confidence (probability) of
all generated words and study the trade-off between in-domain accuracy and out-of-domain false
positive rate. Table 5 shows the best trade-off between them with confidence threshold 0.62. It is
better than some weaker encoder classifier models but still worse than most encoder classifier models.
For these encoder classifier models, we choose the out-of-domain threshold as the value which does
not affect the in-domain classification accuracy.

Table 5: GPT3 Finetuning vs. Encoder-based Classification Models (with Mahalanobis)

Model Training data (class label) In-domain Accuracy Out-of-domain FPR

GPT3 label text 95.1 39.8

Albert

label ID

93.4 59.7
BertBase 96.2 44.5

BertLarge 96.5 36.7
RoBertaLarge 97.1 26.2

MegatronBERT 97.3 25.6
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Table 6: GPT2 Generation Model + MegatronBert Classifier Out-of-Domain Detection Results

Model&Data OOD Method EER(↓) FPR95(↓) DET ERR(↓) AUROC(↑) AUPR IN(↑) AUPR OUT(↑)

Confidence 7.30±0.00 10.85±0.30 7.09±0.07 97.63±0.04 99.28±0.06 92.21±0.18
GPT2 Medium Entropy 7.20±0.00 10.09±0.26 6.91±0.08 97.83±0.05 99.32±0.05 93.24±0.21

Augmented Text ODIN10000 6.67±0.09 9.12±0.17 6.53±0.13 97.96±0.06 99.35±0.05 93.45±0.27
+ Mahalanobis 6.20±0.14 8.39±0.47 5.87±0.03 98.32±0.06 99.57±0.02 94.31±0.21

MegatronBert MaxProbMC 8.00±0.00 14.41±0.68 7.75±0.04 97.37±0.01 99.26±0.05 91.28±0.01
ODIN1000MC 7.27±0.05 10.64±0.80 7.10±0.05 97.81±0.01 99.35±0.05 92.94±0.13

EntropyMC 7.67±0.05 12.11±0.22 7.35±0.06 97.69±0.00 99.31±0.05 92.91±0.08

6.2.4 Decoder Generation Model Augmented Data + Encoder Classifier (MegatronBert)

We first implemented data_preparation/prepare_clinc_aug.py and prepared the augmented
training data as follows: "<sentence>. ask for <generated text>", where <generated text> is the
text generated by GPT2 medium model finetuned on CLINC dataset. Then we train the best encoder
classifier model MegatronBert using the augmented training data. As shown in Table 6, OOD
detection performance is similar to just using original CLINC training data.

6.3 Qualitative Analysis

We conduct qualitative analysis based on the best model Megatron classifier coupled with the best
OOD detection method Mahalanobis. We found two main categories of errors as shown in Table 7.

Ambiguous Sentences: Both in-domain and out-of-domain examples in the top part of Table 7 show a
broader scope than the corresponding intents in CLINC dataset. For example, can i fly with my razors
or are there restrictions could also talk about check-in luggages. what’s the way for delta to cancel a
flight is also relevant to the in-domain intent “flight_status".

Semantic Misunderstanding: The bottom part of Table 7 show the semantic misunderstanding of
the sentences that lead to the errors. One type of misundertanding is the negation that deep learning
models cannot correctly handle in many cases. In the example of read my friend’s text message,
the model captures the keyword “text" and confuses it with sending text messages. The last type of
misunderstanding comes from the wrong tense understanding. The last row of Table 7 shows the
tense misunderstanding leads to the confusion of “spending history" intent.

Table 7: Qualitative Analysis (MegatronBert + Mahalanobis)

In-domain test data detected
as out-of-domain

Intent Ground
Truth

Out-of-domain test data de-
tected as in-domain

Ambiguous Sentences

can i fly with my razors or are
there restrictions

carry on what’s the way for delta to can-
cel a flight

how do i ask the ai to help me
with math problem

calculator how many prime numbers are
there between 0 and 100

Semantic Misunderstanding

tell fred that i don’t have his
guitar

text read my friend’s text message

did i stick to my dinner budget spending history what’s my budget for today’s
shopping trip

7 Future work

We plan to investigate more on MC dropout method for classification model by incorporating MC
dropout during model training. We will also study the effectiveness of different uncertain estimation
scores introduced in [13]. In addition, we plan to further explore OOD detection using decoder
models like GPT. While encoder models seem to do better for OOD detection than decoder models,
how to best use decoder only models for general natural language classification tasks is an interesting
problem to study in near future. We also believe OOD problem is related to large language model’s
hallucination problem. While OOD detection problem is similar to a sentence level hallucination,
there also exist token level hallucination problems in GPT models, leading to potential factual errors
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from GPT models. As future work we wish to extend our work to detect the hallucination problem in
large language models like GPT.
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