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Abstract

Often in life, the answers to our questions evade us not because the answers aren’t
there but because we’re not asking the right questions. To this end, We seek to
construct a model for the evidence retrieval portion of the multi-hop question-
answering (QA) task. Our model takes a question, searches an open corpus for
information to answer it, and–if unsatisfied–produces a new sub-question whose
answer will help solve the original, repeating until all the necessary information
is found. In this way, we provide a novel framework that is analogous to that of a
lawyer asking questions in order to answer them: That is, using the inverse of the
original QA task to solve the task itself. In practice, the model used for answering
questions and the model used for asking questions both have their own respective
merits; however, when combined, their performance left much to be desired, but
the divorced results imply that a few modifications in strategy are in order for an
ideal question answering model that plays the role of cross-examiner. And perhaps
that in a different context with enough training time, the initial idea will prove
fruitful.

1 Introduction

Question-Answering is a very broad task. It is often impossible for a model to simply "know" the
answer to every question you tell it; in many formulations, a context is provided for a model to search
for an answer. However, this betrays the spirit of question answering in a colloquial sense since the
answers are already readily available to us in a context we know of. This, funnily enough, begs the
question: how do we question-answer if the machine can’t "know" the answer to every question and
isn’t provided with a specific context? A model that has a large knowledge base (such as Wikipedia)
"knows" the answers to many questions, but it needs to how to search. This lends itself to a new
formulation for question answering.

1.1 Multi-hop Question Answering

In the multi-hop question-answering task, the model is given a question, and it must search through a
large open corpus to find evidence that can be used to answer that question. Multi-hop reasoning
questions include Type I questions where an intermediate entity is requires to find the answer, and
Type II questions where information must be retrieved about 2 separate entities in order to compare
them, and Type III questions where an intermediate entity is required to infer information about the
original subject. Yang et al. (2018)

While multi-hop question-answering usually involves a step in which the model returns an answer to
the users question, we decided to focus on the other portion of the task: collecting evidence. Here,
we do not return a final answer string. Instead, our model acts more like a search engine that returns
all of the evidence. Many times the evidence is sufficient to answer the question; however, it is very
possible that the answer does not appear. That being said, the evidence is relevant to the question,
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otherwise it wouldn’t have been produced. We theorize that details are there to ask another, better
question in hopes of finding a sufficient answer. This motivates constructing a model to generate new
questions based on the evidence.

1.2 Question Approximation

The question generation (QG) task is usually defined as the inverse of the standard QA task. Given
an answer-containing context, the traditional task is to produce a question that would fit the context.
However, this formulation doesn’t quite fit the goals of our model; if the model already had the
answer, then it wouldn’t need to generate another question. We, therefore, modify the task to be more
open-ended: in particular, given some evidence that’s related to the answer, we want the model to
produce a sensible question that it could then recursively answer with the hopes of answering the
original question. This open-ended approach introduces a new problem though.

If the evidence was "George Washington was the first president of the United States," then the model
could generate one of multiple valid questions, such as "Who was the first president of the United
States?", "Who was George Washington?", "George Washington was the president of what country?",
etc. More concretely, it’s impossible to construct a perfect question inverter–that is, a model can’t
perfectly predict the original question from relevant evidence. This seems like a limitation, but in our
context, this is a strength. Our model would already know the original question; we’re aiming for it to
generate a different but related question. The guiding assumption is then that a related question is an
approximation of the original question: A question that is close but not quite the same. This motivates
our question approximation task (QAp): Using evidence generated to answer an original question,
produce the original question. Since it’s impossible to perfectly produce the original question, the
resultant question would be its question approximation.

1.3 Sub-Question Generation

Question approximation, however, is not enough. Ideally, the model would utilize the original
question and its evidence to inform a new, more useful question. The sub-question generation task
(SQG) takes in, as input, the original question and evidence and produces a different but related
question. Sub-question generation mimics the role of a cross-examiner, stringing past questions and
responses to ask more intimately related but different questions.

2 Related Work

Multi-hop question answering has seen success from many different approaches. An early method
was to use supervised learning to train recurrent neural networks to identify which evidence statements
belonged to the question Yang et al. (2018). Heuristic-based methods have also been successful in
chaining evidence statements together through shared entities et al. (2021). Now, transformers have
become the standard, and are able to retrieve evidence from all of wikipedia with up to 67% exact
match accuracy Zhu et al. (2021).

Question generation is a developing field with many approaches. Lopez et al. (2020) details a
transformer-based model that can construct various appropriate questions from a context paragraph
without the use of answer metadata. Our question approximation and especially sub-question
generation tasks have this spirit with the evidence acting as the context paragraph, however, we want
our questions to be informed by previous questions that we have and know to exist. Further, our
questions have the goal of explicitly leading to some unknown answer of a known question, making
our variation of question generation merely a subtask of a more robust question answering machine.

3 Approach

3.1 Multi-hop Question Answering

We decided to treat multi-hop question answering as a reinforcement learning problem. In this
framework, we define the notion of states, actions, and rewards. Our ’state’ is defined as the question
we are trying to answer, as well as the evidence that we have already collected. An ’action’ is defined
as adding a new evidence statement to our state, or deciding that we have enough evidence already
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and stopping the search. The reward is given at the end of the search, and is higher when the evidence
is more correct.

Running the entire corpus through a model at every step of the search is computationally infeasible,
so we needed a way to find relevant statements from the corpus without actually reading all of them
every time. Therefore, we broke our retrieval model into 2 components: course retrieval and fine
retrieval Yin et al. (2022). The course retrieval component quickly searches over the corpus, and
narrows down a small set of candidate statements that it believes to be good choices The fine retrieval
model then chooses its action from those candidates.

3.1.1 Course Retrieval

For course retrieval, we started with the bert-based "sentence-transformers/multi-qa-MiniLM-L6-cos-
v1" model, which was pretrained for the semantic search task. This model encodes each statement
from the corpus into a 384 dimensional vector. At search time, the question is also encoded into a
vector, and statements from the corpus are evaluated in relevance using the dot-product similarity
between the statement vector and the query vector.

Inspired by single-hop information retrieval Lee et al. (2019), we fine-tuned this model on multi-hop
reasoning using the labelled evidence statements in the HotpotQA dataset Yang et al. (2018). At each
training step, we generated a set of example states that the model may encounter at search time. Each
example state was composed of the question, as well as an incomplete subset of the target evidence
set, with the question seperated from the evidence using the <sep> token. To increase robustness,
some of the example states were also given incorrect ’noise’ statements in the evidence. We then
trained the model using the cross-entropy loss between the predicted dot-product similarities of the
state encoding and the corpus encodings, with the missing correct evidence given 1 labels and the rest
of the corpus with 0. It should also be noted that the corpus encodings did not change during training,
with each question’s corpus was pre-encoded before training using the pretrained model. This was
done to prevent the encoder from overfitting the corpus encodings to their respective questions.

3.1.2 Fine Retrieval

The fine-retrieval model takes in the candidates produces by course evidence retrieval and decides
whether to take one of them as the next piece of evidence, or submit the current evidence as the final
answer. To handle this decision, we combined the predictions of 2 separate models: one to evaluate
the candidates, and one to evaluate the current state for submission. For evidence evaluation, we use
bert-mini Turc et al. (2019); Bhargava et al. (2021), which pretrained on the next sentence prediction
task. We used this model because the ’next evidence’ prediction task is conceptually similar to
next-sentence prediction. To decide when to submit the current state, we used "deepset/tinyroberta-
squad2", which was pretrained on the SQUADv2 Rajpurkar et al. (2018) to predict whether a question
is answerable based on the context. In order to extract a reinforcement policy, we feed each possible
action through its corresponding model to get an evalutation logit. The logits are then passed through
the softmax to get the probabilistic policy π(a|s) that describes the probability of taking each action
given the current state.

Since the rewards in the reinforcement environment are so sparse (very few of the sentences in the
corpus are actually relevant to a given question), it would be difficult to train a policy from scratch,
even with the pretrained models. Therefore, we first trained our retrieval model using supervised
learning on the HotpotQA datasetYang et al. (2018), which has labelled evidence. Treating the
labelled evidence as the ’correct actions’ set C, we minimized the loss function below. This loss was
chosen because it is analogous to the REINFORCE policy gradient algorithm Sutton et al. (1999),
where choosing a correct action yields a reward of 1 and an incorrect action yields 0.

Lsupervised = −
∑

a∈C logπ(a|s)

For for reinforcement learning fine-tuning, we used the Proximal Policy Optimization (PPO) policy
gradient algorithm, with the loss described below. The reason that we are using this algorithm
compared to an off-policy one like Q-learning is that state value functions might be difficult to predict
when operating on an open corpus. For our rewards, we are using f1-smoothed Yin et al. (2022)
discounted terminal rewards based on how accurately the retrieved evidence matches the labelled
ones from HotPotQA, with a +1 bonus for an exact match. This reward method was chosen as a
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balance between optimizing for exact matches, while also incrementally improving on incorrect
outputs. Instead of calculating the baseline value b(s) at each state using a separate network as is
usually done with PPO, we sampled a set of possible trajectories stemming from that state, and
estimated the baseline value as the expectation over those trajectories. This was done due to the
afformentioned difficulty in existimating state values in an corpus.

LPPO = −
∑T

t=0 min [rtAt, clip(rt, 1 + ϵ, 1− ϵ)At]

At = Rt − b(st), rt =
πnew(at|st)
πold(at|st)

In an attempt to further improve model performance, we leverage the fact that after PPO fine-tuning,
we have maximized the expected reward from sampling a trajectory τ (a sequence of actions that takes
the state from only the question to the solution). Therefore, we would expect that more rewarding
trajectories would be more likely to be sampled by our learned policy. This hypothesis is confirmed in
our experiment section where we show that trajectory probability and reward are positively correlated.
In order to get more likely trajectories than would be selected by either sampling from our policy or
selecting actions greedily, we implemented a beam search over different trajectories. Here, we sample
multiple trajectories at once, keeping track of the log probability, p(τ), of each which is updated
using the equation below. Our beams are the trajectories that have the highest log probability at each
step.

p(τ) =
∑T

t=0 log(π(at|st))

3.2 The T5 Model

The Text-to-Text Transfer Transformer (T5) model, first introduced by Raffel et al. (2020), is an
encoder-decoder model pretrained on a large variety of unsupervised and supervised text-to-text tasks.
It’s very versatile, performing well on many tasks such as summarize, traditional question-answer, and
translation just by prepending the task at the beginning of the input string. In the supervised setting,
it trains by corrupting tokens and teacher forcing. This is an incredibly robust model architecture that
was used as the main basis for all of the question generation tasks.

3.3 Question Approximation Model

For our question-generation model, we wanted to start with a pretrained model that was already very
used to question generation in the traditional setting of having access to an answer and a context. The
idea was that input evidence essentially acted as both the context and the answer since it was the
agent model’s best guess at a solution to the original question. We thus trained a T5 model specialized
in Conditional Generation by Simonini (2021), which was originally finetuned on a modified version
of the SQuAD dataset Rajpurkar et al. (2018) that made the answers the input and questions the
target. We adapted question-generation training scripts by Suraj (2022) and Simonini (2021) to
further finetune Simimoni’s model to take in evidence the agent produced to answer a HotPot question
and use it to reproduce the original question, thus yielding an approximation of the question. This
model was not used at inference time; instead, it was used to generate a dataset for the sub-question
generation model.

3.4 Sub-Question Generation Model

Using our question approximation model, we generated several approximations for HotPotQA
questions with varying amounts of evidence produced by the agent model. For our question-refinement
model, we once again trained Simimoni’s model to generate the approximated questions, using the
original question and its corresponding evidence as input. The training script was a slightly modified
version of the script used for the question approximation model. This model thus create questions
while being informed by the evidence and the original question.
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4 Experiments

4.1 Data

4.1.1 HotPotQA Dataset

The HotPotQA dataset is unique as its over 113k Wikipedia based question-answer pairs boast four
desirable features: questions searching and reasoning over several documents; questions are not
constrained to pre-existing knowledge bases; there are sentence-level supporting facts for reasoning,
which allow strong supervision and explanations for predictions; and comparison questions that allow
models to extract relevant facts in order to compare. The dataset thus provides questions complex
enough to allow for a multiple-question strategy to be viable, has been empirically proven to be
difficult for state-of-the-art QA models, and provides enough data for our model to reason with the
additional questions that it asks. Yang et al. (2018)

4.1.2 Question Approximation Dataset

The goal was to approximate the original question based off the evidence the agent model found to
try and answer it. We thus constructed a new dataset with target questions deriving from HotPotQA
with corresponding evidence generated from the agent model for each target question. A datapoint
would be (e1 . . . en, Q) for the n pieces of evidence the agent model generated based on the original
question Q. The task is to work backwards and try to generate the precise original question with just
the evidence, yielding a question approximation.

4.1.3 Sub-Question Generation Dataset

Using our Question Approximation Dataset, we generated new questions with our question ap-
proximation model taking, as input, subsets of the full evidence. That is, for question Q with
agent model-generated evidence pieces e1e2 . . . en we used our question approximation model to
generate new questions Q′

1, . . . , Q
′
n where Q′

1 was generated from evidence e1, Q′
2 was gener-

ated from evidence e1 and e2, up to Q′
n which was generated with evidence e1, . . . en. Each of

these new questions would be the target for a respective datapoint containing the original question
Q as well as the evidence used to generate it. In the above example, we’d have n data points:
(Q, e1, Q

′
1), (Q, e1e2, Q

′
2), . . . , (Q, e1 . . . en, Q

′
n). The idea behind this was that more or less of the

evidence may or may not be helpful for question approximation. This was repeated with every
original question. The task would be to use the original question Q and evidence e1 . . . ek (for k ≤ n)
provided to predict the approximate question Q′

k.

4.2 Evaluation method

4.2.1 Evidence Retrieval Evaluation

To evaluate our evidence retrieval model, use the metrics that are compared on the HotPotQA
leaderboard. These metrics are the exact match percentage (EM) and F1 score for the returned
evidence set, compared to the labelled gold evidence from the dataset. As a matter of logistics, we
used the ’distractor’ dev set as our test set, and seperated a small validation set out of the training set.

For a baseline comparison, we turned to the original model published by the creators of the dataset
Yang et al. (2018). This model achieved an EM of 20.32 and F1 of 64.49.

4.2.2 QAp and SQG Evaluation

It was unclear to us how to quantitatively evaluate both the QAp and SQG tasks. For QAp, we opted
to linguistically compare many of the question approximations to the original question, determining
how similar/helpful of question it was. For SQG, this could also be done with the training data, but
since it’s ultimately a subcomponent of the question-answering process, the evaluation of generated
questions could be determined by how much use the agent model had for it in future RL experiments.

4.3 Experimental details

Training graphs from our experiments can be seen in the appendix.
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4.3.1 QAp and SQG Details

The question approximation model was trained on 60,000 HotPotQA questions with corresponding
evidence generated by the agent model for 7 epochs. The learning rate was 0.0001 with the AdamW
optimizer. The sub-question generation model was trained with the same learning rate, number
of epochs, and optimizer over 40,000 datapoints from its respective generated dataset. For token
embeddings, both models used the default T5 base encodings.

4.3.2 Course Retrieval

To fine-tune our course retrieval model, we trained for 60,000 steps on the labelled HotPotQA
evidence questions. We used a batch size of 24, a learning rate of 1e-6, and the AdamW optimizer.
We also used a half-cosine learning rate schedular with a 10,000 step linear warm-up followed by
50,000 steps in which the learning rate decayed back to zero as a half-cosine wave. At the end of
training, our validation loss reached -0.456. In the validation set, our highest rated statement was
gold evidence on 75.9% of questions, and the best-rated gold evidence was on average in the 99.2
percentile of all statements.

4.3.3 Fine Retrieval

To train our course retrieval model, we trained for 60,000 steps on the labelled HotPotQA evidence
questions. We used a batch size of 24, a learning rate of 1e-6, and the AdamW optimizer. We also
used a half-cosine learning rate schedular with a 10,000 step linear warm-up followed by 50,000 steps
in which the learning rate decayed back to zero as a half-cosine wave. At the end of training, our
validation loss reached -0.456. In the validation set, our highest rated statement was gold evidence
on 75.9% of questions, and the best-rated gold evidence was on average in the 99.2 percentile of all
statements.

For PPO fine-tuning, we sampled and trained on 10,000 trajectories. We used a learning rate of 1e-6,
batch size of 6, clpping epsilon of 0.2, and the model was given 6 actions to choose from by the
course-retrieval model.

4.4 Trajectory-Reward Correlation

As described earlier, we wanted to confirm that trajectory probabilities are positively correlated to
their rewards. To quantify this correlation, we measured the Spearman Rank Correlation Coefficient
(ρspearman) between the reward of a trajectory and its probability. This value ranges from -1 to 1,
with a positive value indicating positive correlation.

ρspearman = cov(R(p(τ)),R(rτ ))
cov(R(p(τ)))cov(R(rτ ))

To calculate it, we sampled 10 trajectories each for 1,000 different questions from our validation set,
and rank each trajectory in relation to the others for its question. This gave us ρspearman(r, p(τ)) =
0.42, which is a reasonably positive correlation.

4.5 Results

4.5.1 Information Retrieval

EM F1
Baseline 20.3 64.49

Supervised 30.2 63.9
PPO 33.9 67.4

PPO+beam 34.4 69.0
PPO+sub-questions 0.0 40.8

As seen in the table above, our model outperformed the baseline in both metrics. It can also be seen
that each step of our method improves the model, with PPO fine-tuning outperforming supervised
training, and beam search with a beam size of 4 outperforming greedy action selection. We also see
that using our sub-question generator to improve the question greatly degrades performance.
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4.5.2 Question Approximation Examples
• Original Question What rock band formed in New York in 1981 worked with Martin Bisi?

• Evidence Sonic Youth, Founding members Thurston Moore (guitar, vocals), Kim Gordon (bass guitar,
vocals, guitar) and Lee Ranaldo (guitar, vocals) remained together for the entire history of the band,
while Steve Shelley (drums) followed a series of short-term drummers in 1985, and rounded out the
core line-up. Sonic Youth, Part of the first wave of American noise rock groups, the band carried out
their interpretation of the hardcore punk ethos throughout the evolving American underground that
focused more on the DIY ethic of the genre rather than its specific sound. Sonic Youth, In their early
career Sonic Youth were associated with the no wave art and music scene in New York City.

• Approximated Question Who was a founding member of the band that was associated with the no
wave art and music scene in New York City?

• Original Question Which city has a larger population, Yangzhou or Chengdu??

• Evidence Chengdu, At the time of the 2010 census, Chengdu was the 5th-most populous agglomeration
in China, with 10,484,996 inhabitants in the built-up area including Xinjin County and Deyang’s
Guanghan City. Yangzhou, Its population was 4,414,681 at the 2010 census and its urban area is home
to 2,146,980 inhabitants, including three urban districts, currently in the agglomeration.

• Approximated Question What is the population of the 5th-most populous agglomeration in China,
Chengdu or Yangzhou?

4.5.3 Sub-Question Generation Example
• Original Question Which school allows students to cross-register at Brandeis University, Rutgers

University or Wellesley College?

• Evidence Wellesley College, The college is also known for allowing its students to cross-register at
Massachusetts Institute of Technology, Brandeis University, Babson College and Franklin W. Olin
College of Engineering. Wellesley College, Wellesley College is a private women’s liberal arts college
located west of Boston in the town of Wellesley, Massachusetts, United States.

• Sub-Question What is the name of the private women’s liberal arts college located west of Boston in
the town of Wellesley, Massachusetts?

• Original Question What synthetic stimulant is sometimes called flaka or gravel?

• Evidence Alpha-Pyrrolidinopentiophenone, Colloquially it is sometimes called flakka or gravel.

• Sub-Question Alpha-Pyrrolidinopentiophenone is a synthetic stimulant, it is also known as what?

5 Analysis

5.1 Multi-hop Results

Our reinforcement-based evidence retrieval model showed promising results. It was able to achieve
relatively impressive scores when it solely answered without employing the question asking mech-
anisms. However, the improves of the PPO training were a bit disappointing; they improved the
exact match score slightly, but the F1 score remained relatively unchanged, and with a stronger
implementation of the question asking system, having a higher exact match score wouldn’t be as
significant. We believe that this lack of performance gain can be contributed to the lack of training
time dedicated to PPO - while it trained for 48 hours, sampling trajectories is very slow. It is likely
that if we were to resume training, we would continue to see improvement. Furthermore, in many of
the cases that the model got wrong, it seemed to go down the ’wrong path’, finding one bad piece of
evidence and then finding others that were related to it. This shows a need to improve robustness,
which may come with more training.

5.2 QAp and SQG Results

The question approximation and sub-question generation results are, unsurprisingly, a mixed bag.

For question approximation, sometimes the model produces very faithful recreations at the original
questions (a good approximation). Sometimes it asks somewhat non-senseical questions such as
the second QAp question example. However, even in these non-sensical questions, there’s still
information semantic search may make use of. Sometimes QAp produces very off questions; when
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both a date and a name are in evidence, it often defaults to asking when they were born. This probably
because those two appear very commonly in such questions.

For SQG, it sometimes introduces very interesting bridge questions such as in both examples. The
structure of these questions are very interesting because they would help answer the original quesiton,
but they are redundant since many times th evidence is already sufficient to answer the original
question. This means that when SQG messes up and asks a question (it also has a taste for asking
birthdays when there’s a date and name in the evidence–most likely a remenant of the training data),
it would lead the model astray rather than being helpful.

5.2.1 Synthesized Results

A run of the agent model with the sub-question generator model yielded rather disastrous results,
dropping the scores significantly. This is likely due to a naive addition of the mechanism, and the
model probably needs more time reinforcing with question asking in order to better learn how to
utilize it. Further, there were several issues with the sub-question generating. Many times, the
answers were already in the evidence, making the SQG model more destructive than anything else.
We think this is due to the fact that HotPotQA has very specific, well-defined questions that are
relatively easy to search for. Perhaps the question-asking strategy is best used for vaguer or "worse
formulated questions. This might call for the use of a dataset such as Natural Questions or more
diverse data overall.

6 Conclusion

The multi-hop question answering showed some promising results divorced from the SQG model,
while the SQG model learned how to ask different, related, and sometimes interesting question. The
issue is that these were often times redundant, making it more harmful than helpful. Our evidence
retrieval model showed promising early results, but would definitely benefit from further training. We
also realize that the incorporation of a true question-answering component to our framework could
make the model more useful, and could be leveraged to improve evidence retrieval also. Interestingly,
this could also allow us to open our reinforcement framework up to training on datasets that don’t
contain labelled evidence sets, instead giving rewards based on whether the correct answer was given
- as is often used in single-hop question answering Lee et al. (2019).

Finally, we believe that performance of our combined information retrieval and sub-question genera-
tion system would benefit greatly from joint training. Therefore, the most pertinant continuation of
this work would be to incorporate the sub-question generator into the PPO training loop, so that it
learns to ask questions that are directly beneficial for search.
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A Appendix

Figure 1: Train and Val Loss for QAp

Figure 2: Train and Val Loss for SQG

Figure 3: Course retrieval performance over Epochs

10



Figure 4: PPO fine-tuning performance over epochs.

Figure 5: Relation between F1 and trajectory probability ranks. Larger dot and hotter color indicate
higher frequency
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