Improving MinBERT: Gradient Surgery and
Mixed-Precision Training

Stanford CS224N Default Project

Maxwell Chen
Department of Computer Science
Stanford University
maxhchen@stanford.edu

Abstract

This aim of this project is to implement parts of the transformer model BERT (in
particular, a lite-version called "minBERT") and train it to perform a number of
downstream language tasks in tandem (multitask classification) including sentiment
analysis of movie reviews. To extend my model performance, I performed a
randomized hyperparameter sweep, incorporated "gradient surgery" techniques to
address conflicting task gradients, performed mixed-precision training for model
speedup, and model ensemble methods to combine per-task finetuned models for
an "ultimate" model. In the end, I was surprised to find that gradient surgery
contributed little to my model’s overall performance, and saw that mixed-precision
training led to both faster training and better accuracy, at the cost of numerical
instability. Ultimately, the ensemble method combining multiple finetuned models
led to the best outcome that I was able to achieve.

1 Key Information to include

* Mentor: Xiaoyuan Ni
 External Collaborators (if you have any): N/A
 Sharing project: N/A

2 Introduction

Over the last few years, it has become increasingly clear that we are experiencing a fundamental
shift in the capabilities of machine learning models in light of products such as ChatGPT, DALL-E,
and AlphaFold. These can all be considered Foundation Models or "Large Language Models"
(despite being applied in domains not exclusive to language) — a class of models trained on vast
amounts of data. These models can be traced back to earlier work on Transformer models, which
leverage an attention mechanism to selectively weigh different things during training. As models
grow increasingly complex, one direction of interest is the difficulty in getting models to achieve high
performance on a variety of tasks at the same time. Various problems such as distribution shift or
imbalance, and general difficulty in optimizing joint loss functions, have made multitask learning
a difficult problem to solve, but there is continued interest in this area in the hopes of developing
a general model (and ultimately, an artificial general intelligence, aka, "AGI") that can faithfully
accomplish a broad spectrum of tasks, closer to what humans are capable of. In this report, I take
MinBERT - a lightweight version of the classic BERT transformer model — and apply different
techniques to improve its accuracy jointly across three natural language classification tasks further
described below.

Stanford CS224N Natural Language Processing with Deep Learning

3 Related Work

This section helps the reader understand the research context of your work, by providing an overview
of existing work in the area.

3.1 MinBERT and Attention

BERT (|Devlin et al.|(2018))), aka "Bidirectional Encoder Representations from Transformers", is a
popular transformer model released in 2018 that became very popular as a backbone for researching
transformer models that eventually moved towards LL.Ms and Foundational Models.

At its core, BERT tokenizes sentences into words, into individual "word pieces" in its internal
dictionary; unknown words are assigned [UNK] tokens, and special tokens are used to denote
sentence start (e.g. [CLS]) and sentence separation (e.g. [SEP]).

Figure 1: Example of BERT producing semantic tokens.

Word | Word Pieces
snow [snow]

snowing [snow, ##ing|
fight [fight]

fighting [fight,##ing |
snowboard | [snow,#+#board |

These tokens are passed through an embedding layer, and combined with segment (which sentence)
and position (word placement within sentence) embeddings to produce the final embeddings.

Figure 2: Example combination of multiple embeddings.

Input [cLs) my dog is cute || [SEP] he likes || play ##ing [SEP]

Token

Embeddings ‘E[CLSI my ‘Edug E\s | E(ulE E[SEP'\ ‘ Ehe |Ehkes Eplay E==mg ‘E[SEPI
- + - - -+ - - -+ -+ + -+

Segment

s TR NN NN IEN ESTESTENTICST TS
+ + + -+ + -+ + -+ + + +

Position

rmesaros | &0 || B4 || & [& J[& [& | & J[& [& [& |[E]

These are then passed through a series of transformer layers utilizing multi-head self-attention,
feedforward layers with ReLU activations, and dropout.

3.2 Gradient Surgery

In "Gradient Surgery for Multi-Task Learning" ([Yul (2020)), the authors acknowledge that training
on multiple tasks jointly creates a complicated optimization that is often hard to untangle and risks
compromising the model’s overall performance instead of improving task-specific performance. One
issue proposed as being "central" to this difficulty is the notion of "conflicting gradients" — gradients
for different tasks that have a negative cosine similarity, meaning they point in different directions
and impede overall training by contributing reduced combined progress in the gestalt optimization
landscape.

One method I experimented with was the proposed "gradient surgery" algorithm titled "PCGrad",
standing for "projecting conflicting gradients." This approach alters conflicting gradients by projecting
each one onto the normal plane of the other, ensuring that they do not impede movement in the
optimization landscape on the account of the other.

Figure 3: PCGrad Algorithm Pseudocode.

Algorithm 1 PCGrad Update Rule

Require: Model parameters ¢, task minibatch B =

lle;l
return update Af = g™ = 3" g'c

{Tx}
1: gr < VoLli(0) Vk
2 gl — g Vk
3: for 7; € Bldo
4: forT; il \ 7; in random order do
5: if g'C - g; < 0 then
6: // Subtract the projection of g5 onto g;
PC
T: Set g:-)c — gfc _ B T‘j g
8:

3.3 Mixed-Precision Training

As researchers seek to push out more and more efficiency from their training pipelines, hardware
issues — caching, network I/O, memory, etc. — become increasingly relevant. PyTorch is a popular
library used for machine learning development, and has functionality for advanced hardware profiling
and optimization. For instance, PyTorch is capable of making models use Mixed-Precision Training
([Micikevicius et al.|(2017)), a term for allowing certain values to use lower-precision datatypes. For
instance, instead of regular FP32 values, we can make a model use FP16 values where possible, or
"BFloat16" values if compatible (representing FP16 values that still use the full dynamic range of
FP32), meaning that our model can train much faster at the risk of precision and numerical instability.

Figure 4: Explanation of Mixed-Precision Training and Data Types.

Floating Point Formats
JC g QINL FO

bfloat16: Brain Floating Point Format Range: ~1e~* to ~3e**

Exponent: 8 bits Mantissa (Signiicand): 7 bits

EEEEEEEEMMMMMMM

fp32: Single-precision IEEE Floating Point Format Range; ~1e* to ~3¢™

Exponent: 8 bits Mantissa (Significand): 23 bits

EEEEEEEEEMMMMMMMMMMMMMMMMMMMMMMM

fp16: Half-precision IEEE Floating Point Format Range: ~5.96¢"" to 65504
Exponent: 5 bits Mantssa {Significand). 10 bits

HEEEEEMMMMMMMMMM

4 Approach

The fundamental architecture for my approach was the completed MinBERT model for which the
skeleton was provided by course staff. I then added a simple fully-connected layer for each of
the three task heads to the desired output shape to produce logits when performing loss function
calculations.

4.1 Multitask Classification

I modified ‘multitask_classifier.py‘ to take batches from each dataset at the same time in order to use
a "round robin" approach where the model ideally learns all three tasks uniformly.

After computing the loss for each individual task, I then combined the losses and performed back-
propagation to update my model from a single batch step across all three tasks.

4.2 Model Configuration and Hyperparameter Sweep

I performed a hyperparameter sweep with the help of Weights & Biases, a popular platform and tool
for managing and logging machine learning and data science experiments. Details of the sweep are
presented in "Experimental Details" and "Results."

4.3 Novelty Extensions

Using the best set of parameters found (described later in greater detail), I applied the two techniques
I was interested in evaluating as discussed earlier in "Approach": (1) Gradient Surgery vis-a-vis
"PCGrad", and (2) PyTorch Lightning for speedup and Mixed-Precision Training w/ FP16 to
see whether they improved classification accuracy or training time.

44 PCGrad

I originally implemented PCGrad on my own, but was unsure if I had implemented it correctly due
to the underwhelming results (discussed later). I tried using a preexisting implementation (|Tseng
(2021)) of PCGrad and more or less got the same results.

4.5 Ensemble Models

Finally, I took the best model settings I found from the experiments above, trained for an extended
period (20 epochs), and created three different copies of the model. I performed finetuning on each
model solely on the dataset for a single task, and then created an ensemble model where we use each
respective submodel’s prediction for a datapoint for its corresponding task.

S Experiments

5.1 Data

The three tasks of interest are (1) sentiment analysis, (2) paraphrase detection, and (3) semantic
textual similarity.

5.1.1 Sentiment Analysis

Sentiment analysis, hence referred to as SST for simplicity, seeks to classify the polarity of a piece
of text. The provided datasets being used for training and evaluation are the SST and CFIMDB
datasets. For SST, the dataset originally consists of 215,154 phrases parsed from sentences in movie
reviews with varying sentiment labels on a scale from 1 to 5. We are provided the following splits:

* train = 8,544 examples

e dev = 1,101 examples

* test = 2,210 examples
For CFIMDB, the dataset originally consists 2,434 highly polar movie reviews with binary sentiment
labels ("positive" or "negative). We are provided the following splits:

e train = 1,701 examples

e dev = 245 examples

* test = 488 examples

For multitask classification, we focus on the SST dataset for simplicity.

https://wandb.ai/

5.1.2 Paraphrase Detection

The dataset used for paraphrase detection is the Quora dataset. It originally consists of 400,000
labeled question pairs, which was broken into the following provided splits:

* train = 141,506 examples

* dev = 20,215 examples

* test = 40,431 examples

Each label identifies whether the questions in each pair are paraphrases of one another.

5.1.3 Semantic Textual Similarity

The dataset for Semantic Textual Similarity, hence referred to as STS, is the SemEval dataset. It
originally consists of 8,628 sentence pairs with varying similarity labels, which are split into the
following subsets:

* train = 6,041 examples

e dev = 864 examples

* test = 1,726 examples

Each label describes whether the pair of sentences have the same meaning semantically (score of 5),
or are completely unrelated (score of 0).

5.2 Evaluation method
For the SST/CFIMDB datasets, the evaluation metric will be accuracy on the dev/test split between
the predicted sentiment label and the true sentiment label.

We are given baseline expectations for the SST/CFIMDB datasets with:

* Pretraining for SST: Dev Accuracy: 0.390 (0.007)

¢ Pretraining for CFIMDB: Dev Accuracy: 0.780 (0.002)

* Finetuning for SST: Dev Accuracy: 0.515 (0.004)

* Finetuning for CFIMDB: Dev Accuracy: 0.966 (0.007)
For the Quora dataset, the evaluation metric will be accuracy on the dev/test split between the
predicted pair label and the true pair label.

For the SemEval dataset, the evaluation metric will be the Perason correlation of the true similarity
label against the predicted similarity label.

For the Quora and SemEval datasets, we can evaluate our model’s performance against other groups
using the class leaderboard since we don’t have a rough baseline.

Additionally, we are provided with F1 scores after performing evaluation on the multitask classifier’s
overall performance.

When debugging, I tried doing a qualitative evaluation by looking at specific mislabeled examples
and trying to identify linguistic or semantic reasons for what may have caused the model to mislabel
(e.g. wrong synonym or meaning, negations, etc.), but this proved to be very difficult.

5.3 Experimental details

The hyperparameter sweep mentioned in "Approach" was performed over parameter values in the
following ranges: Training Mode [Pretrain, Finetune], Learning Rate [1e-3, 1e-4, le-5], Batch
Size [8, 32, 64], and Dropout Probability [0.2, 0.3, 0.4].

This randomized search was performed over 5 epochs to get a rough sense of which parameter sets
led to faster convergence before performing further experimentation.

5.4 Results

I trained approximately 33 models in total across my hyperparameter sweeps, testing with gradient
surgery and mixed-precision training, and my final ensemble model.

[As an aside: it was not until late in my testing that I realized there was a flaw in my STS task head,
resulting in poor absolute Pearson correlation despite an upwards trend across training epochs.]

5.4.1 Hyperparameter Sweep

The following image shows the evaluation metrics for each of the three tasks during my random
sweep:

Figure 5: Sample hyperparameter sweep results.

sst train acc para train acc sts train corr

sst devacc para dev acc sts dev corr

Using a high learning rate in Finetune mode led to numerical instability and NaN values, so I ended
up settling on running the model in Pretrain mode. The default Pretrain learning rate of 1e-3 worked
the best, but a slightly lower dropout probability of 0.2 seemed to work better. Increasing batch size
always increased performance across the board from what I saw.

So, the final hyperparameters I settled on were LR=1e-3, dropout probability=0.2, batch size=64, all
in Pretrain mode.

5.4.2 Novelties

I performed extended training using the configuration above on 10-20 epochs this time, experimenting
with training length, and incorporation of PCGrad and Mixed-Precision Training.

Ultimately, PCGrad had very little impact on the performance of my model on the three tasks between
both my own implementation, and the online reference implementation. This is corroborated by other
students on EdStem, but still seems strange to me as discussed further below.

Mixed-Precision Training with FP16 led to a fair speedup (15min per epoch to 11min per epoch on
Google Colab), but led to two surprising results: (1) model curves were much more unstable, and (2)
model accuracy seemed to improve in the long run.

Ultimately, [used my default configuration with Mixed-Precision Training, but no PCGrad.

5.4.3 Ensemble Models

I took my final model above and trained for 20 epochs. I then reloaded the model three separate
times, and finetuned each task head specifically on its respective dataset. I then combined the models
into a single ensemble for evaluation.

Figure 6: Longer testing with Gradient Surgery and Mixed-Precision Training.

ssttrainace paratrainacc sts train corr

-6.53e-2 /\j/_‘\’—q

65422
65502

02 052 -6.56e2
657e2

01 06
55822

Ste Stey Ste
0 " 058 e -6.50e2 ’
0 5 1 15 0 5 10 15 0 5 10 15

=p

0.66 63402 s
038 \ .
- 6352
e 63602
062
034 637e2
06
032
6382
. Step - Step step
0 5 10 15 0 5 10 15 0 5 10 15

Figure 7: Final ensemble model with fine-tuning.

ssttrainacc paratrainacc
01 -batch=64-dropout=: — SST_pretrain-10-1r=0.001-batch=64-dropout=

sts train corr

0.66
0.64 6.55¢-2
02 052 -6.560-2
6.57e2
01 06
65822
Ste Stey Ste
0 " 058 ? 6.50e2 ?
0 5 10 15 0 5 10 15 0 5 10 15
sstdev acc para dev acc

001 -batch=64-dropout= = SST_pretrain-10-1r=9.001-batch=64-dropout=

0.66
064
0.6
034
032 e
03 Step 0.58
0 5 10 15 0 5 10 15 0 5 10 15

Above are the final results, trained for 20 epochs. The black curves are the per-task finetuned
performance, showing that finetuning along with an ensemble of models produced the best output.

The final metrics I achieved were 40% accuracy on SST, 66.6% accuracy on Paraphrase, and -0.065%
on STS.

6 Analysis

I would have thought my models would perform better than they did. The plots above do show that
my accuracy or Pearson correlation do increase over time for all tasks, but not to the extent I expected.
This is especially true for STS, which I didn’t realize was actually performing quite poorly due to the
disproportionate y-axis scaling.

I was very surprised that PCGrad had little, if any effect on my model performance. Though there
may be other factors at play, [would have expected a bigger impact nonetheless. I was also surprised
that Mixed-Precision Training improved model accuracy. Literature suggests that this would improve
training time at the cost of precision, but both factors seemed to improve, with the only tradeoff being
increased numerical instability (which I attribute to the downcasting to lower precision from FP32 to
FP16).

I think it is interesting — humorous even — that the older, more traditional "model ensemble" method
still resulted in the best model, and the "gradient surgery" approach actually did very little. However,
we must factor in that the ensemble took approximately three times as long to train given that each
submodel was finetuned on a specific task.

7 Conclusion

Improving BERT was an enjoyable experience. On top of implementing a transformer model, I
really got to dig deep and experiment with improving its performance, incorporating methods such as
hyperparameter tuning, gradient surgery, mixed-precision training, and model ensemble approaches. I
also gained exposure to a number of tools such as Weights Biases and PyTorch Lightning/Fabric that
I am sure to use in my own projects in the future. I think a limiting factor of my model’s performance
was the amount of complexity in the base model itself (along with the error contributing to such poor
STS task performance), along with the amount of experimentation I was able to perform.

With more time, I would have liked to do more experimentation with the fundamental model
architecture and experiment with things such as learning rate decay, more sophisticated task heads,
different optimizers, and other suggested extensions, but I think I am happy with the amount of
experimentation and testing I performed notwithstanding the actual final model performance.

Overall, I am quite happy with the progress made, especially given that I am working on this project
alone.

References

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina N. Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language understanding.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. 2017. Mixed
precision training. Cite arxiv:1710.03740Comment: Published as a conference paper at ICLR
2018.

Wei Cheng Tseng. 2021. Pytorch reimplementation for "gradient surgery for multi-task learning",

Kumar S. Gupta A. Levine S. Hausman K. Finn C. Yu, T. 2020. Gradient surgery for multi-task
learning. In Advances in Neural Information Processing Systems (NeurIPS).

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1710.03740
http://arxiv.org/abs/1710.03740
https://github.com/WeiChengTseng/Pytorch-PCGrad

	Key Information to include
	Introduction
	Related Work
	MinBERT and Attention
	Gradient Surgery
	Mixed-Precision Training

	Approach
	Multitask Classification
	Model Configuration and Hyperparameter Sweep
	Novelty Extensions
	PCGrad
	Ensemble Models

	Experiments
	Data
	Sentiment Analysis
	Paraphrase Detection
	Semantic Textual Similarity

	Evaluation method
	Experimental details
	Results
	Hyperparameter Sweep
	Novelties
	Ensemble Models

	Analysis
	Conclusion

