
Exploring Methods to Improve Robustness of Downstream Tasks
for the BERT Language Model

Stanford CS224N Default Project

Kenny Dao
Department of Computer Science

Stanford University
kdao@stanford.edu

Viraj Mehta
Department of Computer Science

Stanford University
viraj28m@stanford.edu

Jeremy Tian
Department of Computer Science

Stanford University
jtian25@stanford.edu

Abstract

In this project, we first implement the minBERT model, which utilizes features of the original BERT
model, an established large language model to understand human language. For developing and testing
this baseline, we perform sentiment classification on two datasets, the Stanford Sentiment Treebank
(SST) and the CFIMDB dataset. Following this baseline implementation, we implemented three
main extensions to improve the minBERT performance: cosine-similarity/concatenation fine-tuning,
unsupervised contrastive learning, and multi-task fine-tuning. Our model saw greatly improved
performance over the baseline with these novelties. After extensive testing, we found the most
improvement with sentiment analysis using contrastive learning, with paraphrase detection using
concatenation, and with semantic textual similarity with cosine similarity, with overall results
improving with multitask fine-tuning.

1 Introduction

The Bidirectional Encoder Representations from Transformers (BERT) model, released in 2018, saw state-of-the-art
improvements on many important tasks in natural language processing, including question-answering and language
inference. BERT’s architecture entails a multi-layer bidirectional transformer encoder; the original authors pre-trained
BERT on two tasks (masked LM and next sentence prediction), followed by finetuning on additional downstream tasks.

However, despite the advancements offered by BERT, the fundamental issue of deriving the most optimal sentence
embeddings is still an ongoing, widely-researched problem in the sphere of natural language processing. BERT
embeddings are pretrained to predict word tokens given surrounding context; therefore, it is difficult to build BERT
sentence embeddings, especially given little communication between the pre-trained encoder and a task-specific layer.

In current literature, there have been many approaches towards solving this problem. One approach from Cer et al[2]. in
2017 attempted to construct sentence embeddings by applying pooling on the last layers of BERT, which is a common
benchmark approach. Cer et al[2]. employed various combinations of pooling layers, and tested them on Semantic
Textual Similarity (STS) dataset, seeing suboptimal results suggesting that the current approach of simply using pooling
is a limitation of the current BERT model. Other approaches have seen more success, such as the use of skip-though
vectors by Kiros et al.[4], in which they abstract the skip-gram model to the sentence level, seeing generic sentence
representations that perform well in practice. However, this approach has not been applied to such a widely-used
language model like BERT.

In this project, we decided to approach the problem of sentence embeddings by using a combination of cosine-similarity
fine-tuning, unsupervised contrastive learning, and multitask fine-tuning. We first established a baseline minBERT
model, implementing key features of the BERT model for the task of sentiment analysis. We then applied cosine-
similarity to the downstream tasks of paraphrase detection and semantic textual similarity, finding improvements for the
dev set accuracy for semantic textual similarity, although performance for paraphrase detection remained the same.

We also implemented unsupervised contrastive learning to learn sentence representations, a methodology that involves
maximizing the agreement between different views of the same example sentence, while minimizing the agreement
between different example sentences. We followed the contrastive learning framework outlined by Gao et al[3]. in
the SimCSE paper, applying our own independently-sampled dropout masks and hyperparameter tuning. The use of
unsupervised contrastive learning demonstrated improvements over the baseline minBERT model on sentiment analysis

Stanford CS224N Natural Language Processing with Deep Learning

but not for paraphrase detection and semantic textual similarity. Finally, we tested out an approach using multitask
fine-tuning, improving the performance of our model over all downstream tasks compared to the baseline.

2 Related Work

One of the key papers involving developing sentence embeddings using BERT is "Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks" by Nils Reimers and Iryna Gurevych[6], in which they modified the original BERT
architecture to use siamese and triplet network structures to create sentence embeddings that can be compared using
cosine similarity. This model was mainly applied to the task of semantic textual similarity, outperforming other models
in searching for semantically similar sentence pairs. In the SBERT architecture, a pooling layer was applied as a last
layer to the BERT model, followed by a computation of cosine similarity between two sentences.

In addition, the relevant paper for unsupervised contrastive learning that influenced our work is "SimCSE: Simple
Contrastive Learning of Sentence Embeddings," published in 2021 by Gao et al.[3] This paper first tested an unsupervised
contrastive learning approach, in which the input sentence itself was used as a positive contrastive object, with dropout
applied as noise, which greatly improved the quality of the sentence embeddings. Gao et al.[3] also tested a supervised
contrastive learning approach, in which they used a labeled dataset to incorporate similarity between a premise sentence,
a positive entailment sentence, and a negative contradiction hypothesis in their loss function. The supervised model
demonstrated further improvement over the baseline.

It is also important in the space of multitask fine-tuning to understand the previous work by Yu et al. [7] in "Gradient
Surgery for Multi-Task Learning." In this paper, they describe an approach for sharing structure across multiple tasks
to enable more efficient learning. In the prior work by Bi et al.[1], "MTRec: Multi-Task Learning over BERT for
News Recommendation," they add together the losses on the separate tasks of category classification and named entity
recognition. However, Yu et al.[7] approach the problem of separate gradient directions for different tasks via gradient
surgery, which involves modifying the gradients of shared parameters during backpropagation based on the relative
importance of each task.

3 Approach

3.1 Baseline

For the first half of this project, we completed the baseline of implementing the minBERT model and testing it on
sentiment analysis. In this approach, we first implemented the multi-head attention layer of the BERT transformer
model, which maps a query and a set of key-value pairs to an output of the weighted sum of the values, which is
calculated by the function:

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V (1)

where the K, V , and Q are the key, value, and query matrices respectively, and dk is the dimension of the queries and
keys. This function is essentially identical to dot-product attention except for the scaling factor of

√
dk. We additionally

completed implementation for the BERT transformer layer consisting of multi-headed attention fed into an add & norm
step, then a feed-forward layer, then finally put through another add & norm step. For the last part of the transformer
layer, we also implemented the embedding layer for the embeddings of each token and the Adam optimizer based on
decoupled weight decay regularization. In terms of the other downstream tasks, we implemented a random classifier for
paraphrase detection and semantic textual similarity evaluation.

3.2 Extensions

Following the implementation of our baseline minBERT model, we implemented additional improvements to our model
for the tasks of sentiment analysis, paraphrase detection, and semantic textual similarity.

Cosine-Similarity & Concatenation Fine-Tuning
First, we decided to use cosine similarity to improve our model’s predictions. Given sentence embeddings for two
sentences, u and v, we compute similarity scores prior to applying cross entropy loss, as shown in Figure 1 and 2 below.

We tested this approach on the pairwise downstream tasks: paraphrase detection and semantic textual similarity, finding
improvement in the semantic textual similarity task, but relatively little improvement in paraphrase detection.

Thus, we also decided to test a classification objective function, in which we concatenate the sentence embeddings u
and v with the element-wise difference |u− v| and multiply it with a trainable weight before feeding it into the softmax
function, as follows: o = softmax(Wt(u, v, |u− v|)). Following testing with each of our downstream tasks, we saw

2

Figure 1: Cosine-similarity fine-tuning
applied to sentence pairs

Figure 2: The classification objective
function model, based on the SBERT

architecture

improvement on the paraphrase detection task, but did not apply this approach to the other two, which did not see the
most improvement.

Contrastive Learning
We next implemented an unsupervised contrastive learning approach to create better sentence embeddings via minBERT.
The unsupervised contrastive learning approach was detailed as follows.

In each batch of size N , we have a collection of sentences {xi}mi=1, and we use x+
i = xi. This means that we pass

the same sentence to the pre-trained encoder twice, which makes up our "positive pair" of embeddings that we want
to minimize the distance between. The key to this is that each sentence has an independently-sampled dropout mask
applied to it, thus creating two separate embeddings for the same sentence. This dropout acts as the sole form of data
augmentation.

Following the application of these random dropout masks z and z′, we denote hz
i = fθ(xi, z) and hz′

i = fθ(xi, z).
Now we have our positive pair. To obtain our negative pairs, we simply apply a dropout mask to each of the other N − 1

sentences in the mini-batch, obtaining h
z′
j

j . Thus, for each sentence in the mini-batch, our loss is given as follows:

ℓi = − log
e
sim

(
h

zi
i ,h

z′i
i

)
/τ

∑N
j=1 e

sim

(
h

zi
i ,h

z′
j

j

)
/τ

(2)

where τ is the temperature hyperparameter, which is used to control the randomness of predictions prior to applying
the softmax. Here, sim is computed via cosine similarity between the two embeddings. The above loss is for a single
sentence chosen as the premise; however, we apply this loss to every sentence in each mini-batch as a premise, so our
total loss is given as follows:

L =

N∑
i=1

ℓi = − log
e
sim

(
h

zi
i ,h

z′i
i

)
/τ

∑N
j=1 e

sim

(
h

zi
i ,h

z′
j

j

)
/τ

(3)

A visualization for this approach can be shown above in Figure 3, demonstrating the positive sentence pair with different
embeddings and each of the negative pairs.

Figure 3: Unsupervised Contrastive Learning: For each sentence denoted as the premise, different dropout masks are
applied to obtain two embeddings.

3

We applied this contrastive learning approach to each of the three tasks outlined above. We found it to significantly
outperform the baseline model on the task of sentiment analysis; however, it did not yield significant improvements for
sentiment analysis or paraphrase detection over the classification objective function and cosine-similarity approaches
outlined above, respectively. These results and analyses are detailed further below.

Multitask Fine-Tuning
Finally, we decided to try multi-task fine-tuning with a round robin approach to see if we could achieve better
performance. This approach relied on the idea that optimizing the loss functions on each of the three tasks simultaneously
would increase performance across the board. Thus, we defined our new loss function as follows:

Ltotal = Lsst + Lp + Lsts (4)

where Lsst is our sentiment analysis loss, Lp is our paraphrase detection loss, and Lsts is our semantic textual similarity
loss.

However, one limitation of this approach is that there may exist gradient conflicts between different tasks, in which
gradients in opposite directions harm each other, or the multi-task gradient is dominated by one gradient. Therefore,
to resolve this issue, we implemented gradient surgery, a method involving altering the gradients by projecting each
gradient onto the normal plane of the other, thus preventing interference. Given the gradients for two tasks, gi and gj ,
the new resulting gradient for gi is given as follows:

gi = gi −
(gi · gj)
∥gj∥2

· gj (5)

We applied gradient surgery using the PCGrad (Project Conflicting Gradients) approach outlined by Yu et al.[7] We
made use of a PyTorch 1.11 reimplementation by Nzeyimana[5].

4 Experiments

4.1 Data

We evaluated our baseline minBERT model using the Stanford Sentiment Treebank dataset, which consists of 11,855
sentences from movie reviews with labels on a scale of degree of negativity (0)/positivity (4), and the CFIMDB dataset,
which consists of 2,434 highly polar movie reviews. We trained our model using these datasets for the task of sentiment
classification on the pre-train and finetune modes of the model.

We evaluated our improved minBERT model on the three downstream tasks using the following datasets. We used the
aforementioned Stanford Sentiment Treebank to evaluate on the task of sentiment analysis; we used the Quora dataset,
which consists of 400,000 question pairs labeled with paraphrase indications, to evaluate on the task of paraphrase
detection, and the SemEval STS Benchmark dataset, which consists of 8,628 sentence pairs of varying similarity, to
evaluate on the task of semantic textual similarity.

4.2 Evaluation method

The evaluation metrics we used include accuracy for sentiment classification and paraphrase detection and Pearson
correlation coefficient for semantic textual similarity. Accuracy measures the number of correct predictions in relation
to the total number of predictions. The Pearson correlation coefficient, which is a measure of linear correlation based
on the ratio of the covariance between variables, will be used to compare the true similarity values against the predicted
similarity values.

4.3 Experimental details

Baseline
We evaluated our baseline minBERT model using various learning rates, dropout probabilities, and batch sizes to
optimize these hyperparameters. We found the best results given the following hyperparameter values. We trained our
model using a learning rate of 1e-3 for pretrain and 1e-5 for finetuning, using an Adam optimizer with weight decay
regularization. Our batch size was 8 for both the SST dataset and the CFIMDB dataset. We also employed dropout
with a probability of 0.3. Using a local machine with an NVIDIA GeForce RTX 3080 Ti, the model was trained for 10
epochs, with a total training time of 5 minutes and 6 seconds for the SST dataset and 5 minutes and 34 seconds for the
CFIMDB dataset for the pre-trained model, and 20 minutes and 2 seconds for the SST dataset and 20 minutes and 34
seconds for the CFIMDB dataset for the finetuned model.

4

Extensions
For each of our extensions, we ran our model using a learning rate of 1e-3 for pretraining and 1e-5 for finetuning. For
the tasks of cosine-similarity fine-tuning and contrastive learning, our average training times per epoch for pretraining
were as follows, rounded to the nearest second: 63 seconds for sentiment analysis, 14 minutes and 32 seconds for
paraphrase detection, and 127 seconds for semantic textual similarity. For finetuning, the average training times per
epoch were 122 seconds for sentiment analysis, 41 minutes and 37 seconds for paraphrase detection, and 156 seconds
for semantic textual similarity.

After implementing contrastive learning for sentiment analysis, we tested various dropout probabilities, using grid
search to settle on the optimal one. Grid search is a method for performing hyperparameter optimization by considering
various parameter combinations. Additionally, we used a fixed value for the temperature hyperparameter of 0.05, as
this was the value used in the original SimCSE paper. We found the best performance with dropout probability of 0.8,
with an accuracy of 0.527 for sentiment analysis. The below graph shows the results of our grid search for dropout
values in increments of 0.1. For multitask learning, however, we saw an average training time of 1.1 hours per epoch for
pretraining and 2.3 hours per epoch for finetuning.

Figure 4: Effect of dropout on sentiment analysis accuracy with contrastive learning.
Until p = 0.8, the accuracy increased slowly.

We also applied contrastive learning to semantic textual similarity with a fixed dropout value of 0.3, but did not see
improvement over the semantic textual similarity model based on cosine-similarity fine-tuning. As we increased the
dropout probability, we saw worse results.

For our loss functions, we used cross entropy with our contrastive loss function as defined in the approach section above.
We tested out the use of both MSE loss and binary cross entropy loss for paraphrase detection, but found better results
using binary cross entropy, as paraphrase detection was framed as a binary classification task. However, after testing
out cross entropy and MSE loss functions, we found best performance with MSE loss for semantic textual similarity.

For our implementation of multitask fine-tuning, we faced the limitation that the Quora dataset for paraphrase detection
was much larger than the SST dataset for sentiment analysis and the SemEval STS benchmark dataset for semantic
textual similarity by many orders of magnitude. To resolve this issue, we decided to resample data from the SST and
STS datasets to match the size of the Quora dataset. We decided to use resampling rather than simply taking the first x
number of examples in the Quora dataset, which would essentially truncate the dataset, in order to broaden the type of
examples seen by our model. In addition to resampling, we also tried simply sampling from the Quora dataset in order
to equalize the dataset sizes in an attempt to improve the total computation time. We tested out different numbers of
samples from the Quora dataset including 1/10 of the Quora dataset size, 1/5 its size, and 1/2 its size. We found best
results given 1/2 its size, as even though training took longer, the model was able to see more examples.

4.4 Results

For our baseline minBERT model results, we achieved a pre-train accuracy of 0.399 on the dev set and finetune accuracy
of 0.532 on the dev set for the SST dataset. We also achieved a pre-train accuracy of 0.792 on the dev set and a finetune
accuracy of 0.971 on the dev set for the CFIMDB dataset, as depicted in Figure 5 below.

5

Figure 5: Results of baseline minBERT model on the SST and CFIMDB datasets for both pretraining and finetuning.

In terms of our Dev Set Leaderboard results, we achieved an SST dev accuracy of 0.405, paraphrase dev accuracy of
0.375, and STS dev correlation of 0.042 with an overall dev score of 0.274 for our baseline model, as shown in Figure 5
above.

For our extenstions, the below tables (Table 1 and Table 2) show the evaluation metrics we used (accuracy and Pearson
coefficient) for each of the three downstream tasks given each of the different methodologies we outlined in our
approach section above. We additionally show a comparison with our baseline results for each of the tasks.

Baseline Concatenation Cosine-Similarity Contrastive
Learning

Sentiment Analysis 0.400 N/A N/A 0.530
Paraphrase Detection 0.370 0.780 0.631 0.551

Semantic Textual Similarity 0.04 0.532 0.585 0.428

Table 1: Best results of the various approaches on the three downstream tasks when trained individually.

Sequential Fine-Tuning Multitask Fine-Tuning
Sentiment Analysis (CL) 0.334 0.510
Paraphrase Detection (C) 0.673 0.503

Semantic Textual Similarity (CS) 0.502 0.519
Overall 0.503 0.511

Table 2: End results of the two training techniques on the downstream tasks.
Sequential is trained in order of Sentiment, Paraphrase, then Semantic; Multitask utilized a Round Robin approach.

*CL = Contrastive Learning, C = Concatenation, CS = Cosine-Similarity

As shown in the tables above, the best results achieved using sequential fine-tuning were with using unsupervised
contrastive learning for sentiment analysis (accuracy = 0.334), concatenation for paraphrase detection (accuracy =
0.673), cosine similarity for semantic textual similarity (STS) (Pearson coefficient = 0.502). However, once multitask
fine-tuning was implemented, the results improved for both sentiment analysis using contrastive learning and STS using
cosine similarity, with an accuracy of 0.510 and a Pearson coefficient of 0.519, respectively. Additionally, our overall
average results for multitask fine-tuning demonstrated greater improvement over the baseline than any of our individual
sequential fine-tuning efforts.

Below, we plotted our train loss given the number of epochs for multitask fine-tuning.

Based on these result statistics, we feel that many of our expectations were met. For one, we expected that the addition
of contrastive learning would lead to improved accuracy for sentiment analysis. This is because we built contrastive
learning on top of our baseline implementation and contrastive learning improved how our model comprehended the
attitude of sentences. As for our training techniques, it was not surprising that paraphrase detection had decreased
performance with multi-task fine-tuning as the other tasks increased. Since the Quora dataset used to train paraphrase
was so large (over 10x the size of the other datasets) and given our resampling approach, we expected that paraphrase
detection performance would decrease as much as it did. In terms of multi-task leading to a slight edge over sequential,

6

Figure 6: Train loss as a function of the number of epochs trained for multitask fine-tuning.

this was not too surprising as we expected the two to have approximately similar average/overall performance with
individual tasks’ performances converging towards the overall performance.

However, there were a few results that we did not expect and found surprising. For one, we were surprised to find that
the cosine-similarity and contrastive learning did not lead to increased performance over concatenation for paraphrase
detection. We initially expected the two extensions to be better at discovering the semantic differences between sentence
pairs, but based on these results, it appears that concatenation’s retaining of the original embeddings are more beneficial.
Secondly, it was surprising that contrastive learning led to lower accuracy than concatenation for STS, although we did
expect cosine-similarity to produce the best result. Similar to before, it appears that retaining the original embeddings
and incorporating more information in the logits produces a more accurate semantic evaluation than contrastive learning.
It is also surprising that paraphrase detection and semantic textual similarity had different best-performing approaches
given that they both require a high level of semantic understanding of sentence pairs. A possible reason for this is the
differences in task outputs where paraphrase returns a binary yes/no prediction and STS outputs a 1-5 equivalence
rating. It is plausible that concatenation can achieve a brief idea of which binary output is appropriate but is not as
capable as cosine similarity of producing polarizing outputs on a scale.

5 Analysis

Ablation Study
To understand the improvements offered by multitask fine-tuning over sequential finetuning, we conducted an ablation
study. For each of our tasks, we isolated and removed the loss component, and then tested how well the multitask model
would perform on the other two tasks. For example, we could remove the loss component Lsts associated with semantic
textual similarity, and then see how our model performed on the other two tasks, sentiment analysis and paraphrase
detection. This way, we could see if incorporating a task’s loss actually significantly affected the performance on other
tasks. The results of our ablation study are shown in the table below.

Lsst (Sentiment Analysis) Lp (Paraphrase Detection) Lsts (STS)
Sentiment Analysis N/A 0.494 0.491

Paraphrase Detection (C) 0.490 N/A 0.465
STS (CS) 0.505 0.486 N/A

Table 3: Results of evaluation on each task for removing each loss where each column header denotes which loss
component was removed

*STS = Semantic Textual Similarity, C = Concatenation, CS = Cosine Similarity

Upon evaluating these results, we see that the task of semantic textual similarity (STS) performed much worse when
the paraphrase detection loss was removed, as opposed to when the sentiment analysis loss was removed. This likely
has to do with the greater similarity between the tasks of paraphrase detection and STS, which both rely on semantic
understanding of a sentence. The same is shown to be true of the task of paraphrase detection, which performs
significantly worse when the STS loss is removed as opposed to when the sentiment analysis loss is removed.

7

Overall, the evaluation metrics show that the model performed worse on all tasks when a singular loss was removed.
This can be attributed to a decreased understanding of both the English language and sentences as a whole given less
tuning and learning for semantic and sentiment understanding.

Qualitative Analysis
For sentiment analysis, as shown in Table 4 below, we see that unsupervised contrastive learning provided an improve-
ment over our baseline model on the example sentence, as it correctly predicted a 3 (somewhat positive) rating whereas
the baseline predicted a 4 (positive). A possible reason for this is that the baseline is improperly emphasizing the
importance of various polarizing words that may push its prediction too far in one direction. In this case, it might
be over-emphasizing the word, “exceed”, which is associated with a positive review. On the other hand, contrastive
learning may have produced a better prediction because it teaches the model to differentiate between similar and
dissimilar word pairs, which can be used to better capture the relationships between words in a sentence.

Example Label Baseline CS/C CL
Sentiment
Analysis "Extreme Ops" exceeds expectations. 3 4 N/A 3

Paraphrase
Detection

Sentence 1: Where’s a good university
to study Computer Science in the UK?

Sentence 2: What are some good UK
universities in computer science?

1.0 0.0 0.74 (C) 0.14

Semantic
Textual

Similarity

Sentence 1: Syrian forces move to
retake Aleppo.

Sentence 2: Syrian Regime Bids To
Retake City Of Aleppo.

4.4 0.0 4.21 (CS) 2.85

Table 4: Example sentences & model predictions for downstream tasks
*CS = Cosine Similarity, C = Concatenation, CL = Contrastive Learning

From the above table, we can see that for the example given for paraphrase detection, head concatenation resulted
in a more accurate prediction compared to contrastive learning. The contrastive learning approach predicted a 0.14,
indicating that the sentences were not paraphrases, while the concatenation approach predicted 0.74, which is closer to
the true prediction. We hypothesize that the reason for the poor performance from the contrastive learning approach is
that it placed too much emphasis on contrasting the "Where" with the "What," as these are typically two fundamentally
different questions, causing the model to think that the two questions were not paraphrases.

We also noticed this same pattern with semantic textual similarity predictions when analyzing the incorrect predictions
from the contrastive learning model. We found that there were quite a few of the aforementioned examples that the
model got wrong: two sentences were clearly paraphrases of each other, but there was one word/phrase that might’ve
normally indicated a different semantic meaning; however, in this particular pair of sentences it didn’t change the
meaning. We believe that this was one source of decreased performance due to contrastive learning, as we did not
notice this result in head concatenation for paraphrase detection or for cosine similarity in semantic textual similarity.

6 Conclusion

BERT is a powerful language model that has a good grasp of sentence meanings. With this being said, there are a few
areas to improve on, namely achieving better sentence embeddings. To this end, our project addressed this primary
issue by using a combination of cosine-similarity, unsupervised contrastive learning, and multi-task fine-tuning. Using
these methods we were able to achieve much better results as compared to our baseline model.

Some limitations of our results came from the dataset as the Quora dataset was much larger than the other datasets,
potentially making our model be more fine-tuned to that task. This was supported by the fact that our model performed
the best on paraphrase detection by a large margin when sequentially fine-tuning. When we attempted to equalize the
dataset sizes through resampling/sampling, we saw the performances on all the tasks cluster together more, supporting
this hypothesis. Although we were able to find optimal dropout values, another limitation of our model was that we
were not able to explore other hyperparameters, such as tweaking the temperature and learning rates, because the
computational time to run 10 full epochs on all the training and dev set was very high.

Although these limitations are potential avenues of future work to further explore, we were ultimately able to greatly
improve our model’s performance on the three downstream tasks (sentiment classification, paraphrase detection, and
semantic textual similarity) through cosine-similarity, unsupervised contrastive learning, and multi-task fine-tuning.

8

References
[1] Qiwei Bi, Jian Li, Lifeng Shang, Xin Jiang, Qun Liu, and Hanfang Yang. Mtrec: Multi-task learning over bert for

news recommendation. In Findings of the Association for Computational Linguistics: ACL 2022, pages 2663–2669,
2022.

[2] Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semantic textual similarity-
multilingual and cross-lingual focused evaluation. In Proceedings of the 2017 SEMVAL International Workshop on
Semantic Evaluation (2017). https://doi. org/10.18653/v1/s17-2001, 2017.

[3] Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence embeddings. arXiv
preprint arXiv:2104.08821, 2021.

[4] Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. Skip-thought vectors. Advances in neural information processing systems, 28, 2015.

[5] Antoine Nzeyimana. Pytorch-pcgrad-gradvac-amp-gradaccum/antoine nzeyimana, 2022.

[6] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv
preprint arXiv:1908.10084, 2019.

[7] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn. Gradient surgery
for multi-task learning. Advances in Neural Information Processing Systems, 33:5824–5836, 2020.

9

	Introduction
	Related Work
	Approach
	Baseline
	Extensions

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

