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Abstract
Generating sentence-level embeddings that generalize across language understand-
ing tasks remains a difficult task, given the shorter context of many sentences.
BERT, an architecture for sentence encodings using masked language modeling
with bidirectional Transformers, has spawned a variety of methods for robust
representations under both unsupervised and supervised contexts (Devlin et al.,
2019). Extensions of BERT have used contrastive learning (Gao et al., 2021),
which aims to pull together similar sentences and push apart differing sentences,
and generative flows (Li et al., 2020), which aim to project embeddings into a
more symmetric space, to improve unsupervised semantic similarity. In BERT-CF,
we aim to combine these into one pretraining schema, and evaluate in both the
unsupervised and multitask supervised finetuning domains.

1 Key Information to include
• Mentor: Candice Laine Penelton

2 Introduction
Recent developments in Natural Language Understanding and Natural Language Generation, spear-
headed by the Transformer Architecture introduced in Vaswani et al. (2017), have quantitatively
surpasses previous benchmarks in almost every setting, and qualitatively comes close to matching
human performance (Raffel et al., 2019).

In the shorter context sentence understanding domain, BERT has found itself as the baseline across
a number of tasks such as textual entailment, sentiment analysis, and textual similarity Devlin
et al. (2019). Extensions of BERT have integrated various additional methods to improve language
understanding performance and dive deeply into minutia on properly fine-tuning BERT, as current
baselines still sometimes fail to match human language understanding (Reimers and Gurevych, 2019).

One pertinent failure mode of BERT is its ability to predict unsupervised textual similarity (Gao et al.,
2021). In particular, Reimers and Gurevych (2019) show that BERT, when evaluated on SemEval
benchmarks without fine-tuning, perform worse that bag of words representations using GloVe
vectors (Pennington et al., 2014). One common approach to improve BERT representations has been
self-supervision through contrastive learning (Wang and Isola), which learns to align positive pairs of
embeddings close to each other and negative pairs of far apart from each other (Chen et al., 2020).
This has been applied to BERT in the works of Gao et al. (2021) and Liu et al. (2021), and we will
elaborate on these methods in section 3.

A common observation of why sometimes BERT fails to generalize to certain domains is the
anisotropy of its predicted sentence embeddings; that is, they are tightly clustered into a hyper-cone
rather than distributed more uniformly in the embedding space. Li et al. (2020) identify this issue as a
primary cause for poor unsupervised generalization of BERT for various tasks. The authors, inspired
by Glow (Kingma and Dhariwal, 2018) from computer vision, show that learning a mapping of BERT
sentence embeddings into a gaussian space using generative flows produces embeddings with better
generalization. A visualization of BERT’s anisotropy can be found in figures 2 and 3 in the appendix.
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Another common trend in NLP has been to employ unified, or multitask learning, based upon the
fact that many language tasks are quite related to each other. This idea of a unifed text transformer is
best exemplified in the T5 model, which has used these cross domain similarities advantageously to
generate seemingly human-like text (Raffel et al., 2019). In BERT-CF we further explore this area
based upon previous work by Stickland and Murray (2019) and Bi et al. (2022).

3 Related Work
3.1 MirrorBERT
In MirrorBERT, Liu et al. (2021) employ contrastive learning on an unsupervised text corpus to
improve BERT’s sentence embeddings.Liu et al. (2021) generate positive pairs of sentence em-
beddings (f(xi), f

′(x′
i))

+ for a BERT encoder f by re-randomizing another dropout mask with
the same dropout probability p to create the siamese twin encoder f ′. Then, they apply character
level span-masking to augment the input to x′

i. Similar to other contrastive learning methods on
unstructured text, negative pairs are formed by pairing different sentences in the same batch, both
with and without augmentation.

MirrorBERT employs the InfoNCE (van den Oord et al., 2018) loss with cosine similarity in order
to increase the similarity between positive pairs and push apart the negative pairs. Liu et al. (2021)
also uses large positive and negative entailment datasets with a more complex training formulation to
further improve their performance, but the idea of BERT-CF is to only focus on general unstructured
sentence corpuses, so we do not explore that.

Note that this strategy is equivalent to unsupervised SimCSE by Gao et al. (2021) if no span-masking
is employed. Both of these method greatly increase performance on unsupervised textual similarity
such as spearman correlation on SemEval Agirre et al. (2013) tasks.

3.2 BERT-flow
In BERT-flow, Li et al. (2020) attempt to tack the anisotropy of BERT embeddings directly by
emulating the work of Kingma and Dhariwal (2018) to project BERT embeddings into a standard
gaussian space. Let Z be the standard multivariate gaussian with distribution pZ , and B be the space
for the pretrained BERT output with unknown distribution pB .

The flow mapping g : Z → B is defined as the composition of k flow blocks g = g1◦g2◦ . . . gk. Each
flow block is designed as a dimensionally permutation invariant invertible scaling so that the inverse
function g−1 maps the vectors to gaussian Z . During training, the BERT encoder is frozen and we
learn g by maximizing the log-likelihood of the resulting vector in B. For optimal performance,
BERT-flow can be trained on task-specific sentences, but Li et al. (2020) show that generalized
pretraining also performs well.

4 Approach
In BERT-CF, we aim to take advantage of the distributional effects of generative flow and the
similarity heuristics of contrastive learning by combining MirrorBERT and BERT-flow pretraining.
The central idea we employ is first doing self-supervision with MirrorBERT to induce sentence
similarity generalization, and then freeze the BERT encoder and jointly train MirrorBERT and
BERT-flow. This joint training is essentially learning the flow mapping of BERT-flow while using
MirrorBERT as a regularizer.

Figure 1: Self-supervised pretraining architecture for BERT-CF generative flow with contrastive
regularization. The initial round of contrastive learning has no flow blocks nor flow loss.
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The end result of this pretraining allows for unsupervised evaluation of BERT-CF, which we will
compare to just MinBERT, along with just standalone MirrorBERT, SimCSE, and BERT-flow
adaptations. Then, our supervised fine-tuning head will simply use jointly optimized task-specific
linear projections for sentiment analysis, paraphrase identification, and semantic similarity.

4.1 Contrastive Learning
We employ a pretraining formulation almost identical to MirrorBERT in section 3.1, but change
character-level span masking to token-level span masking. This is inspired by Joshi et al. (2019),
which modifies the masked language modeling of BERT to mask spans of tokens, and in general we
do not find much reasoning behind masking out an arbitrary spans of s = 5 characters so that the
word tokens are cut to non-existing words in Liu et al. (2021).

Thus, for sentence batches {xi}bi=1, we similarly generate the set of positive and negative targets for
xi to be N(xi) = f ′(x′

i) ∪
⋃

j ̸=i{f ′(x′
j), f(xj)} with |N(xi)| = 2b − 1. f and f ′ have differing

dropout masks with dropout ratio pd, and x′
i is formed by token span masking under the a geometric

distribution with success probability pg . The pretraining objective is the InfoNCE loss, which we can
expressed as

Lmirror = −1

b

b∑
i=1

log
esim(f(xi),f

′(x′
i))/τ∑

fn∈N(xi)
esim(f(xi),fn)/τ

where sim is the cosine similarity sim(u, v) = ⟨u, v⟩/(||u||2||v||2) and τ is the temperature scale.

4.2 Generative Flow with Contrastive Regularization
For learning a generative flow, we use the same implementation as BERT-flow as discussed in
section 3.2. We learn flow mapping head g : Z → B, defined as the composition of k flow blocks
g = g1 ◦ g2 ◦ . . . gk, and each flow block gi(u) = v where u, v ∈ RD does the following:

u = s⊙ u+ b (ActNorm)
u = Wu (Invertible 1x1 Conv)

v1:d = u1:d , vd+1:D = AC(ud+1:D) (Additive Coupling)

for embedding dimension D and hyperparameter d normally set to d = ⌊D/2⌋. The ActNorm
employs learnable s and b initialized as scale and bias for standardizing u, and the additive coupling
AC is a 3-layer fully connected network with ActNorm normalizations. Further details on these
transformations can be found in Kingma and Dhariwal (2018), and we use an implementation from
this implementation used in TSDAEWang et al. (2021).

Given text input x, we want to maximize the log-likelihood of pB(v), and we employ the change
of variables inverse-mapping that Li et al. (2020) and Kingma and Dhariwal (2018) use, deriving
the probability from the standard gaussian pZ . Thus, the pretraining negative log-likelihood loss is
Lflow = − log(pZ(g

−1(f(x))))− log
∣∣∣∂g−1(f(x))

∂f(x)

∣∣∣.
Putting this together with contrastive regularization, we pass the final output F (x) = g(f(x)) into
the MirrorBERT module and jointly optimize

Ljoint = λmirrorLmirror + Lflow

to learn just the flow blocks g, freezing the BERT-encoder f .

4.3 Multitask Fine-tuning
We fine-tune BERT-CF on sentiment analysis, paraphrase prediction, and semantic similarity using
jointly optimized linear projection heads that take in the BERT-CF output f(x) ∈ RD.

• For sentiment analysis on C classes, we use a linear layer Wsent ∈ RD×C to get class logits,
and use cross entropy loss to obtain Lsent.

• For paraphrase prediction on two inputs x1 and x2, we pass each f(x1) and f(x2) through
a linear layer Wpara ∈ RD×epara , and use the cosine similarity of the resulting paired embed-
dings, as done in SBERT (Reimers and Gurevych, 2019). We find it useful to use a lower
bound to connote dissimilarity where anything under that margin is equivalently dissimilar,
inspired by the margin proposed in Wilkinson and Brun (2016). We call this hinge hpara, and
clamp the cosine similarities to [hpara, 1] so that ypara = max(sim(f(x1), f(x2)), hpara).
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We then use the cosine embedding loss in Wilkinson and Brun (2016) to obtain Lpara =
1{ytrue=1}(1− ypara) + 1{ytrue=−1}(ypara − hpara)

• For semantic similarity, the approach is similar to paraphrase prediction, projecting the
embeddings using the linear layer Wsem ∈ RD×esem . We use the hinge cosine similarity
ysem = max(sim(f(x1), f(x2)), hsem) as our output, and scale the semantic similarity
ground truth labels linearly to [hsem, 1]. The training objective Lsem used for this regression
task is mean square error.

Thus, we perform multitask gradient updates combining these three losses with appropriate scaling to
fine tune BERT-CF.

LFT = λsentLsent + λparaLpara + λsemLsem

5 Experiments
5.1 Data
For unsupervised pretraining, we use the same 106 randomly sampled sentences from English
Wikipedia (Wiki1M) that was used in SimCSE (Gao et al., 2021), which is uploaded to HuggingFace.
We find that these sentences actually oftentimes are just short section headers with very little context,
so we remove all sentences length 5 or less, leaving us with 916,110 sentences.

For supervised fine-tuning, we use the datasets provided in the Default Project repository.

• Sentiment Analysis: Stanford Sentiment Treebank (SST-5), by Socher et al. (2013). This
consists of single sentences that need to be classified into C = 5 sentiment classes.

• Paraphrase Identification:, Quora Question Pairs (QQP), by Dey et al. (2016). This consists
of sentence pairs that are either paraphrases of each other, or not, as a binary label.

• Semantic Similarity, SemEval 2013 (STS-13), by Agirre et al. (2013). This consists of
sentence pairs with semantic similarity labeled continuously from 0 to 5.

5.2 Evaluation method
5.2.1 Unupervised Evaluation
We evaluate BERT-CF in an unsupervised way on the STS-13 development set to compare the
robustness of embeddings without finetuning. To do this, for input pairs (x1, x2) and BERT encoder
f , we just calculate the cosine similarity sim(f(x1), f(x2)) of the encoded representations. This
can be directly fed into the correlation metric with the actual 0 through 5 similarity labels. We
choose spearman correlation here to measure ordinal rather than the linear relationship of pearson
correlation, as we cannot guarantee that unsupervised similarities match linearly without label
calibration (Reimers and Gurevych, 2019).

5.2.2 Supervised Evaluation

• For SST-5, we calculate total accuracy from the class-wise argmax of the logits.

• For QQP, we employ the cosine similarity with the hinge hpara, similar to training. Given
input pair (x1, x2), we have ypara = max(sim(f(x1), f(x2)), hpara). Negative predictions
are represented by ypara ∈ [hpara, (1 + hpara)/2), and positive predictions are represented by
ypara ∈ [(1 + hpara)/2, 1]. The evaluation metric is accuracy.

• For STS-13, we similarly get ysem = max(sim(f(x1), f(x2)), hsem) and linearly scale this
from [hsem, 1] to [0, 5] to get the predicted similarity. The evaluation metric is pearson
correlation r.

5.3 Experimental details
Whereas Devlin et al. (2019) design the [CLS] token output in BERT to be the encoder output, we
find that using the mean of the last transformer block sequence output, masked over valid tokens,
such as what SimCSE and MirrorBERT do, provides better results (Gao et al., 2021) (Liu et al., 2021).
For all experiments, f(x) refers to the mean of the last transformer block.

For MirrorBERT pretraining, we use batch size b = 16, learning rate α = 10−4, dropout pd = 0.1,
span-masking geometric distribution rate pg = 0.3, and hard-cap the span-mask length to 5. For
SimCSE experiments, we just cap the span-masking to length 0 so that we only have dropout.
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For BERT-flow pretraining, we use batch size b = 16, learning rate α = 3 × 10−4, and 3 flow
blocks, the same number as in Li et al. (2020). When doing joint optimization of both MirrorBERT
and BERT-flow, we keep the same hyperparamters and use λmirror = 0.3 to match the MirrorBERT
learning rate.

In all pretraining tasks, we choose the model checkpoint that maximizes the STS-13 spearman
correlation, and we empirically find that not many optimizer steps are needed for the performance to
plateau, so we perform t = 104 steps of training on Wiki1M.

For supervised fine-tuning, we use epara = 768 and esem = 768 embedding sizes, hpara = 0.7, and
hsem = 0 hinge values. We scale the constituent losses as λsent = 5, λpara = 20, and λsem = 1 with
learning rate α = 10−5. Each gradient update contains a batch of size 32 from SST-5, a batch of size
96 from QQB, and a batch of size 32 for STS-13, and we have all layers unfrozen. For the sentiment
analysis layer we have a dropout of 0.3; for the paraphrase identification layer we have no dropout,
and for the semantic similarity layer we have a dropout of 0.1. We keep the BERT-encoder dropout
of 0.1, as in the original paper (Devlin et al., 2019). We fine-tune for 5000 steps, and pick the model
that has the highest average development set metrics.

All experiments use the AdamW optimizer with weight decay γ = 0.01 (Loshchilov and Hutter,
2017) and the default random seed 11711.

5.4 Results

Encoder Unsupervised Supervised
STS-13 (dev ρ) SST-5 (dev) QQP (dev) STS-13 (dev r)

MinBERT 0.514 0.512 0.821 0.848
MinBERT-SimCSE 0.745 0.511 0.825 0.852
MinBERT-Mirror 0.736 0.522 0.82 0.858
MinBERT-flow 0.517 0.506 0.821 0.857

BERT-CF 0.760 0.525 0.841 0.857

Table 1: Unsupervised and supervised development set metrics for MinBERT
encoders. We can see that BERT-CF outperforms the other baselines.

Taking a look at the unsupervised performance on STS-13, the base MinBERT performance is quite
poor, and when we just learn a generative flow on top, there is minimal increase. This makes sense,
as the flow only uses the geometry of sentence embeddings and does not add any informational
heuristic on sentence similarities. On the other hand, the contrastive learning modules add significant
performance boosts, with BERT-CF, our method, achieving an impressive spearman correlation of
0.760, a 47.9% increase over the base model.

When we multitask fine-tune the models on SST-5, QQP, and STS-13, there is not that drastic
performance change, but in general all the pretraining methods marginally improved performance,
with BERT-CF improving the most, averaging a 1.6% increase over the base fine-tune. This is not
too surprising, as much of the fine-tuning performance comes from the last few transformer layers
adapting, regardless of the improved pretrained embeddings (Liu et al., 2019).

Encoder SST-5 (test) QQP (test) STS-13 (test r)
BERT-CF 0.522 0.840 0.853

Table 2: Test set supervised metrics for BERT-CF

6 Analysis
6.1 Ablation Studies
Replacing MirrorBERT with SimCSE
We try replacing MirrorBERT with SimCSE in both the contrastive learning and joint flow pretraining,
as standalone SimCSE seems to perform comparably, if not better than standalone MirrorBERT. But
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interestingly enough, we get that the joint flow addition to SimCSE does not improve performance
much.

Encoder STS-13 (dev ρ)
MinBERT-SimCSE 0.745

MinBERT-SimCSE-joint 0.746
MinBERT-Mirror 0.736

MinBERT-Mirror-joint (BERT-CF) 0.760

We suspect that due to the span-masking in MirrorBERT, the contrastive learning affects a greater
variety of sentences, so learning the additional flow-mapping affecting the distribution of the whole
BERT output space provides more benefit than for the narrower SimCSE pretraining.

Different Formulations of Combining Contrastive Learning and Generative Flow
Something we also explore is different ways of combining MirrorBERT and BERT-flow. In particular,
we attempt to just learn the flow with contrastive regularization jointly while unfreezing the BERT
encoder for the contrastive update (call this MinBERT-joint), and also to do the contrastive learning,
then learn the flow without contrastive regularization (call this MinBERT-Mirror-flow).

Encoder STS-13 (dev ρ)
BERT-CF 0.760

MinBERT-joint 0.629
MinBERT-Mirror-flow 0.739

We find that only doing the joint optimization fails at both optimizaing the contrastive objective and
flow mapping, as the contrastive signal through the flow blocks is reduced, and the flow likelihood
objective is essentially a moving target. For MinBERT-Mirror-flow without the contrastive regular-
ization when learning generative flow, we surmise that there is nothing inherently wrong with this
approach, but just that adding the joint objective further optimizes the flow blocks.

6.2 Qualitative Analysis
Here, we show some qualitative examples on STS-13 of how BERT-CF can improve semantic
similarity completely unsupervised.

Sentence Pairs MinBERT
Cos Sim

BERT-CF
Cos Sim Label

’some guy sitting on a couch watching
television .’ 0.862 0.890 5.0

’a guy is sitting on the couch watching tv’
’a girl is eating a cupcake .’

0.967 0.927 2.6
’a woman is eating a cupcake .’

’more than 1 ,000 inmates escape from
libya ’s al-kweifiya prison’ 0.740 0.634 4.4

’1000 prisoners escape from libyan jail’

Table 3: Sentence pairs sampled from the STS-13 development set, and their
unsupervised cosine similarities on base MinBERT and BERT-CF

In the first and second examples, BERT-CF pretraining correctly increases and decreases the similarity
respectively. We hypothesize that "girl" and "woman" are represented well in Wiki1M, so the
differentiation between "girl" and "woman" is learned from the contrastive pretraining. And the same
would apply to the similarity between "television" and "tv". In the third example, both MinBERT and
BERT-CF incorrectly have lower similarity than desired. It is likely that the difficulties in equating "1
,000" with "1000" due to tokenization and "libya ’s al-kewifiya prison" with "libyan jail" due to the
very specific information is not improved by BERT-CF.
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And after fine-tuning, some of these failure modes persist, but BERT-CF still shows impressive
semantic similarity performance.

Sentence Pairs BERT-CF
Prediction Label

’russian officials have called for a conference on the
conventional forces in europe treaty to discuss ratification

of the amended treaty .’ 3.651 3.2

’antonov spoke the day before a conference on the
conventional forces in europe treaty .’

’more than 1 ,000 inmates escape from libya ’s
al-kweifiya prison’ 3.310 4.4

’1000 prisoners escape from libyan jail’

Table 4: Sentence pairs sampled from the STS-13 development set, and their
BERT-CF fine-tune predictions

In first example, BERT-CF is surpsingly decent at assessing the moderate amount of similarity
between the treaty statements, and we think this to be partially coincidence, but also the model having
longer context. For the second example, BERT-CF still performs poorly, as the fine-tuning still seems
to fail to provide the specific jail name information.

Sentence Pairs BERT-CF
Prediction Label

’what is the answer to this question ? (see description)’
0 1

’what are the answers to these questions ?’
’does reporting fake names on quora do anything ?’

1 1
’is it worth it to report fake names on quora ?’

Table 5: Sentence pairs sampled from the QQP development set, and their
BERT-CF fine-tune predictions

The fine-tune performance on QQP shows how BERT-CF is able to correctly assign similar question
connotations together, as with the second example. The 5-gram "report fake names on quora"
does help, but the rest of the question is quite dissimilar, so assigning is as a correct paraphrase is
impressive. However, in the first example which is quite related, BERT-CF fails to note that "(see
description)" does not change the question’s meaning.

Sentence BERT-CF
Prediction Label

’in a way , the film feels like a breath of fresh air , but
only to those that allow it in .’ 1 4

’no one goes unindicted here , which is probably for the
best .’ 2 2

’unlike the speedy wham-bam effect of most hollywood
offerings , character development – and more importantly

, character empathy – is at the heart of italian for
beginners .’

4 4

Table 6: Sentence pairs sampled from the SST-5 development set, and their
BERT-CF fine-tune predictions

The sentiment analysis dataset SST-5, derived from movie reviews, is particularly difficult due to
the sardonic tone of many movie critics. In the above first example, BERT-CF likely misses far here
because the "but only" portion is an often setup for a contradiction that would scathe the movie. But
in the next two examples, BERT-CF does a good job, correctly not focusing on "best" in the second
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example to output a negative sentiment, and not falling into the contradiction trap in the 3rd example
with the "unlike" clause.

6.3 Alignment and Uniformity
Wang and Isola introduce the notions of alignment and uniformity for contrastive self-supervision
methods in order to respectively measure how aligned positive pairs are and how uniformly distributed
all the embeddings are. In our case, we use the QQP dataset, evaluating our encoders without fine-
tuning in an unsupervised fashion on the training set, since QQP has ground truth positive pairs and
spans many different types of questions. We emulate the formulation in Gao et al. (2021) for a dataset
of positive and negative sentence pairs D = P ∪N .

Alignment =
1

|P|
∑

xi,xj∈P
||f(xi)− f(xj)||22

Uniformity = log

 1

|D|
∑

xi,xj∈D
exp

(
−2||f(xi)− f(xj)||22

)
For both these metrics, lower is better.

Encoder Alignment Uniformity
MinBERT 0.216 -1.425

MinBERT-SimCSE 0.397 -3.264
MinBERT-Mirror 0.391 -2.990
MinBERT-flow 0.499 -2.857

BERT-CF 0.416 -3.198

Table 7: Unsupervised Alignment and Uniformity on QQP Train

We interestingly find that all methods increase alignment from the original MinBERT embeddings,
which is likely be due to the extremely high anisotropy initially. In learning the generative flow, we
decrease alignment significantly as we expand out all the vectors, thus decreasing uniformity. We
can also see that the contrastive learning methods actually perform better at uniformity than flow,
indicating how separating the negatives from direct cosine similarity provides an extremely robust
method to induce isotropy into embeddings, as Gao et al. (2021) and Liu et al. (2021) both note. The
final alignment and uniformity for BERT-CF is strictly worse than MinBERT-SimCSE surprisingly,
and throughout this paper we rely upon the assumption that unsupervised STS-13 performance is the
best method for evaluating pretrained embeddings. All other experiments and the fine-tuning results
agree with BERT-CF producing more generalizable embeddings, so further research into this area is
needed.

7 Conclusion
In BERT-CF, we test different formulations of contrastive learning and generative flows as additional
se;f-supervised training for MinBERT, and develop a multitask fine-tuning framework to evaluate
sentence embedding quality. We show that our novel method of doing contrastive learning first, and
then learning a flow mapping while keeping the contrastive objective as a regularizer, produces robust
embeddings that have nice distributional and important semantic qualities without needing to look at
any data labels. Our evaluation methods show how BERT-CF improves upon just contrastive and
just flow approaches, and we find that the common failure modes of BERT-CF generally deal with
legitimately difficult text. Since the literature for semantic similarity is mainly focused on SemEval
datasets, we focus on them as well, but our results possibly show that additional analysis methods
should be standard practice, such as alignment and uniformity. We find this area of doing additional
pretraining with a focus on both semantic and distributional properties for MinBERT one still ripe to
unveil, and hope that our work inspires further exploration.
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A Appendix

Figure 2: Distribution of cosine similarities for sentence pairs of STS-13, using unsupervised
MinBERT. We can see how the sentence pairs all have high cosine similarity, indicating anisotropy.

Figure 3: Distribution of cosine similarities for sentence pairs of STS-13, using unsupervised
BERT-CF. We can see how the dissimilar sentence pairs have much lower cosine similarity.
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