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Abstract

The pre-trained Bidirectional Encoder Representations from Transformers (BERT)
is used extensively to construct models with impressive performance for various
downstream language tasks. Since these models exhibit promising results, it would
be interesting to investigate whether a BERT-based model can be adapted to perform
well in a multitask setting. We conduct experiments on whether ensemble learning
can be applied to train a BERT-based model on 3 classification tasks simultaneously:
sentiment classification, paraphrase detection, and semantic similarity evaluation.
We compare different ways of utilizing the sub-model outputs within the ensemble,
including majority voting, linear regression of prediction output (stacking), and
combining task-specific and generalized BERT embeddings (4-BERT), among
others. We find that ensemble with voting and 4-BERT increase overall model
performance. Specifically, ensemble with voting provides superior classification
accuracy for the sentiment classification task, while 4-BERT triumphs in paraphrase
detection and semantic evaluation. 4-BERT test results suggest that combining
domain-specific and generalized embeddings may increase model robustness over
unseen datasets.

1 Introduction

1.1 BERT

The Bidirectional Encoder Representations from Transformers (BERT) is a language model trained
over a large corpus of texts to acquire general knowledge about language and the world (Devlin
et al., 2018). By utilizing the BERT sentence embeddings the encode this understanding, BERT-
based models fine-tuned over specific objectives show promising results over a multitude of different
downstream language tasks. For example, the original BERT paper demonstrates that we can construct
models with state-of-the-art performance on evaluation systems such as GLUE and SQuAD 1.1 by
simply adding tasks-specific output layers and fine-tuning over their respective datasets (Devlin
et al., |2018). Inspired by these results, later papers such as|Alberti et al.|(2019) use BERT to raise
the baseline of many language tasks, including question answering, sentiment classification, and
Winograd sentence inference, to name a few.

The main reason for the domain-agnostic success of BERT appears to be the general knowledge it
encodes during pre-training. Hypothetically, this means that BERT-based models may also perform
well in multitask settings. However, the optimal parameters for different tasks, especially tasks with
no obvious correlations with each other, may be very different. Therefore, it would be interesting to
investigate whether we can use some common model augmentation techniques to construct a BERT-
based model that, after fine-tuning over a diverse set of language tasks, increases the performance of
all of the tasks.
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1.2 Ensemble Learning

One technique that may be helpful is ensemble learning, which uses the prediction results of a
group of weaker sub-models to generate better predictions. There are several established methods of
creating ensembles; here we list two approaches that are relevant to this paper.

* Hard voting: gather the label predictions of each model and select the majority result as our
final prediction.

» Soft voting: the average of the predicted values is used as the final output

 Stacking: gather the label predictions of the sub-models for the training dataset and use
them as data to train a "meta-model" for the final output.

Previous papers that discuss BERT ensembles either fine-tune over one specific task (Dang et al.,
2020) or tasks that are correlated with each (Kim et al., [2019) to boost domain-specific model
performance. Though none of them attempts to create BERT ensembles for multitask learning,
the great results that many of these models achieve give rise to hopes that similar performance
improvement is possible in the multitask setting.

1.3 Multitask Experiments

In this paper, we investigate whether an ensemble of BERT can perform well over competing
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prediction objectives. Due to the limit of computational resources, we use the mlnBER variant of
BERT in our implementation. The 3 tasks we want to optimize simultaneously over are

» Sentiment classification: given a movie comment, predict whether it is positive, negative, or
neutral, on a scale of 1 to 5;

 Paraphrase detection: given two sentences, predict if they are paraphrases of each other;

* semantic similarity prediction; given two sentences, provide the degree of equivalence of
their meaning on a scale of 0 to 5.

There is no obvious correlation between the 3 tasks. Therefore, when fine-tuning minBERT parame-
ters over the 3 tasks, the update direction is likely conflicting. Conversely, the generalized nature of
BERT suggests that the minBERT components within the ensemble may benefit from further training
over ex-domain data, so it may also be beneficial to allow data from the other two tasks to influence
the parameter update of each task in some way.

To find the right balance between these two ideas, we train and compare several BERT ensembles with
distinct internal structures and methods of combining sub-component outputs. The main approaches
we attempt are voting, stacking, and direct use of specialized and generalized minBERT ensembles
(the 4-BERT model). We also compared these models with the output of individual minBERT-based
models fine-tuned over each task (the 3-BERT model). Our results suggest that the ensemble with
voting and 4-BERT achieve better results than the baseline, which is a simple minBERT-based
model fine-tuned on all available data. HV achieves the best result for sentiment classification, while
4-BERT has the highest accuracy for paraphrase detection and semantic similarity prediction.

2 Related Work

Here we discuss several papers relevant to our experiment.

* Dang et al.| (2020) uses embeddings from BERT-large and Bio+Clinical BERT, a BERT
model fine-tuned on biomedical text data, to create a 10-fold ensemble to detect medication-
mentioning tweets. It compares hard voting and soft voting for its final prediction. This
suggests that task-specific performance can be improved by combining the output of domain-
dependent and domain-independent BERT embeddings.

¢ [Kim et al.|(2019) uses word-level translation quality data to fine-tune BERT on sentence-level
quality classification. It then combines 5 BERT-based models with a performance-based

"https://github.com/neubig/minbert-assignment



aggregation scheme to create the final output. This shows that training over data that are
highly related but not specific to the language task we are fine-tuning over is helpful as an
augmentation.

* [Mnassri et al.| (2022)) integrates 3 models with distinct architectures with BERT embeddings
and compares many methods of taking the vote on the final output, including hard voting,
soft voting, and stacking. We draw the idea of stacking from this paper.

While we are interested in some aspects of all of the papers mentioned, it is unknown whether their
findings related to BERT-based ensembles can be generalized to multitask learning with minBERT.
We try to investigate this potential generalization in this paper.

3 Approach

Again, the 3 language tasks that we optimize our model performance over are sentiment classification,
paraphrase detection, and semantic similarity prediction. We first construct the transformer within
minBERT, the AdamW optimizer for training our model, and the baseline multitask classifiers using
the pre-trained minBERT. We implement these components mainly with PyTorch (Paszke et al.,
2019). The transformer architecture that we implement follows the one described in Devlin et al.
(2018). Our AdamW Optimizer follows the algorithm detailed in Kingma and Bal(2014)). Since these
systems are architectures are well-known, we refer our readers to these papers instead of describing
them here. We then constructed several ensembles of the baseline models with different internal
structures to boost the performance of the combined multitask model.

3.1 Baseline
For the baseline multitask classifier, we use 3 prediction functions, each for a specific task.

* For sentiment classification, we stack a dropout and then a linear layer over the minBERT
embedding output layer. The linear layers output five logistic values, which are used to
calculate the possibility that the sentiment of an input sentence belongs to one of the five
categories.

* For paraphrase detection, we use two Dropout and two linear layers with shared parameters to
convert the minBERT embeddings of two sentences into two new "paraphrase” embeddings.
We then use the cosine similarity between the paraphrase embeddings as the output.

* For semantic similarity prediction, we use the same approach as paraphrase detection (with
two separate linear layers), except that the cosine similarity output is scaled up by five times
to output a score between 0 and 5.

The baseline classifier is trained over each task-specific dataset. Figure|l|shows this simple multi-
head architecture.

3.2 Ensemble

Now we describe our BERT ensemble architecture.

Weak classifiers We train 3 multitask classifiers specialized in each task with the same architecture
as the baseline model. In total, this would yield nine different minBERT-based classifiers. We call
these the weak (sentiment, paraphrase, or semantic similarity) classifiers. For each weak classifier,
we generate 3 training datasets for it, each for a task. We test two strategies for generating this
customized training data:

1. Random samples without replacement of 90% of the training dataset pertaining to the
specialized task of the weak classifiers; 2000 random samples without replacement from the
other two training datasets.

2. Bootstrapping (random sampling with replacement) with a ratio of 1 from the training
dataset of the specialized task; 1000 random samples without replacement from the other
two training datasets.
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Strategy | Sentiment | Paraphrase | Semantic Similarity
1 0.507 0.486 0.738

2 0.493 0.591 0.710
Table 1: Average prediction accuracy of weak classifiers trained using the two strategies.

The intuition behind the two strategies is that they represent two levels of the amount of ex-domain
data the specialized weak classifiers are allowed to see during training.

After we attain a total of 18 different weak classifiers, we evaluate them in a group of 3 using their
average accuracy score over the development datasets of their specialized tasks. The performance of
the batches of the weak sentiment and semantic similarity classifiers is better with training strategy 1,
while the paraphrase batch that was trained using strategy 2 performs significantly better. We believe
this is because our paraphrase training dataset is the largest among the three, so it can still perform
well with bootstrapped data. This result also suggests that the update direction during fine-tuning
for paraphrase detection may be more dissimilar from those of sentiment classification and semantic
similarity prediction. We show the results of this batch evaluation of weak classifiers in Table
Based on these evaluation results, we select 3 batches, each for a task, to construct our ensemble.

Voting Our ensemble with voting performs a majority vote on the predictions of the specialized
weak classifiers to decide the final predictions. If there is a tie, the ensemble selects the first prediction
it sees. In the case of semantic similarity where the output is continuous, the soft voting method
described in Section[L.2lis used.

Stacking We try the stacking approach over the same selected weak classifiers. For each task,
we collect the output of all classifiers regardless of their specialties, concatenate them into a 1-
dimensional tensor, and feed it into a linear layer. We scale the output of the weak sentiment
classifiers by passing it through a sigmoid function before concatenation to avoid drastic changes in
the logistic values. The ensemble architecture is visualized in Figure 2]

4-BERT Lastly, after experimenting with the ensembles, we hypothesize that by providing the
output layers of each task with both domain-specific and domain-independent embeddings, we can
achieve better prediction accuracy. We create a new model that directly utilizes 4 fine-tuned minBERT
embeddings. Three of these minBERT sub-components are only fine-tuned over one specific task,
while the last minBERT is fine-tuned over all of the training data. For each task, the embeddings
of the task-specific minBERT and the generalized minBERT are concatenated, which are then used
directly for prediction. Furthermore, while the output layer of sentiment and semantic similarity
remains the same, we experiment with a new linear regression approach to the paraphrase output
layer. We subtract one embedding from the other and take this difference as the input to a linear layer,
which outputs in the paraphrase detection prediction. The resulting model, called 4-BERT, is shown

in Figure
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Figure 3: Architecture of the 4-BERT classifier.

4 Experiments

4.1 Data
The dataset we used for fine-tuning the BERT-based models are:

e Stanford Sentiment Treebank (SST) dataset for sentiment classification. It contains
11,855 single sentences extracted from movie reviews categorized into five sentiment classes:
negative, somewhat negative, neutral, somewhat positive, and positive. we use a split of
8,544 training examples, 1,101 development examples, and 2,210 test examples (Socher
et al.,[2013).

* Quora dataset for paraphrase detection. Each sample is a pair of sentences with a binary
label of whether they are paraphrases of each other. we use 141,506 examples for training,
20,215 for development, and 40,431 for testinﬂ

* SemEval STS Benchmark (STS) dataset for semantic similarity. It consists of sentence
pairs of varied similarities on a scale of 0 (unrelated) to 5 (equivalent). we use 6,041
examples for training, 864 for development, and 1,726 for testing (Agirre et al.,[2013]).

4.2 Evaluation methods

For sentiment classification outputs, we find the category with the highest logistic value and use
it as the predicted label. For paraphrase detection, we convert the outputs to logistic values and
evaluate values over 0.5 as 1, and value less than or equal to 0.5 as 0. The main evaluation metric is
prediction accuracy for both of the tasks. For semantic similarity, we calculate the Pearson correlation
coefficient of outputs and ground truth and use it as the evaluation metric. This is done because the
label is continuous for the STS data set.

4.3 Experimental details

We train or attempt to train the models with specifications in Table 2] All training is done on an
Nvidia A10G GPU for 10 epochs using the AdamW optimizer described in Section[3] All models
contain dropout layers with a dropout rate of 0.1 in the minBERT architecture. Unless otherwise
specified, all models are allowed to see the full training data of all tasks in the sequence {SST, Quora,
STS} during each epoch. To offer a higher-level baseline, we train a pseudo-multitask classifier that
has separate substructures for each task. We call this model 3-BERT and it is constructed by simply
removing the shared BERT embedding of within 4-BERT. Details of model architectures can be
found in Section 3

“https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs



Model name Description Learning rate | Batch size | time

baseline-pretrained | Baseline model that only | 0.001 8 about 2 hours
trains the output layers

baseline-finetune Baseline model fine- | 0.00001 16 about 3 hours
tuned over all training
data

weak-classifier Each trained with custom | 0.00001 32 2 to 3 hours
data described in Section each, for a to-
data of specialized tal of about 40
tasks are seen first hours

ensemble-stack Ensemble model with | 0.00001/ 16 about 4 hours
stacking 0.0001/ 0.001/

0.1
3-BERT A pseudo-multitask | 0.00001 16 about 4 hours

model with three in-
dependent ~ minBERT
ensemble underneath;
this is used as a high
standard baseline
4-BERT Ensemble model that di- | 0.00001 16 about 4 hours
rectly uses task-specific
and generalized min-
BERT embeddings,
Quora data are seen first
during each epoch

Table 2: Training specifications.

Note that, since the ensemble model with voting (ensemble-voting) uses the output of weak classifiers
directly, it does not need to be trained in addition to the weak classifiers.

4.4 Results

We use the project leaderboard of Stanford CS224N, Natural Language Processing with Deep
Learning, Winter 2023, to check model performance. The accuracy of each model on the development
and test datasets is listed in Table E] and@ The absolute best performance is marked in blue; the best
performance from multitask models is bolded. Due to the limitation in submission count for the test
dataset leaderboard, no test results are generated for models that perform consistently worse than
baseline-finetune.

As expected, fine-tuning minBERT ensembles over the training data improves overall performance.
Ensemble with voting also boosts the performance of weak/baseline models. One surprising finding
is that, even for the best ensemble-stack model we can find through learning rate tuning, it performs
much worse than almost any other model, including baseline-finetune. For the multitask models we
test, ensemble-voting consistently achieves the best sentiment classification results over all other
models, including the separate training baseline (3-BERT). While 3-BERT has slightly better results
than 4-BERT for all tasks evaluated on the development datasets, 4-BERT slightly surpasses 3-BERT
for all tasks on the test sets. The overall best model according to the test data set is 4-BERT.

We now draw some conclusions from these results.

5 Analysis

There are three points we would like to comment on.

Unexpected performance of ensemble-stacking We believe that the low accuracy of the model
output suggests that stacking is not a good approach for constructing minBERT ensembles in the
multitask setting. This may be due to the setup of the model; while the non-specialized sub-models
have not seen much data from the task-specific domain, they may nevertheless generate strong



Model name Average | sentiment (SST) | paraphrase (Quora) | Semantic (STS)
baseline-pretrained | 0.370 0.384 0.396 0.330
baseline-finetune 0.577 0.485 0.474 0.772
ensemble-stack 0.418 0.291 0.445 0.518
ensemble-voting 0.627 0.520 0.590 0.771
3-BERT 0.642 0.508 0.603 0.815
4-BERT 0.638 0.502 0.601 0.812

Table 3: Development dataset accuracy.

Model name Average | sentiment (SST) | paraphrase (Quora) | Semantic (STS)
baseline-finetune | 0.587 0.515 0.471 0.775
ensemble-voting | 0.626 0.530 0.589 0.758
3-BERT 0.640 0.526 0.602 0.792
4-BERT 0.643 0.527 0.607 0.797

Table 4: Test dataset accuracy.

"opinions" over samples based on their parameters. Therefore, it may be hard for the ensemble to
understand which model is more confident about their output and hence cannot reach a good linear
approximation from these outputs for the final output. Furthermore, the prediction outputs used to
train the final meta-learner can be considered as word embeddings themselves. With the extremely
low dimensionality of these "embeddings", a lot of information is lost. This result prompts us to
create 4-BERT, which combines minBERT embeddings directly for classifications.

Comparison between ensemble-voting and 4-BERT  While ensemble-voting is consistent in its
sentiment classification performance across datasets, 4-BERT achieves good results for all tasks and
has the higher average performance across the three tasks. Furthermore, training ensemble-voting
is very time-consuming and computation-heavy (about 20 hours on 1 GPU), while it takes about 4
hours to train a 4-BERT model in 10 epochs. We think this means that 4-BERT is the overall better
model. Based on the results of ensemble-stacking, we think this is because 4-BERT better utilizes
the combined result of minBERT models. By accessing a combination of minBERT embeddings
directly, 4-BERT gains more consistent and a larger amount of information from its sub-components.
Its output layers can therefore be better trained.

Comparison between 3-BERT and 4-BERT  As expected, without interference from the other
two task-specific update directions, 3-BERT achieves better results than most of the other models.
However, 4-BERT appears to exhibit competitive results in both the development and test datasets. It
also consistently surpasses the performance of 3-BERT for the test data, albeit only slightly. We think
this suggests that at the very least, proper construction of the minBERT-based model would allow a
multitask model to achieve comparative results as independent models. 4-BERT’s performance on
the test dataset also suggests that, by using a shared generalized minBERT embedding to train the
output layers of the ensemble, the model is more robust towards unseen data.

6 Conclusion

We develop several minBERT ensembles for multitask learning. We compare the performance of
ensembles with voting, stacking, and direct usage of combined minBERT embeddings. While we
think the 4-BERT model achieves overall better results, the performance improvement from 3-BERT
is too small to draw a conclusive understanding of their differences. Therefore, for future work, we
would like to further compare the performance of 4-BERT and 3-BERT for unseen data. We can also
try new methods of constructing and training the weak classifiers to improve the overall performance
of the ensembles.
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