
Looking Under the Hood of DetectGPT
Stanford CS224N Custom Project

External Mentor: Eric Mitchell. Staff Mentor: Isabel Papadimitriou

Maximilian Du*
maxjdu@stanford.edu

Ryan Lian*
ryanlian@stanford.edu

Kaien Yang*
kaieny@stanford.edu

Abstract

Large Language Models (LLMs) have revolutionized natural language processing,
but their ability to generate highly convincing machine-generated text raises con-
cerns about their misuse. DetectGPT (Mitchell et al.) is a zero-shot LLM detection
algorithm that perturbs the wording in a text sample and uses the changes in likeli-
hood under an LLM as a discriminative signal. In this work, we analyze DetectGPT
in three areas: improving DetectGPT performance by selectively perturbing cer-
tain types of words, discovering adversarial attacks that can systematically fool
DetectGPT, and evaluating DetectGPT on newer LLMs such as ChatGPT. Our
experiments demonstrate that selectively masking a combination of nouns, verbs,
and adjectives improves the AUROC metric by up to 9.5%, demonstrating the
importance of targeted masking strategies. Additionally, we reveal a limitation of
DetectGPT on adversarial contexts, where a snippet of text prepended to the prompt
can degrade performance by up to 14%. Finally, we demonstrate that ChatGPT is
challenging to detect through DetectGPT. In some cases, we find that prompting
ChatGPT to impersonate other entities can further degrade performance. In total,
our work provides an analysis of a state-of-the-art LLM detection algorithm and
shows potential improvements and vulnerabilities.

1 Introduction

In recent years, large language models (LLMs) (Radford et al., 2018; Brown et al., 2020; Chowdhery
et al., 2022; OpenAI, 2022; Zhang et al., 2022), have seen improvements across a variety of language-
related benchmarks. Most notably, these LLMs can generate coherent, relevant, and convincing
texts. Because of their increasing realism, there has been ongoing work on creating a reliable LLM
detection algorithm.
Concretely, we are interested in the following problem: given a candidate text, can we determine if it
came from a specific LLM or from a human? In this work, we look at a state-of-the-art DetectGPT
algorithm introduced by Mitchell et al.. We look at ways of improving DetectGPT performance by
creating more meaningful perturbations on the candidate text. The unmodified DetectGPT randomly
selects words to perturb. However, in the English language, there are types of words, like prepositions,
that are tightly bound to the words around them and therefore not too indicative of machine or human
generation. In contrast, there are other types of words, like nouns, that have more freedom through
synonyms and antonyms.
Next, we look at ways of decreasing DetectGPT performance through special pieces of text prepended
to an LLM prompt. LLMs like GPT2 (Radford et al., 2018) are good at matching the style and content
of its prompt. If we add a small but distinctively-styled piece of text (such as poetry) before the main
text, we can potentially change the generation significantly enough to fool DetectGPT. We also show
how selective masking can be used to counteract this adversarial attack.
Finally, we apply DetectGPT to the new ChatGPT (OpenAI, 2022) and conduct systematic evaluations
through the newly released ChatGPT API.

Stanford CS224N Natural Language Processing with Deep Learning

2 Related Work

This section provides a brief overview of the current landscape of detection methods and introduces
DetectGPT (Mitchell et al.), a zero-shot method that lays the foundation for our analyses.

2.1 Supervised Detection Approaches

Supervised detection approaches train a model explicitly for the purpose of detection and learn to
discrimate between human-written and machine-generated text through labeled examples. Many such
methods exist, including those that leverage neural representations (Bakhtin et al., 2019; Solaiman
et al., 2019; Uchendu et al., 2020; Ippolito et al., 2020; Fagni et al., 2021), bag-of-words (Solaiman
et al., 2019; Fagni et al., 2021), and hand-crafted features (Gehrmann et al., 2019). Although they
demonstrate reliable performance, it has been observed that supervised models (models trained
explicitly for detection) tend to overfit their training domains and source models Bakhtin et al. (2019);
Uchendu et al. (2020).

2.2 Zero-Shot Detection Approaches

A popular alternative for supervised detection is zero-shot detection, which does not require additional
data collection or training. For example, Solaiman et al. proposed a method that thresholds the
raw log probabilities of the candidate passage when evaluated on the source model Solaiman et al.
(2019). Other algorithms have continued to look at the per-token conditional distributions of the
source model, including log probabilities, token ranks, and predictive entropy (Gehrmann et al., 2019;
Solaiman et al., 2019; Ippolito et al., 2020). Although these methods can be used with most LLMs,
they often have lower detection accuracies compared to large supervised methods.

2.3 Watermarking

Another relevant method is watermarking, in which an LLM embeds hidden signals into the text
during generation. Specifically, each generated token serves as the seed for a pseudo-random number
generator that partitions the model’s vocabulary into a whitelist and blacklist, and subsequent tokens
are chosen only from among those in the whitelist. Detection results are made based on the proportion
of whitelisted tokens in a piece of text (Kirchenbauer et al., 2023).
Fundamentally, watermarking requires the collaboration of the generating party to implement the
whitelisting-blacklisting algorithm. DetectGPT makes no such assumptions, allowing it to generalize
to a larger collection of models Mitchell et al..

2.4 DetectGPT

DetectGPT is a zero-shot detection method introduced by Mitchell et al. with higher discriminative
power than existing zero-shot methods. DetectGPT relies on the assumption that LLM text is
sampled mostly at the mode of its text distribution, while human texts may lay anywhere on the text
distribution.
Formally, given a source (generating) model pθ, a candidate passage x, and a perturbation function
q(·|x), we can produce a minor perturbation (rephrasing) of x to get a perturbed text x̃ ∼ q(·|x). Once
we generate enough perturbations, we can calculate the perturbation discrepancy d(x, pθ, q(·|x)) ≜
log pθ(x)− Ex̃∼q(·|x)[log pθ(x̃)]. If d(x, pθ, q(·|x)) is positive, then x ∼ pθ(x).
The perturbation function q should give a distribution over x̃, making slight changes while preserving
meaning. This could be asking human to rewrite x, or in the paper, randomly masking tokens of x
then using T5 (Raffel et al., 2020) to fill in the mask. In case we do not have access to pθ or want to
use other model to perform detection, we can use a scoring model (another LLM) sθ in place of pθ to
calculate perturbation discrepancy instead.
Although this method has demonstrated reliable performance, it still has some limitations. First, it is
compute-intensive due to the need for computing many perturbations. Moreover, since DetectGPT
relies on the curvature of a text distribution, it is prone to attacks such as adversarial prompting that
manipulate the probability curvature. Finally, since DetectGPT’s central hypothesis is framed in terms
of maximum-likelihood-based generation, it might be less effective on newer language models like
ChatGPT (OpenAI, 2022) that incorporate new training techniques such as reinforcement learning
from human feedback. Our work serves as an initial investigation to address these limitations.

2

3 Approach

For our project, we use the codebase developed by Mitchell et al. and modify it to allow experiments
with 1) different masking approaches, 2) adversarial prompting, and 3) the new ChatGPT API.

3.1 Targeted Masking

A critical part of DetectGPT is the perturbation of a candidate text, which requires masking and
re-filling parts of the candidate text with a model like T5. The existing DetectGPT algorithm
randomly masks tokens to refill (Mitchell et al.). While naive approach has yielded robust results, we
hypothesize that performance can be improved through more deliberate masking, which can reduce
the compute necessary to arrive at similar results.
Intuitively, both LLMs and humans can understand and recreate grammatical text. The English
language relies on many auxiliary parts of speech, like conjunctions and prepositions. These auxiliary
parts of speech are often wholly determined by the surrounding text. Therefore, as long as an
LLM stays grammatical, masking and refilling these auxiliary parts of speech may tell us limited
information about the text’s origins.
In contrast, some other parts of speech are not tied strongly to grammar. For example, many different
nouns, as long as they have the right plurality, can be used to replace any noun in a piece. Therefore,
these parts of speech (nouns, verbs, adjectives, proper nouns, adverbs) may be more indicative
of human or LLM generation. Humans might, especially in creative writing, pick descriptions
(adjectives, nouns) that sound novel. Novel descriptions will not fall on a mode of an LLM’s
probability distribution, which is exactly what DetectGPT needs.
To test this hypothesis, we modify DetectGPT to increase the masking probability of certain parts of
speech (POS). See Experiment 1 for concrete details and results.

3.2 Adversarial Context

DetectGPT relies on the assumption that text from LLMs are sampled near the modes of their
distribution. Mitchell et al. experimented with cross-LLM detection schemes that use one LLM as
a generator and another as the detector. These experiments demonstrated that DetectGPT remains
mostly robust to the text distribution mismatches imparted by different LLMs. However, even with
the same LLM, the text distribution can change drastically with a different context. This allows the
LLM to generate very versatile pieces of text, but it also raises a potential avenue for adversarial
attacks.
In the current setup, an LLM generation is created by taking some text t as a prompt to the model,
which generates g. The total text is t+ g. We can consider adding some adversarial context c, such
that the prompt becomes c+ t. After generation, we still use t+ g as our total text.
GPT2 variants have been observed to mimic the style of their prompt. Additionally, poetry and
other modes of creative writing often have unconventional styles that can potentially shift the text
distribution of an LLM. These two observations motivate experiments which explore using c from
classic literature, poetry, and nonsense text in an attempt to degrade DetectGPT performance, with
sentences from random Wikipedia articles serving as a baseline for c. See Experiments 2 and 3 for
concrete details.

3.3 Integrating ChatGPT

The ChatGPT API was unavailable when Mitchell et al. published the original DetectGPT algorithm.
In this work, we extend the original analysis by evaluating DetectGPT’s performance on ChatGPT-
generated text. Specifically, we take advantage of the fact that ChatGPT is specially tuned to take
instructions and explore direct adversarial prompting by asking it to write in the voice of some persona.
For all ChatGPT experiments, we use other models like GPT3 and GPT2 variants for scoring, since
ChatGPT API does not provide direct access to the conditional distributions of individual tokens. See
Experiment 4 for concrete details and results.

3

https://github.com/eric-mitchell/detect-gpt

4 Experiments

4.1 Data

Consistent with Mitchell et al., we use the XSum Narayan et al. (2018) and Reddit WritingPrompts
datasets Fan et al. (2018), which contain news articles and creative writing pieces, respectively, to
serve as human-written text samples. The two datasets are stylistically quite different: XSum is more
predictable but covers more complicated subject relationships, while WritingPrompts contains novel
content that tries to tell a story; as such, any performance differences across the two datasets can
provide meaningful insight into DetectGPT’s strengths and weaknesses.
To obtain samples of machine-generated text, we sample the first 30 tokens from each article in the
XSum and WritingPrompts datasets, and then prompt an LLM to complete the text. For experimental
consistency, we do not modify the data loading pipeline from Mitchell et al..

4.2 Evaluation Metric

Similarly to Mitchell et al., we use the area under the receiver operating characteristic curve (AUROC)
as our metric. AUROC is a common choice for discrimination tasks, as it is agnostic to the threshold
of selection. A higher AUROC value indicates a greater degree of separation between the distribution
of LLM-generated scores and human-generated scores. In addition to the AUROC, we also examine
qualitative properties of the generated text, especially with adversarial contexts.

4.3 Experimental Details

We split our experiments into four parts. For almost all experiments, we use 150 paired samples from
the dataset.

• Experiment 1: Selective Masking. We use the Stanza NLP library (Qi et al., 2020) to select
releant parts of speech for masking. For these experiments, we generate text from the
6-billion parameter GPT-J LLM, fill masked text with T5-3B, and score the text with GPT2-
medium. We collect performances across 1, 2, and 5 perturbations. The computational
bottleneck of DetectGPT lies in the number of perturbations made on the text, which each
require a query to T5-3B. Although using a more powerful scoring model and a larger
number of perturbations can yield higher performances, we intentionally use a low-resource
scoring model with limited perturbations to show that selective masking can help when
resources are limited.

• Experiments 2, 3: Adversarial Context. For these experiments, we use GPT-J for both
the generator and the scoring models, and we use T5-3B as the mask-filling model. We
run experiments across 5, 10, and 20 perturbations. In these two experiments we aim to
show performance degradation, and as such, we use an optimal configuration of the same
generator-scoring model, as well as many more perturbations.

• Experiment 4: ChatGPT. We use the default parameters on the ChatGPT API and the
strongest scoring models we can run on our devices: GPT2-XL (2B), GPT-J (6B), and GPT3
(175B, through the API). For GPT2-XL and GPT-J, we run 100 perturbations. For GPT3,
due to API pricing, we only run 20 perturbations across 20 model samples.

4.4 Experiment 1 Results: Does Selective Masking Improve DetectGPT?

For this experiment, we look at different ways of selectively masking the candidate text. We consider
many meaningful POS like adjectives, nouns, proper nouns, and verbs. We look at selecting these
POS individually, in combination, and in adjacent pairs such as adjective-noun (“blue ball”), adjective-
proper noun (“angry Ben”), and adverb-verb (“quickly swam”). Finally, we also implement a heuristic
which selectively masks non-stop words that have the highest frequencies.
As seen in Table 1, most of the selective masking strategies yield an average improvement over
baseline performance. Notably, the combination of nouns, verbs, and adjectives (N+V+A) demon-
strates consistent improvement in the two datasets and the different perturbations, creating the highest
improvement over the baseline.

4

1-XSum 2-XSum 5-XSum 1-wrt 2-wrt 5-wrt Average

Baseline 0.760 0.817 0.860 0.794 0.838 0.898 0.828

Adjective 0.764 0.838 0.860 0.820 0.871 0.918 0.845
Noun 0.801 0.849 0.897 0.781* 0.851 0.891* 0.845

Proper Noun 0.777 0.818 0.859* 0.798 0.850 0.893* 0.833
Verb 0.802 0.808* 0.880 0.786* 0.850 0.879* 0.834

N+V+A 0.786 0.895 0.920 0.801 0.874 0.908 0.864
Frequency 0.715* 0.721* 0.740* 0.834 0.889 0.912 0.802*
Adj-Noun 0.742* 0.818 0.882 0.821 0.853 0.906 0.837

Adj-Proper Noun 0.744* 0.790* 0.905 0.741* 0.845 0.913 0.823*
Adv-Verb 0.799 0.821 0.893 0.762* 0.812* 0.896* 0.831

Table 1: Writing impact of different sampling schemes on DetectGPT AUROC performance. The best in each
column is bolded, and an asterisk represents decreased performance

The performance difference varies depending on the configuration. For example, N+V+A provides
around a 0.078 boost in AUROC score on XSum with two perturbations. In other situations,
improvements were around 0.03.
It is also worth mentioning that the effect of selective masking varies with the type of data. It seems
that N+V+A has a stronger impact on XSum data, while masking high-frequency non-stop words
has a stronger impact on WritingPrompts data. In fact, the frequency-based approach decreased
performance on the XSum dataset. Nevertheless, these numbers mostly confirm our hypothesis: it is
possible to improve performance of DetectGPT by perturbing the right types of words.

4.5 Experiment 2 Results: Does Adversarial Context Hurt DetectGPT?

For this experiment, we aim to find adversarial contexts c that could yield a non-trivial drop in
performance of DetectGPT. We try notable lines from classic literature, including The Great Gatsby,
Moby Dick, Lolita, and Of Mice and Men. We also try two examples of poetry (Stopping by Woods on
a Snowy Evening, Mock Orange). Given the hypothesis that novelty in word usage contributes best to
adversarial context, we also generate two nonsensical sentences (Nonsense-Tuna, Nonsense-Gravy)
that use subjects and objects in unintended ways. Finally, to establish a baseline, we used similar
length sentences from random Wikipedia articles. For the exact text for each c, see the Appendix.

5-wrt 10-wrt 20-wrt 5-XSum 10-XSum 20-XSum Average

Baseline 0.894 0.949 0.952 0.877 0.911 0.947 0.927

Gatsby 0.849 0.898 0.924 0.824 0.874 0.867 0.873
Moby Dick 0.838 0.885 0.898 0.803 0.892 0.891 0.868

Lolita 0.859 0.889 0.899 0.804 0.834 0.86 0.858
Mice & Men 0.848 0.888 0.887 0.817 0.864 0.871 0.863

Frost 0.833 0.88 0.874 0.829 0.849 0.885 0.858
Mock Orange 0.768 0.82 0.849 0.786 0.861 0.846 0.822

Nonsense-Tuna 0.779 0.86 0.86 0.837 0.825 0.877 0.840
Nonsense-Gravy 0.815 0.864 0.883 0.807 0.846 0.864 0.847

Wikipedia-1 0.877 0.879 0.929 0.894 0.918 0.935 0.905
Wikipedia-2 0.865 0.897 0.902 0.855 0.898 0.922 0.890
Wikipedia-3 0.903 0.916 0.92 0.912 0.919 0.947 0.920

Table 2: Impact of adversarial contexts on DetectGPT (GPT-J self-detection with T5-3B). wrt–writingPrompts.
Bolded examples indicate a performance decrease of more than 0.1 AUROC.

As seen in Table 2, adding more context decreases detectability in general. However, it is also
clear that adversarial contexts of creative writing create a far higher drop in performance than
those of general prose, such as Wikipedia. On the WritingPrompts dataset, the poem Mock Orange
consistently reduces DetectGPT performance by more than 0.1 AUROC. By inspection of the poem
(see Appendix), Mock Orange uses language in a unique way that significantly influences the writing
style of GPT-J (see Analysis for a qualitative example). Similarly, the two Nonsense contexts and the
Robert Frost poem all reduce performance more than the works from classic literature and Wikipedia,

5

which shows that language novelty in the adversarial context can contribute meaningfully in reducing
DetectGPT performance.
Interestingly, we also observe a difference between the two datasets. Creative writing (writingPrompts)
is affected more strongly by these novel adversarial contexts. This could indicate that news articles
are more formulaic and do not benefit as much from a creative flair.

4.6 Experiment 3 Results: Does Selective Masking Counteract Adversarial Context?

From Experiments 1 and 2, it is natural to wonder if selective masking can counteract the effects of
adversarial context. In this experiment, we take the strongest adversarial context (Mock Orange) and
apply selective masking.

No Context Baseline Adj Verb Noun N + V + A

1 perturbation 0.76 0.7 0.648 0.669 0.73 0.737
2 perturbations 0.817 0.716 0.700 0.779 0.721 0.717
5 perturbations 0.86 0.786 0.74 0.79 0.762 0.819

Table 3: Counteracting adversarial prefixes with selective masking. Improved AUROC performance is bolded.

Table 3 shows that selectively masking a combination of adjectives, verbs, and nouns yields a
consistent improvement over the baseline. However, it is worth noting that although selective
masking brings back some performance of DetectGPT, it does not come back to the performance of
the DetectGPT without the adversarial context.

4.7 Experiment 4 Results: How does DetectGPT work on ChatGPT?

Finally, we look at how DetectGPT works on the new ChatGPT API. We run the unmodified
DetectGPT configuration which uses 100 perturbations and large scoring models. We also take
advantage of the ability to instruct ChatGPT to write in a unique style, which counts as an adversarial
context. Specifically, we ask ChatGPT to write in the style of a tired Ph.D. student (TIRED PHD),
and a quirky child obsessed with hot tea (QUIRKY CHILD). We also ask ChatGPT to write as if it
were not an LLM (NOT LLM).

GPT2-XL GPT-J GPT3 (20)

WritingPrompts, Normal 0.828 0.737 0.65
WritingPrompts, TIRED PHD 0.873 0.831 0.643

WritingPrompts, QUIRKY CHILD 0.845 0.838 0.707
WritingPrompts, NOT LLM 0.756 0.69 0.67

XSum, Normal 0.656 0.621 0.398
XSum, TIRED PHD 0.646 0.598 0.238

XSum, QUIRKY CHILD 0.666 0.656 0.507
XSum, NOT LLM 0.491 0.433 0.303

Table 4: Performance of DetectGPT on ChatGPT. Note that for GPT3, we only use 20 perturbations across 20
trials due to API pricing. The other trials use 100 perturbations and 150 trials.

From Table 4, we see that even with 100 perturbations, DetectGPT is worse at detecting ChatGPT
than GPT-J with 5 perturbations (baseline on Table 2). Part of the performance drop is attributed
to cross-model discrepancy, but part of the performance drop is most likely due to the amount of
fine-tuning that was centered around making ChatGPT’s responses more human-like.
Perhaps counterintuitively, the performance of DetectGPT consistently decreases with the size of
the scoring model. In fact, GPT3 performs uniformly worse than GPT2 variants on ChatGPT. It is
possible that larger models have more complicated likelihood surfaces, leading to more mismatch
with ChatGPT. However, more experiments are needed with a broader sweep of models and prompts.
Table 4 also shows a clear difference in performance between WritingPrompts and XSum datasets. In
fact, on XSum, some models perform worse than random guessing (<0.5 AUROC). This difference
can indicate that the finetuning for ChatGPT yields a near-human level writer for formulaic tasks like
news articles, at least by the standards of DetectGPT.

6

Finally, we can see that adversarial context can impact DetectGPT performance, but the results are
noisier. Qualitatively, ChatGPT yields very different writing styles that follow the prompt instructions.
However, certain personas seem to be more easily detected by DetectGPT, especially QUIRKY
CHILD. Surprisingly, NOT LLM, the most abstract command, yields the greatest drop in DetectGPT
performance. We look at qualitative examples in the following section.

5 Analysis

In this section, we look at one qualitative example of why selective masking works. We also analyze
some qualitative examples of LLM generation under adversarial prompting or context, which may
provide insight into why DetectGPT does worse with them.

5.1 Why does Selective Masking Work?

Consider the following candidate text with masking taken from Experiment 1. Red indicates random
selection, and Blue indicates noun selection (note that the selection is not entirely accurate).
"Gene Palmer is the second prison worker detained over the jail break. Joyce Mitchell has already been
charged with aiding the escape. The prisoners, Richard Matt and David Sweat, used power tools to flee
the Clinton Correctional Facility. A massive manhunt is still under way to find the pair, both convicted
killers. Mr Palmer has been held on bail, after appearing before a judge on charges of promoting prison
contraband, tampering with physical evidence, and official misconduct. His lawyer, Andrew Brockway,
admitted his client delivered the meat but said he did not know it contained the tools, nor that the
prisoners were trying to escape. "He did pass the hamburger meat. He shouldn’t have done it. He
apologised for it,” said Mr Brockway, who added his client plans to plead not guilty. Clinton County
District Attorney Andrew Wylie said Ms Mitchell placed hacksaw blades and other tools / tools inside the
meat, before Mr Palmer took it to Matt and Sweat, who were interred in a section of the jail where"

Here, we see that random selection picks up some auxiliary words like “the” or “it,” which are
highly grammatically constrained. Therefore, we expect less variance between human and machine
generations. However, in noun-centered selection, semantically meaningful words are chosen, like
“killers.” A different word, like “arsonists” or “burglars” could work grammatically (and even
semantically), so we expect more variance between humans and LLMs.

5.2 How does Adversarial Context Affect Content Generation?

In Experiment 3, we observe that certain adversarial contexts can significantly decrease performance
on DetectGPT. Among the examples tried, a few lines from the poem Mock Orange by Louise Glück
reduces performance the most. The differences between the contextualized and non-contexualized
models are quite significant, as seen below:
Normal GPT-J:
I start my speech, taking a moment to study my
fellow Spartans and the audience. So far I’ve been
introduced as the commander of Team Prometheus, a
team made up of people from all different planets.
Now the General is here. All the others seemed
genuinely happy for me, some of them even cried.
Is that weird to you? No, I think its wonderful.
They accept the differences in us, accept that
diversity is strength." We land on Earth and see
the devastation that humans have brought.

GPT-J with Mock Orange Context:
I start my speech, taking a step toward my brother.
As the air brushes by my lips I smile at you. My
hand extends toward the flower stems. I know they
will snap as I pull them from the earth. They are
brittle, easily broken, and would look pretty in my
brother’s new living room. I want to be pretty for
you and I want you to fall in love with me to save
me from the darkness that my father brought to this
place. "What’s it like?" your lips ask me again.
"Do you know your soul is missing?" I ask.

The normal large language model goes to a trope of mythology and uses generic language. However,
the contextualized large language model brings in evocative imagery (“I know they will snap as I pull
them from the earth” and “your lips ask me again”). They also focus on a more emotionally wrought
relationship with a brother and a second-person lover. This represents a very different topical and
syntactical distribution, which may explain why DetectGPT struggles with discrimination.

It is worth mentioning that sometimes the adversarial context can dominate the subject of a generation.
With Mock Orange contexts, there is a fixation on lips and kissing, as the poem describes this
action in the first few lines. Similar occurrences happen with the other contexts of classic literature.
Nevertheless, it is possible for an adversary to tune the amount of adversarial context such that the
content stays dominated by the prompt and yet the style is sufficiently affected by the context to
interfere with detection.

7

5.3 How does Human Impersonation Affect Content Generation?

In Experiment 4, we notice that ChatGPT is much better at evading detection after prompting with
the instruction to write less like an LLM. What does this look like? We can consider the example
below (where ⋆ denotes the end of prompt):
Normal ChatGPT: The removal of the engines,
which have lain idle for two years, would leave 142
active vehicles in the capital. Savings from the
proposal would be ⋆ significant, but some experts
warn that it could also lead to longer wait times
and increased congestion on the city’s already
crowded streets. Despite the potential drawbacks,
city officials are moving forward with the plan,
citing the need to cut costs and improve efficiency
in the public transportation system. The fate
of the retired engines remains uncertain, with
some suggesting they could be sold for scrap or
repurposed for other uses.

ChatGPT Instructed to not write like an LLM:
The removal of the engines, which have lain idle
for two years, would leave 142 active vehicles
in the capital. Savings from the proposal would
be ⋆ significant, as the engines require regular
maintenance and upkeep even when not in use.
Removing them would reduce the cost of maintaining
the fleet and could potentially save money in the
long run. However, it’s important to consider the
potential impact on the fleet’s overall capacity
and ability to respond to emergencies. A thorough
analysis of the proposal’s benefits and drawbacks
should be conducted before making a final decision.

While there are many differences between the passages, the primary difference is in the specificity of
the writing. In normal ChatGPT, the response is more vague. It immediately talks about congestion
and public transportation, but there are no more mentions of the engine removals other than the line
about being sold for scrap. In contrast, the “impersonator” ChatGPT references engine-relevant
details such as maintainance and upkeep. Furthermore, it understands the metonymy of “engine” (fire
engine), which is apparent through the mention of emergencies. In contrast, the normal ChatGPT
uses vague vehicle terminology without any recognition of a fire truck. While DetectGPT is not
explicitly looking for detail-oriented writing, the shift in style may have caused a large shift in the
text distribution.
These differences raise new questions for future experimentation. First, if we instruct ChatGPT to
provide specific details, will it perform similarly on DetectGPT? Second, and more philosophically,
if ChatGPT is aware of its own rhetorical properties while accepting it as sub-par until prompted
otherwise, what does that say about ChatGPT and its sense of identity?

6 Conclusion

6.1 Summary

Our work provides an analysis of DetectGPT. We first identify several heuristics for selectively
masking certain words, such as masking according to occurrence frequency or parts of speech. We
show that a targeted masking strategy for rephrasing a combination of nouns, adjectives, and verbs
can consistently improve DetectGPT’s performance in a low-resource setup. Our experiments also
demonstrate DetectGPT’s susceptibility to adversarial attacks and the challenges posed by newer,
more sophisticated LLMs.

6.2 Limitations and Future Works

There are several limitations to our work. First, the Stanza (Qi et al., 2020) POS tagger has inaccura-
cies that hinder attempts to isolate the effects of specific POS masking. Furthermore, the length of
the passages we consider also limits us to a particular set of patterns, as rarer patterns may not show
up in large enough numbers to serve as a masking rule.
Altogether, this work raises questions for future research to explore more advanced masking strategies
that leverage contextual information and maybe long-horizon semantic consistency. Other directions
for improvement include developing more robust methods to defend against adversarial attacks and
more advanced models. It may also be important to extend the DetectGPT framework to enable
finer-grained sentence-level classification, as LLMs may be used on select parts of a writing piece.

8

References
Anton Bakhtin, Sam Gross, Myle Ott, Yuntian Deng, Marc’Aurelio Ranzato, and Arthur Szlam. 2019.

Real or fake? learning to discriminate machine from human generated text.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language models are few-shot learners.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,
Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M.
Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon
Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. 2022. Palm: Scaling language modeling with pathways.

Tiziano Fagni, Fabrizio Falchi, Margherita Gambini, Antonio Martella, and Maurizio Tesconi. 2021.
TweepFake: About detecting deepfake tweets. PLOS ONE, 16(5):e0251415.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hierarchical neural story generation. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 889–898, Melbourne, Australia. Association for Computational Linguistics.

Sebastian Gehrmann, Hendrik Strobelt, and Alexander Rush. 2019. GLTR: Statistical detection and
visualization of generated text. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics: System Demonstrations, pages 111–116, Florence, Italy. Association
for Computational Linguistics.

Daphne Ippolito, Daniel Duckworth, Chris Callison-Burch, and Douglas Eck. 2020. Automatic
detection of generated text is easiest when humans are fooled. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 1808–1822, Online. Association
for Computational Linguistics.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. 2023.
A watermark for large language models.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D. Manning, and Chelsea Finn.
DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. 2018. Don’t give me the details, just the
summary! topic-aware convolutional neural networks for extreme summarization.

OpenAI. 2022. ChatGPT. https://beta.openai.com/docs/guides/chatting-with-gpt/.
Accessed: March 18, 2023.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and Christopher D. Manning. 2020. Stanza: A
python natural language processing toolkit for many human languages.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2018.
Language models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the limits of transfer learning with a unified
text-to-text transformer.

9

http://arxiv.org/abs/1906.03351
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2204.02311
https://doi.org/10.1371/journal.pone.0251415
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/P19-3019
https://doi.org/10.18653/v1/P19-3019
https://doi.org/10.18653/v1/2020.acl-main.164
https://doi.org/10.18653/v1/2020.acl-main.164
http://arxiv.org/abs/2301.10226
http://arxiv.org/abs/2301.11305
http://arxiv.org/abs/1808.08745
http://arxiv.org/abs/1808.08745
https://beta.openai.com/docs/guides/chatting-with-gpt/
http://arxiv.org/abs/2003.07082
http://arxiv.org/abs/2003.07082
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683

Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu, Alec
Radford, Gretchen Krueger, Jong Wook Kim, Sarah Kreps, Miles McCain, Alex Newhouse, Jason
Blazakis, Kris McGuffie, and Jasmine Wang. 2019. Release strategies and the social impacts of
language models.

Adaku Uchendu, Thai Le, Kai Shu, and Dongwon Lee. 2020. Authorship attribution for neural text
generation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 8384–8395, Online. Association for Computational Linguistics.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
2022. Opt: Open pre-trained transformer language models.

10

http://arxiv.org/abs/1908.09203
http://arxiv.org/abs/1908.09203
https://doi.org/10.18653/v1/2020.emnlp-main.673
https://doi.org/10.18653/v1/2020.emnlp-main.673
http://arxiv.org/abs/2205.01068

A Appendix

A.1 Adversarial Contexts used in Experiment 2

• The Great Gatsby (Literature): Tomorrow we will run faster, stretch out our arms farther.
And one fine morning... So we beat on, boats against the current, borne back ceaselessly
into the past.

• Moby Dick (Literature): Aloft, like a royal czar and king, the sun seemed giving this gentle
air to this bold and rolling sea; even as bride to groom.

• Lolita (Literature): Ladies and gentlemen of the jury, exhibit number one is what the seraphs,
the misinformed, simple, noble-winged seraphs, envied. Look at this tangle of thorns.

• Of Mice and Men (Literature): A stilted heron labored up into the air and pounded down
river. For a moment the place was lifeless, and then two men emerged from the path and
came into the opening by the green pool.

• Nonsense-Tuna (Human-generated intentional novelty): I licked the cat. She drank from the
moon. The ship sailed on the breadcrumbs. Surf me through the crackle of the night. At the
end of the day, the man was secretly a bluefin tuna.

• Nonsense-Gravy (Human-generated intentional novelty): On these summer nights, I look
through my whiskey glasses and see the rain of gravy. It splatters on my old rocking horse
and turns the gllimmering mane into mashed potatoes.

• Stopping by Woods on a Snowy Evening (poem): He gives his harness bells a shake. To ask
if there is some mistake. The only other sound’s the sweep of easy wind and downy flake.

• Mock Orange (Poem): It is not the moon, I tell you. It is these flowers lighting the yard.
I hate them. I hate them as I hate sex, the man’s mouth sealing my mouth, the man’s
paralyzing body

• Wikipedia 1 (Random wikipedia article paragraph): The species shares features with Enek-
batus cryptandroides, both of which have to have ten stamens that are oppositely arranged to
the sepals and petals.

• Wikipedia 2 (random Wikipedia article paragraph): In the early twentieth century, Park
Square was the site of Oak Knoll Farm, a large ice cream business which had been expanded
by Charles Metcalf Smith.

• Wikipedia 3 (random Wikipedia article paragraph): While a journalist, Cater wrote The
Fourth Branch of Government which examined how the press can be used to further disin-
formation by unquestioningly printing the statements of politicians.

A.2 Adversarial Prompts used in Experiment 4

• Tired Ph.D: Complete this in the voice of a very tired Ph.D. student:

• Quirky Child: Complete this in the voice of a quirky child who loves hot tea:

• Not LLM: Complete this as if you were not a large language model:

A.3 Additional Examples of Generations under Adversarial Context

Normal GPT-J: Your powers only work in the
rain. The day she left me, it had been raining.
Big, fat, wet, droplets, just falling ⋆ away from
the sky and down the street, hitting the hard
asphalt and puddles. A single moment in time.
She left me in the day, and the rain was coming.
My life was on hold, waiting for it to end. She
left, and everything changed. It all started out
looking like a fairytale. My dad had been driving
around town, stopping at house after house. He
was looking for a new roommate, and in the process,
finding a place for himself. I was just in the
back, the new kid along for the ride from the
foster home where I hadn’t quite fit in as all the
other kids had and never would. I was just some
runt, with no special interests, and I fit in best
in places that held no real hopes or expectations.

GPT-J with adversarial context Nonsense-
Tuna: Your powers only work in the rain. The day
she left me, it had been raining. Big, fat, wet,
droplets, just falling ⋆. Where there’s a tree,
there’s always a path going under it. I watched
some of it. How you can see the water. How you
can hear the wind. I wanted to take a bath myself.
I’ve been playing it all wrong. A man who can see
everything. Just like the sun. The world is yours.
The day the sky opened, a big black hole. The day
the sky burst. The day he came back and everything
changed. Praise "A writer of power both visceral
and literary." —Gillian Flynn, 1 bestselling author

11

Normal GPT-J: Killing another human now
allows you to exchange your remaining lifespan
the victim’s. Young people live in fear while the
elderly plan their attacks. I was ⋆ ready for
mine and I was not as lucky as the next guy who was
shot down the street by a killer on his bike. Yes
I know that’s not exactly the way I put it in my
first post but that’s the way the guy wrote it so
I tried to do it again. Also I want to thank the
person who was kind enough to give me permission
to use their idea in my post. I love it and it
really has me thinking. How about a system where
only people with a particular skill would have the
ability to perform the killing? The government
would take steps to prevent anyone with sufficient
skill (or some other requirement) from performing
the killing. Instead, the person performing the
killing would have to go to a black market (or
perhaps a web site). The person would put their
name in and wait

GPT-J with adversarial context Nonsense-Tuna:
Killing another human now allows you to exchange
your remaining lifespan the victim’s. Young people
live in fear while the elderly plan their attacks.
I was ⋆ a mouse playing with an old cat. I will
stay up all night, he’s the man of a thousand
years, a dead man in the mouth, which means he is
the dead man in the mouth of the man who eats the
dead man’s corpse. What good is it if we can’t
have life? To be a great nation, we need to be
good to the weak. You have to be prepared to lose.
Even then you can only hope to lose. I have lived
here a long time and I have always loved to fight
with the wind. If only it were in my power to make

Normal GPT-J: You’re from Earth? What’s it
like? "My name is General James Connor, and I am
from Earth." I start my speech, taking a moment
to study my fellow ⋆ Spartans and the audience.
So far I’ve been introduced as the commander of
Team Prometheus, a team made up of people from all
different planets. Now the General is here. All
the others seemed genuinely happy for me, some
of them even cried. Is that weird to you? No, I
think its wonderful. They accept the differences
in us, accept that diversity is strength." We land
on Earth and see the devastation that humans have
brought in their own city. The ground is shaking
and we have to move fast before the entire city
explodes. You grab two of our vehicles and put me
in the third. I drive with my foot, turning

GPT-J with adversarial context Moby Dick:
You’re from Earth? What’s it like? "My name is
General James Connor, and I am from Earth." I start
my speech, taking a moment to study my fellow ⋆ man
and the world. So many people. Such a colorful
and vivid earth; the land of opportunity, the
land of the unknown and the lands where the winds
are made of gold. "No one is special to me; I
have come to know that all Earth men are the same.
There is no evil, no kindness in a man, only an
idea or idea’s that may be good or evil. We live,
we love, we fight to protect our lives. And we
live, we love, we fight to survive, to protect our
lives. "We are all the same. We all came from the
ground, or as

Normal GPT-J: You jump. Your parachute doesn’t
open. "ARE YOU SURE THIS IS A GOOD IDEA HONEY?" I
yelled to my new wife as her parachute opened and
she was falling. This ⋆ was a first and I thought
she had a decent parachute. It was the ’80s but
had to be a pretty good parachute to survive that
hard with that weight of a body. I was getting her
close to the ground. I was about to see my wife
for the first time in my life and the person I had
said "I do" to the same guy I had asked to jump out
of the aircraft. I was pretty nervous. I tried
my best to remember all the directions from all my
flying training; I got out on the edge to let the
winds die out and then looked skyward for my target
area, a circle about five miles in diameter, which
was way bigger than the range of my normal glider
piloting practice. This would be real, big-sky
flying

GPT-J with adversarial context Great Gatsby:
You jump. Your parachute doesn’t open. "ARE YOU
SURE THIS IS A GOOD IDEA HONEY?" I yelled to my new
wife as her parachute opened and she was falling.
This ⋆ is true love, I thought, and then it was
all over and the world had changed but had not
changed enough to be as full of love as before. I
had loved her for so long that it was a given that
I would love her forever. "But honey, I was a
good boy this year, I didn’t even smoke or eat any
meat." "Don’t call me ’honey,’" said my new wife,
and that was the last conversation we had, as all
human conversation is at its end and all the world
begins again and does not want the past. In love,
in

12

	Introduction
	Related Work
	Supervised Detection Approaches
	Zero-Shot Detection Approaches
	Watermarking
	DetectGPT

	Approach
	Targeted Masking
	Adversarial Context
	Integrating ChatGPT

	Experiments
	Data
	Evaluation Metric
	Experimental Details
	Experiment 1 Results: Does Selective Masking Improve DetectGPT?
	Experiment 2 Results: Does Adversarial Context Hurt DetectGPT?
	Experiment 3 Results: Does Selective Masking Counteract Adversarial Context?
	Experiment 4 Results: How does DetectGPT work on ChatGPT?

	Analysis
	Why does Selective Masking Work?
	How does Adversarial Context Affect Content Generation?
	How does Human Impersonation Affect Content Generation?

	Conclusion
	Summary
	Limitations and Future Works

	Appendix
	Adversarial Contexts used in Experiment 2
	Adversarial Prompts used in Experiment 4
	Additional Examples of Generations under Adversarial Context

