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Abstract

In the context of self-supervised representation learning for audio-visual speech
understanding, we hypothesize that the value of historical context is non-uniform
like it is in language, varying in relevance to the prediction of the next output seg-
ment in a sequential model architecture, and that attention weights would benefit
from similar non-uniformity. To this end, we have augmented the multi-modal
(speech and video) AV-HuBERT architecture with adaptive context pooling (ACP)
to incorporate a form of multi-resolution attention in the decoder. ACP previously
has been shown to improve the performance of machine learning models for neural
machine translation, language modeling, and image classification, and should be
applicable here. Through this modification, we expected to reduce the word error
rate (WER) on a downstream lip-reading task using the Lip Reading Sentences 3
(LRS3) dataset as compared to the original AV-HuBERT implementation which
uses standard self-attention in its transformer layers. The results of our augmenta-
tion suggest that ACP affords only a small benefit to AV-HuBERT in terms of WER
during inference of speech from mouth-cropped videos of talkers, but increases
the model training time by a factor between 5 and 10. Surprisingly, performance
metrics for training the model, such as sub-word accuracy and perplexity, were not
well correlated with WER at inference time.

1 Key Information to include

• Mentor: Yuan Gao

• External Collaborators: None

• Sharing project: No

• Code repo: https://github.com/jdonley/Adaptive-Context-AV-HuBERT

2 Introduction

Speech understanding is often considered as an audio-only problem, but the high correlation between
speech waveforms and lip movements can be leveraged in multi-modal approaches to enhance
performance, particularly in scenes with high acoustic noise levels. [1] Various methods have been
described which utilize audio-visual (AV) information from videos of talkers for speech-understanding
tasks [2, 3, 4], and AV information has also been used for training speech-from-video models for
applications such as lip reading. [5, 6, 7]

Similar to many related audio, computer-vision, and language-modeling applications, recent AV
speech understanding models leverage transformers, and consequently, attention. In standard trans-
formers, the attention mechanisms operate on all input features with a fixed granularity. [8] Context
in language, however, is not a regular phenomenon, so it’s not obvious that the standard attention
approach is optimal in the speech domain. Grouping or pooling features for attention in an adaptive
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Figure 1: AV-HuBERT model architecture. Figure from [6].

way may provide more flexibility for a model to optimally determine the appropriate context for
speech-prediction tasks.

To explore the use of context pooling with attention for AV speech understanding, we build upon
the Audio-Visual Hidden-Unit BERT (AV-HuBERT) architecture. [6] As shown in Figure 1, AV-
HuBERT’s encoder comprises separate audio and video input layers (a linear, feed-forward layer
and a modified ResNET-18, respectively) followed by the fusion of audio and visual features, a
transformer encoder, and a masked-prediction cross-entropy loss to cluster the input into units of
speech. This architecture is based on an audio-only HuBERT model [9, 10] which introduced the
use of a BERT-based approach to predict cluster assignments and learn both acoustic and language
models from masked, continuous audio inputs. “Modality dropout” is included to optionally zero-out
the audio or video features, and allows the model to be fine tuned, for example, for lip reading from
video-only input (our focus) or for automatic speech recognition from audio-only input.

Adaptive context pooling (ACP) is a method proposed to address the fixed granularity of standard
attention mechanisms. In short, rather than applying the attention query equally to each token in a
fixed window of input tokens, the authors in [11] use a two-layer convolutional neural network to
adaptively learn a series of attention weights w and pooling sizes s, each of which has n elements
where n is the length of the input sequence. As shown in Figure 2, the weights are applied directly to
the input sequence, and the pooling sizes are scaled to compute the standard deviations of a family
of Gaussian windows gi which enforce a learned locality on the sequence pooling. The weighted,
windowed tokens are then passed to the next attention block. The results in [11] indicate that ACP
can be effectively applied to neural machine translation, language modeling, and image classification.
Our project was meant to show that ACP also can be successfully applied to AV speech understanding,
specifically through integration into the AV-HuBERT decoder for a lip-reading task.

3 Related Work

AV-HuBERT builds on earlier BERT-based approaches for multi-modal masked language modeling
including AV-BERT [12], and for (uni-modal) self-supervised speech representation learning includ-
ing HuBERT [9, 10]. Multi-modal clustering, which is employed in AV-HuBERT for audio-visual
feature alignment to units of speech, has been used previously for video action recognition and audio
event classification [13].

Prior to AV-HuBERT, the state-of-the-art lip-reading performance was described in [5], in which the
authors trained a supervised BLSTM encoder and an LSTM decoder on 31k hours of synchronized
audio and video frames extracted from YouTube videos. Other recent AV lipreading models include
the conformer-based architecture of Ma et al. [14], and the teacher-student approach described
by Afouras et al. [7] which employs knowledge distillation from an audio-only automatic speech
recognition model to a visual speech recognition model.
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Figure 2: Adaptive context pooling. Adaptively determined pooling weights w are applied directly to
input features, and the pooling sizes s are used to define Gaussian masks gi that enforce a learned
locality on the feature pooling. Figure from [11].

The adaptive context pooling we added to AV-HuBERT is meant to enhance standard attention
by improving upon the fixed context granularity across features. Other related approaches for
feature pooling include area attention [15] in which adjacent features are averaged in groups with
learned sizes; local attention [16], in which a learnable Gaussian window is used to select a local
set of features; sparse attention [17] in which a sparse subset of features is learned; and multi-scale
attention [18] in which a fine-to-coarse attention mechanism with multi-scale spans is used to pool
features.

Since the transformer layers in the AV-HuBERT model use standard attention mechanisms, to the
best of our knowledge this is the first attempt to apply context pooling to this model.

4 Approach

Our approach for this project involved modifying the attention layers in the AV-HuBERT decoder with
ACP to improve on the published results for a lip-reading task. To start, we downloaded pre-trained
AV-HuBERT models from [19] and reproduced a subset of results from [6]. Per our milestone
report, we achieved word error rates (WERs) of 35.25% with the downloaded “base” AV-HuBERT
model (103M parameters) and 27.77% for the “large” AV-HuBERT model (325M parameters), each
pre-trained on 1759 hours of unlabeled data from the LRS3 [20] and VoxCeleb2 [21] datasets, and
fine-tuned for visual speech recognition on 433 hours of labeled data from LRS3. The corresponding
results in the paper are WERs of 34.8% and 28.6%, respectively, suggesting that our training and
evaluation infrastructure was properly set up.

To utilize ACP, following [6] we appended a 6-layer multi-head-attention (4 heads) transformer
decoder to a pre-trained “base" AV-HuBERT encoder model with 12 transformer blocks for fine-
tuning on a lip-reading task.1 We fine-tuned the encoder-decoder model using the “30-hour" subset
of the LRS3 dataset with a train/test/split of 30782/1200/1321 video snippets.

When fine-tuning, AV-HuBERT uses a cross-entropy loss computed on masked subword units,

L = −
s∑

t=1

log p(wt|w1:t−1, e1:T ), (1)

where e1:T is the feature (subword) sequence of length T output by the model, w = w1, w2, . . . , ws

is the ground-truth transcription with s sub-word units, and p(wt|w1:t−1, e1:T ) are the target proba-
bilities.

1GPU memory restrictions prevented us from working with the large AV-HuBERT encoder model (24
transformer blocks) aside from the initial tests to reproduce published results mentioned earlier.
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Our ACP implementation followed the description in [11]2. The basic idea is depicted in Figure 2: a
two-layer convolutional network is applied to a set of language-token features, and used to adaptively
generate pooling weights and sizes, the latter of which are used similarly to [16] to generate proximity-
enforcing Gaussian pooling windows. The specific details for the convolutional layers are not provided
in the paper, so we opted for the first layer to have 1 channel in, 2 channels out, and a kernel size of
(1, ed/2+1), and the second layer to have 2 channels in, 2 channels out, and a kernel size of (1, ed/2),
where ed is the embedding dimension, which produced the desired output dimensions of 2 channels
x sequence length for each sample in the batch. In a subsequent email exchange, the first author
of the ACP paper declined to provide further details but indicated that the exact implementation of
the convolutional layers was not important. The experiments described below in Section 5 included
adding ACP after all 6 transformer layers in the decoder, as well as adding ACP only after the last
transformer layer.

5 Experiments

5.1 Data

We used the LRS3 dataset [20] from Oxford University for our experiments.3 This dataset is a
benchmark for AV-HuBERT and other lip-reading models, and contains synchronized audio and
video of spoken speech along with annotated transcriptions for determining performance with word
error rate (WER). The dataset contains over 9K videos with over 150K utterances, over 4.25M word
instances, and a vocabulary size of 70K words, all taken from a database of public TED and TEDx
talks that have been annotated.

To utilize LRS3 with AV-Hubert, a number of pre-processing steps were required. These included:
splitting long utterances into shorter utterances and generating their time boundaries and labels;
trimming the video and audio according to the new time boundaries; extracting the audio from the
video files; and generating a list of file IDs and corresponding text transcriptions. A subsequent,
necessary feature-extraction process included: detecting facial landmarks in trimmed video files;
cropping the videos to the mouth region of interest; counting all the frames per clip; and merging the
data back together from the splits that were used for parallel processing.

5.2 Evaluation method

Based on the original analysis of AV-HuBERT in [6] we chose to use WER as out main evaluation
metric. The WER is defined as the sum of substitutions, deletions and insertions needed to transform
a predicted sentence into the reference sentence, all divided by the total number of words in the
reference, and it is a common metric in language prediction models. [22]

As mentioned in Section 4, the fine-tuning process involved optimizing for masked sub-word unit
accuracy with a cross-entropy loss. As discussed below in Section 6, we found that optimizing
with one metric but evaluating on another did not lead to intuitive results, for example when both
fine-tuning accuracy and inference-time WER were high (i.e., there were not well correlated.) As
shown in Figure 3 we also evaluated fine-tuning training performance by monitoring perplexity.

5.3 Experimental details

Our experiments involved modifying the AV-HuBERT decoder, and fine-tuning the entire encoder-
decoder model on videos (without audio) for a lip-reading task. The decoder comprises 6 transformer
layers, each of which includes multi-head attention acting on the output of the previous layer, as well
as multi-head attention acting on the output of the encoder, followed by normalization, dropout, and
a fully connected layer. We defined a new transformer layer that included ACP, and evaluated the
performance of configurations using ACP in all layers and only in the last layer. The fine-tuning
included 30k iterations in most cases and 60k iterations in all other cases, in which the encoder
weights were frozen for the first 12k, 19k, 24k or 48k iterations. The initial learning rate (from the

2The ACP paper was published without code and we were unable to locate any other existing implementations.
3We also intended to use the VoxCeleb2 dataset [21] which was used in the AV-HuBERT paper for pretraining,

but shortly after we submitted our project proposal that dataset was removed from its public repository.
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Figure 3: Example training/validation curves depicting the accuracy, perplexity (ppl), and loss over
time for ACP-enhanced AV-HuBERT.

provided configuration files) was 0.001 but we experienced significant problems with exploding
gradients unless we lowered the learning rate or conditioned it through the learning rate scheduler.

In addition to the ACP approach described in [11], we also implemented versions with learned
pooling weights but no pooling sizes, and with learned pooling weights plus fixed rather than learned
Gaussian windows, mostly for debugging. Specifically, for the fixed Gaussians, for i ∈ 0 · · · (n− 1)
we set σi in Figure 2 to n/10, where n is the sequence length, rather than computing it from the
learned pooling size. We also briefly experimented with alternatives to the 2-layer convolutional
network for learning the pooling weights and scores, for example using 1 layer, 4 layers, and 2 layers
with the channel expansion after the second layer rather than after the first, but our investigations
showed they did not provide substantial improvements and we didn’t explore them deeply due to time
constraints.

All experiments were run on a workstation with four RTX 3090 GPUs (from which we only used one
due to configuration issues with AV-HuBERT code), an AMD Ryzen Threadripper 3990X 64-core
processor, and 256GB of RAM.

5.4 Results

The baseline results against which we are comparing are those from Table 1 in [6] with the AV-
HuBERT method, Transformer-BASE backbone, S2S criterion, 30 hours of labeled utterances for
fine-tuning, and 1759 hours of unlabeled data for pre-training. The reported WER for this case is
46.10%. Our results are shown in Table 2 and the different configurations are summarized in Table 1.
“Paper” is from [6], as described above; “Repro” is our reproduction of the published results (no
ACP); the remaining configurations were chosen to optimize accuracy, perplexity, and loss whilst
avoiding exploding gradients during training.

We see that the best performing models in terms of test-time WER, as indicated by the boldface
entries in the table, are the two models that have ACP only in the last layer, using configurations
1 and 4. Configuration 3 and 4d had the best validation performances, however, surprisingly, were
not the best at test time. The second best model, as indicated by the underlined entries in the table,
was configuration 4b, which included ACP in all layers and only included minor changes from
configuration 4a. However, the second best for validation performance were configurations 3 and
4d. We see that the baseline was not the best or the second best for any of the performance metrics
except for WER, where it was the second lowest. This is a good sign that ACP was generally, if only
moderately, beneficial to model performance. Unfortunately this performance improvement comes at
the cost of increasing training time by a factor between 5 and 10.

We expected that by using ACP, performance would increase due to the ability to understand context
better for different inputs. We did notice that ACP could perform better than the baseline, however,
the performance improvements were not significant and were difficult to obtain through successful
trainings. For most cases, performance was worse than expected. We believe this is the case due to
some errors and/or misconfigurations in the AV-HuBERT FAIRSEQ [23] open source code, which
made the validation metrics uncorrelated to the actual test time performance. This would have had an
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Hyperparameter Paper Repro Cfg1 Cfg2 Cfg3 Cfg4a Cfg4b Cfg4c Cfg4d
fp16 true true false false false false false false false
max_update 30000 30000 60000 60000 30000 30000 30000 30000 30000
update_freq 1 1 2 1 3 3 6 6 6
lr 0.001 0.001 8.0e-05 5.0e-05 0.0002 0.00015 0.0001 0.0001 0.0001
freeze_finetune_updates 24000 24000 19000 48000 12000 19000 19000 19000 19000
warmup_steps 10000 10000 5000 10000 5000 5000 5000 5000 10000
final_lr_scale 0.05 0.05 0.2 0.2 0.2 0.2 0.05 0.2 0.2
decoder_acp_all_layers false false false false false false true true true

Table 1: Hyperparameters that were varied in our training configurations.

Model
Baseline ACP Last Layer ACP All Layers

Metric Dataset Paper Repro Cfg1 Cfg2 Cfg3 Cfg4a Cfg4b Cfg4c Cfg4d
Train time (h) ↓ Train NR 0.71 6.17 5.62 4.4 3.7 7.38 8.76 9.3
Accuracy (%) ↑ Val NR 63.98 62.42 54.09 68.57 63.76 59.57 63.79 68.83

PPL ↓ Val NR 5.02 6.08 8.44 4.88 5.84 6.52 6.15 4.93
Loss ↓ Val NR 65.78 70.9 79.46 64.92 70.15 73.19 71.57 65.77

WPS ↑ Test NR 123 119 120 126 133 106 117 107
Tokens/s ↑ Test NR 127.29 123.13 123.68 130.22 137.39 108.54 119.59 109.66
WER (%) ↓ Test 46.10 46.10 45.07 51.85 47.98 45.07 47.23 56.35 55.60

Table 2: Lip-reading results for our ACP-enhanced AV-HuBERT model. See Table 1 for an explana-
tion of the different model configurations. NR = not reported. Boldface = best. Underlined = second
best.

affect on the best checkpoint saving criterion. Additionally, this tells us that the approach for ACP
needs to be built on stable foundations but, however, could have promising potential for AV-HuBERT.

6 Analysis

During the fine-tuning stage, accuracy is computed as the number of correct masked unigram-based
subword units [24] divided by the total number of masked unigram-based subword units accumulated
over the training sequences (sentences). During inference, model performance is reported in terms
of the word error rate (WER) of an output from sequence generation. While intuitively these two
metrics should be well correlated, we found this often not to be the case. For example, Configuration
4a in Table 2 gave us the best performance at inference time, but was not competitive in training.
Conversely, Configuration 4d had the highest training accuracy but also a high WER. It has been
suggested elsewhere that training through minimizing WER, or a reasonable proxy of it, might be
more effective [25] but we did not have a chance to explore that.

We found the exploding gradients were a difficult problem to overcome. We employed ReLU
activation functions, used batch normalization and performed gradient clipping, none of which had
a noticeable effect on the exploding gradients. The only two mitigations we found to be effective
were increasing the bit depth to 32-bit from 16-bit, and lowering the learning rate or modifying the
learning rate scheduler to avoid an explosion of gradients. These mitigations, however, slowed down
training time and also made it more difficult to search for optimal configurations for the models and
training.

In regard to ACP, we also tried implementations with non-adaptive Gaussian windows and noticed
that training metrics performed significantly well, however, these models did not generalize to the test
set. From this, we discovered that errors in the public FAIRSEQ and AV-HuBERT implementations
prevented correct validation/inference of the models during training in certain cases.

After avoiding the above issues, we can see from Table 2 that ACP performs best when it is only in the
last layer of the network as opposed to all layers. Overall, we find that ACP improves performance
of the model above that reported in the SOTA paper for the ‘BASE’ model. Example outputs from
our best model can be seen in Figure 4. The model shows good predictions that match the ground
truth, which is impressive considering the only input modality is video alone. The output could
likely be improved with a better language model to improve sentence structure and reduce the
likelihood of incorrect words that are themselves unlikely in the sentence and context. Tweaking the
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Figure 4: Example inference output from our best performing model. REF = reference. HYP =
hypothesis (prediction).

hyperparameters of ACP could also help, where adjustments to the scale of the standard deviation of
the Gaussian weights, or even the statistical curves, could be better matched to the dataset or context
task.

We can see from the examples in Figure 4 that for several sentences the model gets a perfect match,
e.g. “and i said that’s a good job” and “she suffered so much”. On the other hand, there are instances
where contextual understanding could be improved to help avoid misclassifications of words, e.g.,
“we just needing to keep going” could be improved by understanding that “needing” does not fit in
this context. We can see that the model still outputs sensible sentences with words that fit context
together even if they are wrong, e.g., “was it actually place that you could visit” misunderstands the
words “the internet actually” and uses “it actually”, which still makes sense in the context of the
sentence. This also occurs in the sentence “would imagine you’re walking on the floors and you see
seeing a pill”, where if you were on the floor you would more likely see a pill than a bear, and “floors”
was misunderstood from “forest”, which look similar for an input of video only.

7 Conclusion

For this project we chose to add adaptive context pooling to the transformers in the decoder of the
AV-HuBERT architecture with the intention of improving the model’s performance, in terms of word
error rate, on a lip-reading task (speech from video of a talker). We faced a few challenges including
a time-intensive data pre-processing routine, a code base that was more complex than we expected,
lack of detail in the context-pooling paper, and an unstable implementation that required significant
effort to prevent exploding gradients. Our best model very slightly improved on the baseline: we
obtained a WER of 45.07% while the baseline achieved 46.10%. This small improvement came at
the cost of significantly increased training time, although inference was slightly faster (based on a
single pass through the test data.)

Several factors may have contributed to the lack of improvement over the baseline, and we have
considered three avenues for future work. First, despite the comments from the first author of [11] it’s
unclear how important the architecture of the convolutional layers in the ACP approach is, particularly
in this context, so we would like to implement and evaluate more options for adaptively computing
the pooling weights and sizes. Second, it would be valuable to explore applying ACP to each head
of the multi-head attention in the AV-HuBERT decoder. This would have required modifying and
rebuilding the pre-compiled C++ attention library from PyTorch that is used by AV-HuBERT, but
this was beyond the scope of this project. Finally, there are some idiosyncrasies in the FAIRSEQ
sequence-modeling toolkit upon which AV-HuBERT is built that made debugging difficult, so gaining
a deeper understanding of this could help improve our ACP-enhanced AV-HuBERT implementation
and its lip-reading performance.
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8 Contributions

We conceived the project idea together, jointly wrote the proposal, milestone report, and final report,
and jointly prepared the poster. We both independently pre-processed the LRS3 dataset and ran
pre-trained versions of the AV-HuBERT model to create a baseline and test our infrastructure. Paul
implemented the initial version of adaptive context pooling (ACP) and Jacob optimized it. Jacob
developed the infrastructure to fine-tune the ACP-enhanced AV-HuBERT model and ran our test
cases. Both of us investigated a problem with exploding gradients that delayed our final model runs.
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