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Abstract

BERT-based models typically consider the embedding of the classification token
when representing sentence meaning, meaning they do not take into account the
different levels of importance of different sentence parts when applying BERT
embeddings to downstream tasks. The goal of this project was to implement
the default project’s multitask minBERT model and improve its performance on
sentiment analysis, paraphrase detection, and semantic textual similarity by incor-
porating sentence parts into the minBERT model for the respective downstream
tasks. Sentence parts were incorporated in the same manner as the sentence part-
enhanced (SpeBERT) model. We also experimented with gradient surgery, cosine
similarity fine-tuning, and SMART optimization to improve model results. Our
findings support the findings of the SpeBERT authors, as we find that incorporating
main sentence parts substantially improves performance on semantic textual simi-
larity, and other sentence parts improve performance on sentiment classification.
Like the SpeBERT authors, we also find selecting the correct aggregation strategy
is important for optimizing Spe-model performance. However, we find that for
paraphrase detection, incorporating main or other sentence parts does not appear to
improve performance. A key finding is that Spe-based models performed better in
absence of multitask learning. It may be beneficial to avoid multitask learning if
downstream tasks require different sentence parts since this allows the model to
focus on information from inherently different embeddings. Our best model was
an ensemble model of three Spe-based models trained for different tasks. By incor-
porating sentence parts for sentiment classification and semantic textual similarity,
our ensemble model achieved a dev set score of 0.715 and a test set score of 0.705.

1 Key Information to include

• Mentor: Shai Limonchik
• External Collaborators: N/A
• Sharing project: N/A

2 Introduction

Many BERT-based models only consider the embedding of the classification token when representing
sentence meaning, which means they do not take into account the different levels of importance of
different sentence parts when applying BERT embeddings to downstream tasks. To address this issue,
[1] proposed the Sentence part-enhanced BERT (SpeBERT) model to incorporate sentence parts into
BERT embeddings by merging BERT’s embeddings with sentence part embeddings. The researchers
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found that by incorporating sentence parts appropriate for the respective downstream task, SpeBERT
was able to outperform the BERT baseline on both sentiment classification and semantic textual
similarity.

The goal of this project was to implement the default project’s multitask minBERT model and
improve its performance on sentiment analysis, paraphrase detection, and semantic textual similarity
by incorporating sentence parts into the minBERT model for the respective downstream tasks. We
also experiment with gradient surgery, cosine similarity fine-tuning, and SMART optimization to
reduce overfitting and further improve model performance. Additionally, while the developers of the
SpeBERT model find that incorporating sentence parts improved performance on semantic textual
similarity and sentiment classification, they do not apply the SpeBERT model to paraphrase detection.
Thus, we will also experiment with incorporating both "main" and "other" sentence parts to the
paraphrase detection task to see if incorporating sentence parts also improves BERT performance on
paraphrase detection.

3 Related Work

The primary source of inspiration for this project comes from [1] They proposed the SpeBERT model
to enhance BERT embeddings by merging BERT’s CLS embedding with sentence part embeddings.
The sentence part embeddings are extracted through a pooling operation based on BERT’s contextual
embeddings and sentence part masks. The sentence part masks are obtained from the Stanford
dependency parser, which encodes sentence parts with different values based on the downstream
task. The final sentence representation is obtained by using an "aggregator" that merges the BERT
embedding and sentence part embedding. The authors experiment with various "aggregators",
including averaging the embeddings, concatenating the embeddings, and taking the weighted average
between the embeddings. The final enhanced sentence representation is then used for prediction in
downstream tasks. In the end, the authors find that when the correct sentence parts are incorporated
("main" parts like subject, verb, and predicate for text similarity and "other" parts like adverbial and
complement for sentiment analysis), the SpeBERT model consistently outperforms the baseline BERT
model on text similarity and sentiment analysis tasks. By implementing the SpeBERT model, we
hope to affirm the author’s findings on the effectiveness of incorporating sentence parts for sentiment
classification and semantic text similarity. We also hope to discover which sentence parts are more
important for paraphrase detection, since SpeBERT has yet to be applied to this task.

Another extension implemented in this project was gradient surgery to improve model performance
when training the minBERT model simultaneously on multiple tasks. This is a method developed by
[2]. Since the directions of the gradients for different tasks could come in conflict with one another
during multitask training, the researchers propose a gradient surgery method that projects the gradient
of a task onto the normal plane of the gradient of each of the other tasks with a conflicting gradient.
The authors observed substantial performance gains after applying gradient surgery to both multitask
supervised learning and reinforcement learning problems.

SMART optimization was also implemented in this project in hopes of reducing overfitting. SMART
optimization is a method developed by [3]. Fine-tuning large, pretrained natural language processing
models can easily result in overfitting, especially on smaller datasets. Thus, to reduce overfitting
while fine-tuning such models, the authors propose a principled regularized optimization framework
containing two key components: smoothness-inducing regularization and bregman proximal point
optimization. Through the SMART optimization framework, the authors successfully reduced the
overfitting of the various large, pretrained NLP models when fine-tuning them for downstream tasks.

4 Approach

4.1 Baseline Model

For the baseline model, the BERT embeddings from our minBERT model are passed into one linear
layer that is shared between all the downstream tasks. Then, for the sentiment analysis task, a second
linear layer is applied that reshapes the output into a 5-dimensional vector, and softmax activation is
applied to the output. For the paraphrase detection task, the shared linear layer outputs from each of
the two input sentences were concatenated into a combined feature vector, and this feature vector was
passed into a linear layer with sigmoid activation to generate the ultimate output. The same process
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was used for semantic textual similarity, minus the sigmoid activation. We fine-tuned this multitask
model by applying the gradient computation to the sum of the losses on each of the three tasks.

4.2 Gradient Surgery

Following the implementation of the baseline model, we implemented gradient surgery in hopes of
improving the multitask training process. We followed the gradient surgery implementation from [2],
which involves projecting the gradient of a task onto the normal plane of the gradient of each of the
other tasks with a conflicting gradient. Specifically, if the gradient of task i conflicts with the gradient
of task j, then the gradient of task i, gi, is projected onto the normal plane of gj :

gi = gi −
gi · gj
||gj ||2

· gj (1)

To implement gradient surgery, we adopted the code from [4] into our model training pipeline.

4.3 Cosine Similarity Fine-Tuning

Since the goal of the semantic textual similarity task was to predict the degree of similarity between
two input sentences, we experimented with the cosine similarity function for this task. In this
experiment, we modified the model architecture by applying the cosine similarity function to the
output of the shared linear layer instead of the second linear layer to generate the prediction for
semantic textual similarity. Cosine similarity not only inherently incorporates similarity into the
model output, but it also restricts model output within a certain range. Since the labels for the
semantic textual similarity task also lie within a specific range (see 5.1.3), this may also help improve
model performance.

4.4 Sentence Part-Enhanced minBERT

To incorporate sentence parts into BERT, BERT’s contextual embeddings are merged with sentence
part masks through a part pooling operation. Then, this pooled embedding is fused with BERT’s
original pooled embedding through an "aggregator" to generate the sentence part-enhanced BERT
embeddings. For our Spe-minBERT models, we pass this enhanced representation into our baseline
model architecture instead of the original BERT embeddings, and we also experiment with slight
architecture modifications, as described in Section 5.4. The overall process of incorporating sentence
parts into BERT embeddings is summarized in Figure 1.

Figure 1. The general architecture of the SpeBERT model [1]
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4.4.1 Sentence Part Masks

Sentence part masks are vectors with lengths equal to the number of words in a given sentence. If
a word belongs to the sentence parts being focused on, then the corresponding value in the part
mask is 1, and otherwise, it is 0. The two types of sentence parts we focus on in this project are
"main" sentence parts (subject, predicate, and object), and "other" sentence parts (adverbials and
complements).

To generate the sentence part masks, we used the Stanza library from the Stanford NLP Group [5]
for dependency parsing as well as part-of-speech tagging. For "main" sentence parts, any word in
the sentence that was tagged as a verb or noun by the part-of-speech tagger, as well as any word
that was labeled as an "object" or "subject" by the dependency parser, was assigned a value of 1 in
the sentence part mask. For "other" sentence parts, any word in the sentence that was tagged as an
adjective or adverb or any word that was labeled a complement or adverbial was assigned a value of 1
in the part mask.

Following the findings of [1], all our experiments use main sentence parts for the semantic textual
similarity task, and all experiments used other sentence parts for the sentiment classification task. For
the paraphrase detection task, we experimented with both types of sentence parts to determine which
sentence parts were most important for paraphrase detection.

4.4.2 Part Pooling

To combine BERT’s contextual embeddings with the sentence part masks, we used the following
pooling operation proposed by [1]:

Spe =

∑n
i mi · hi∑

mi
(2)

Here, for a sentence with n parts, mi is the i-th element of the sentence part masks, and hi is the
BERT contextual embedding that corresponds to the i-th sentence part.

4.4.3 Aggregators

To aggregate BERT’s original pooled embedding (the "Cle" embedding) with the "Spe" embedding,
we experimented with three types of aggregators: mean, concatenation, and weighted average. For
mean aggregation, the strategy was to simply take the average between the Cle and Spe embeddings.
For concatenation, the Cle and Spe embeddings were concatenated into a single feature vector. For
weighted average aggregation, we applied the same strategy as the SpeBERT authors: the weighted
average between the Cle and Spe embeddings was taken using a learnable weight factor α. The value
of α was learned through a neural network computation:

α = σ(WTConcat(Cle, Spe) + b) (3)

where Concat(Cle, Spe) denotes the feature vector formed by concatenating the Cle and Spe
embeddings together. [1] find that weighted average aggregation produced the best results for
sentiment classification, and concatenation produced the best results for semantic textual similarity.

4.5 SMART

To address overfitting, we implemented the SMART optimization framework from [3]. SMART
optimization involves 1) smoothness-inducing regularization and 2) Bregman proximal point opti-
mization. Smoothness-inducing regularization manages the complexity of large-scale NLP models
while Bregman proximal point optimization is a class of trust-region methods that help reduce ag-
gressive parameter updates that lead to overfitting. To implement SMART optimization, we adopted
the code from [3] to our model training pipeline.
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5 Experiments

5.1 Data

5.1.1 Sentiment Analysis

For the sentiment analysis task, we evaluate our model on the Stanford Sentiment Treebank dataset
[6]. This dataset consists of 11,855 single sentences from movie reviews. Each sentence is given one
of five labels: negative, somewhat negative, neutral, somewhat positive, or positive. For this task, we
have been provided with the following splits: train (8,544 examples), dev (1,101 examples), and test
(2,210 examples).

5.1.2 Paraphrase Detection

For the paraphrase detection task, we use the Quora dataset [7], which consists of 400,000 question
pairs. Each sample of question pairs is assigned a label indicating whether the two questions are
paraphrases of one another. The following splits are provided in this dataset: train (141,506 examples),
dev (20,215 examples), and test (40,431 examples).

5.1.3 Semantic Textual Similarity

The SemEval STS Benchmark dataset [8] was used for the semantic textual similarity task. This
dataset consists of 8,628 different sentence pairs, each assigned a value indicating the degree of
similarity on a scale from 0 (unrelated) to 5 (equivalent meaning). For the STS dataset, we are given
the following splits: train (6,041 examples), dev (864 examples), and test (1,726 examples).

5.2 Evaluation method

To evaluate model performance on the sentiment analysis task, as well as the paraphrase detection task,
the accuracy of the model’s predictions were observed. To evaluate performance on the semantic text
similarity task, we used the Pearson correlation between the true similarity values and the predicted
similarity values. The overall "score" of the model was computed by taking the average of the metrics
from each task.

5.3 Experimental details

All models were trained with batch size 8, learning rate 10−5, and for 25 epochs. The cross-entropy
loss was used for sentiment classification, the binary cross-entropy loss was used for paraphrase
detection, and the mean-squared error loss was used for semantic textual similarity. The AdamW
optimizer was used to train the models. Each model was evaluated on the dev set after each epoch,
and the model with the highest score on the dev set was saved. Because it was computationally
expensive to generate sentence part masks, we only generated main and other sentence part masks for
the first 6,040 samples of the train split for each dataset for the sake of efficiency. Main and other
sentence part masks were generated for all dev set samples for all tasks. Thus, for all experiments,
we performed multitask training on the same number of samples (6,040) from each task. As a result,
a key assumption is the model that performs best when trained on 6,040 samples would also perform
best if trained on all training samples from each task.

5.4 Models

For reference, we trained and evaluated the following models:

• Baseline: the baseline model trained by summing the losses from each task
• Baseline-Surgery: the baseline model trained with gradient surgery
• Baseline-Surgery-Cosine: the baseline model trained with gradient surgery and with cosine

similarity applied on the STS task
• Spe-Para-Main: same as Baseline-Surgery-Cosine except incorporating main parts for

STS, other parts for sentiment classification, and main parts for the paraphrase task, all with
mean aggregation
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• Spe-Para-Other: Spe-Para-Main except other parts for paraphrase detection

• Spe-Para-None: Spe-Para-Main except original BERT embeddings for paraphrase detec-
tion

• Spe-Separate: same as Spe-Para-None, except instead of first passing embeddings into a
shared linear layer, the shared layer is replaced with a separate linear layer for each task

• Spe-Orig-Agg: same as Spe-Separate, except weighted mean aggregation for sentiment
classification and concatenation for the STS task

• Spe-Only: same as Spe-Separate, except only the "Spe" embedding is used for sentiment
classification and the STS task

• Spe-SMART: same as Spe-Separate, but training with the SMART optimization framework

5.5 Results

The performance of the models on the dev set is shown below:

Model SST Dev Acc Para Dev Acc STS Dev Corr Dev Score
Baseline 0.495 0.735 0.360 0.530
Baseline-Surgery 0.490 0.750 0.368 0.536
Baseline-Surgery-Cosine 0.433 0.748 0.765 0.649
Spe-Para-Main 0.470 0.708 0.811 0.663
Spe-Para-Other 0.466 0.708 0.808 0.661
Spe-Para-None 0.472 0.708 0.811 0.664
Spe-Separate 0.478 0.719 0.814 0.670
Spe-Orig-Agg 0.497 0.699 0.819 0.672
Spe-Only 0.475 0.709 0.814 0.666
Spe-SMART 0.488 0.707 0.816 0.670

Table 1: Dev Set Performance of the Models

From Table 1, we see that gradient surgery provided a slight boost in model performance, from
a dev set score of 0.530 to a score of 0.536. This boost was small, however, and we expected a
much larger boost based on results from the existing research. This could indicate that the gradients
did not conflict often during training. While adding cosine similarity caused a dip in accuracy for
the sentiment classification and paraphrase detection tasks, it created a significant boost in the STS
correlation from 0.368 to 0.765, which led to a significant jump in the overall dev score from 0.536
to 0.649.

After incorporating other parts for the sentiment classification task, we observed a substantial boost
in SST accuracy from 0.433 to as high as 0.497. Similarly, incorporating main parts for the semantic
textual similarity task also provided a boost in STS correlation, from 0.765 to as high as 0.819.
This was expected, as it has been shown in previous research that these sentence parts improve
performance on these specific tasks. However, for the paraphrase detection task, incorporating neither
main parts nor other parts provided any improvement in accuracy.

Removing the shared linear layer among all tasks and replacing it with a separate linear layer for
each task resulted in slight improvements across all tasks. Additionally, switching from a mean
aggregation strategy to a weighted average strategy for sentiment classification and concatenation
strategy for STS also boosted performance on those two tasks from 0.478 to 0.497 and 0.814 to 0.819,
respectively. While performance on the paraphrase detection task decreased, the boost in performance
in the other two tasks was more than enough to offset this, resulting in a slight boost in the overall
dev score.

Relying solely on the "Spe" embedding resulted in slightly poorer performance, which was expected
since the "Spe" embedding alone likely lacked context on the overall input sentence. Incorporating
SMART optimization provided improvements in SST and STS performance, but this was not enough
to improve overall model performance. This was surprising due to SMART being proven in previous
research to substantially reduce overfitting and boost performance. However, an explanation for this
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could be that we did not fine-tune the hyperparameters in the SMART optimization algorithm, and
this may have been especially important given that we are training on multiple tasks.

5.6 Leaderboard Results

After the best-performing model, Spe-Orig-Agg, was identified, we generated part masks for all
the remaining train samples for the sentiment classification task, as well as for the test samples for
sentiment classification and semantic textual similarity. Then, we trained the Spe-Orig-Agg on all
available train data over 2 epochs. A single epoch was defined in terms of the paraphrase training
split, and the training loop reset to the beginning of the SST and STS training splits when the end was
reached. Additionally, a concern was that multitask training was holding back model performance, so
we trained three separate Spe-Orig-Agg models, one on each task, and ensembled these three models
together. The models’ predictions were averaged together to produce ultimate predictions.

Model Dev SST Dev Para Dev STS Test SST Test Para Test STS
Spe-Orig-Agg 0.470 0.758 0.834 0.488 0.760 0.810
Ensemble 0.529 0.780 0.837 0.524 0.783 0.809

Table 2: Leaderboard Results on Dev and Test Sets

As expected, training Spe-Orig-Agg on all available data produced an increase in overall dev score
(0.672 to 0.687) and training three separate Spe-Orig-Agg models and ensembling them produced an
even better dev score of 0.715. Results were slightly worse for test set, but this was expected since
we selected the best-performing model on the dev set.

6 Analysis

Incorporating other and main parts respectively played a key role in boosting performance for the
sentiment classification and STS tasks. This shows us that adverbials and complements are key
sentence parts to focus on when dealing with sentence classification tasks, and subject, verb, and
predicate and the parts that should be focused on for semantic textual similarity analysis. However,
for paraphrase detection, the results show that focusing on specific sentence parts does not improve
performance. Interestingly, incorporating main or other parts does not hinder performance either.
This seems to indicate that paraphrase detection may require some combination of main sentence
parts and other sentence parts (e.g. subject and adjective or verb and adverb). Another explanation is
that we may not have selected the correct aggregation strategy.

Aggregation strategy played a role in improving model performance. As seen in Table 1, choosing the
weighted average aggregation strategy produced a notable boost in sentiment classification accuracy,
and the concatenation strategy produced a slight bump in STS correlation. The weighted average
may be a more effective strategy for the sentiment classification task because we incorporate "other"
sentence parts into this task. Because other sentence parts occur less frequently in sentences, this could
cause the sentence masks to be more sparse, so a weighted average strategy with a learnable parameter
could help the model learn to deal with this sparsity. On the other hand, we incorporate main sentence
parts for the STS task, and since main sentence parts occur more frequently, concatenation may
produce the best results because there could be a substantial amount of important information in the
Spe embedding, so concatenating the embeddings ensures that this raw information can be passed
into the model.

A key theme in the results was that multitask training may have been hindering performance due to
the nature of the extensions we applied. For instance, after incorporating cosine similarity into the
model, we saw a drop in performance on both the sentiment classification and paraphrase detection
tasks. Since multitask training was used, this indicates that cosine similarity may have caused the
model to focus more heavily on the STS task, thus taking away from learning on the other two tasks.

Similarly, we can see in Table 1 that incorporating other parts into the sentiment classification task
and main parts into the STS task led to substantially worse results on the paraphrase detection task.
Like with cosine similarity, incorporating these sentence parts could have caused the model to more
easily learn the sentiment classification and STS tasks, thus hindering performance on the paraphrase
task.
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Moreover, after replacing the shared linear layer with separate linear layers for each task, we saw an
increase in performance across the board. A possible explanation for this is because we incorporated
different sentence parts (or no parts for paraphrase) into the BERT embeddings for each task, sharing
a layer between these tasks was forcing the model to attempt to generalize among all three inherently
different embedding types. Having a separate layer for each task allows the model to learn parameters
specific to each type of embedding.

As a final piece of evidence, we saw that the Ensemble model ultimately led to the best results,
indicating that for the sake of achieving robust results on each of the tasks, it may not be the most
beneficial to train a multitask model for these three tasks.

7 Conclusion

From our experiments, we saw that incorporating sentence parts into BERT embeddings plays a
key role in creating robust embeddings for sentiment classification and semantic textual similarity.
We find that incorporating main parts into semantic textual similarity and other parts into sentiment
classification provides substantial performance improvements relative to our baselines. This affirms
the findings of [1] and demonstrates that focusing on specific sentence parts is important for creating
better representations of language. However, with the paraphrase detection task, we failed to improve
performance by incorporating main or other sentence parts. A possible explanation for this is that
paraphrase detection may require some combination of main sentence parts and other sentence parts,
or we may not have chosen the correct aggregation strategy.

We also confirm that selecting the right aggregation strategy is important when blending the Spe
embedding with the original BERT embedding. Like the SpeBERT authors, we find that a weighted
average strategy works well when using other parts, and a concatenation strategy works well when
using main parts. More research should be done on various aggregation strategies to improve
SpeBERT performance.

A key finding is that combining multitask learning with SpeBERT may not be an effective strategy.
Since different downstream tasks depend on different types of sentence part-enhanced embeddings,
sharing layers between tasks may hinder a Spe model’s ability to focus on specific aspects of
a sentence part-enhanced embedding. Thus, when developing SpeBERT-like models, it may be
beneficial to avoid multitask learning if the tasks require different sentence parts.

We also find that incorporating cosine similarity to the model output significantly improves model
performance on semantic textual similarity. This demonstrates the importance of incorporating
formulas that compute similarity into neural networks for similarity-based tasks.

Some limitations of this project include time and resource constraints. We were not able to produce
sentence part masks for all 141,506 training examples for the paraphrase detection task. If we had
done so, we may have seen different results from our Spe models, as adding more training examples
may have allowed our models to extract more important information from the sentence part-enhanced
embeddings. We also only used mean aggregation for paraphrase detection and did not experiment
with different aggregation strategies for the sentence parts for this task. Since selecting the correct
aggregation strategy is important, we may have found different results had we experimented with
different aggregation strategies.

In terms of future work, it would be interesting to see if a larger dataset of sentence part-masks for
paraphrase detection would produce different results. We would also like to experiment with different
aggregation strategies for paraphrase detection, as well as potentially develop new aggregation
strategies for sentence part-enhanced embeddings.
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