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Abstract

This paper presents an End-to-End system that transcribes speech audio into anno-
tated text, including named entities across 13 categories such as Person, Location,
Organization, Event, Product, Skill, Address, PhoneNumber, and more. Our
system combines the ASR and NER pipelines into one model, based on Baidu
DeepSpeech2 architecture by Amodei et al. (2015) with significant modifications
to network layers and parameters. We compare our proposed model with tradi-
tional Two-Step approaches and demonstrate how fine-tuning and transfer learning
can enhance the efficiency and accuracy of our model. Additionally, we evaluate
our model using standard metrics that includes the Word-Error-Rate, Character-
Error-Rate, and Slot-Error-Rate to show that the performance compared to existing
approaches, making it a valuable contribution to the field of speech recognition and
natural language processing.
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2 Introduction

Automatic Speech Recognition (ASR) and Named Entity Recognition (NER) have revolutionized
various applications, from voice assistants to customer service automation. In the journal "Where are
we in named entity recognition from speech" by Caubrière et al. (2020), and "Incorporating named
entity recognition into the speech transcription process" by Hatmi et al. (2013), the current two-step
approach for Speech to Named Entity Recognition typically involves two separate models or modules.
The first module is the Automatic Speech Recognition (ASR) model, which takes an audio signal
as input and transcribes it into a textual representation. The second module is the Named Entity
Recognition (NER) model, which takes the output of the ASR model as input and then identifies and
tags named entities such as people, organizations, and locations in the text.

This approach has been widely used and is popular in many applications, including speech-to-text
systems, chatbots, and customer service automation. However, there are two main drawbacks to this
approach. Firstly, the ASR model is prone to errors, and any errors made during transcription can
propagate into the NER model, leading to a less accurate output. Secondly, the ASR model typically
does not retain certain key features such as capitalization and punctuation, which can be important in
identifying named entities.

To overcome these issues, a more integrated approach is required that combines the ASR and NER
models into a single pipeline that takes the audio tracks as input and outputs the annotated text data
with entities in different categories, as proposed in this project proposal. The expected output example
is shown in Figure 1.
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Figure 1 from Doccano Doccano

3 Related Work

Named Entity Recognition (NER) from speech has gained increasing attention due to its potential
applications in voice assistants, customer service automation, and meeting summarization. Several
studies have explored different aspects of this problem, focusing on Automatic Speech Recognition
(ASR) and NER techniques.

A prevalent approach in the literature is the two-step method, as described by Caubrière et al.
Caubrière et al. (2020) and Hatm et al. Hatmi et al. (2013), which combines ASR and NER
sequentially. ASR systems, such as the Baidu DeepSpeech2 model Amodei et al. (2015), are trained
on large audio datasets to convert speech into written text. State-of-the-art ASR models often leverage
deep learning techniques, including Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs), for improved performance.

NER models, on the other hand, identify and classify named entities in text. Traditional NER models,
such as the Stanford NER and spaCy by Neumann et al. (2019), rely on hand-crafted features and
machine learning algorithms. More recently, transformer-based models, such as BERT by Devlin
et al. (2019), have shown significant improvements in NER performance by leveraging pre-trained
language representations.

Despite the success of the two-step approach, it has limitations. The ASR model’s errors can propagate
to the NER phase, and ASR models typically do not retain crucial features like capitalization and
punctuation, which can be helpful in identifying named entities. Moreover, the two-step approach
may not optimally exploit the synergies between ASR and NER.

In this work, we aim to address the limitations of the existing approaches by proposing a more
integrated pipeline that combines ASR and NER into a single model, leveraging transfer learning and
fine-tuning techniques to improve performance. We also seek to provide a comprehensive evaluation
of our approach compared to the traditional two-step method.

4 Approach

Our proposed end-to-end model for speech to named entity recognition combines both ASR and NER
tasks into a single model architecture. The approach is inspired by Baidu DeepSpeech2 (Amodei
et al. (2015)) and adapted with modifications to accommodate NER. The model structure consists of
three main components: a Convolutional Network (CNN), a Bidirectional Recurrent Network (RNN),
and a Fully Connected Layer (FC) with softmax activation.

4.1 Model Architecture

The model architecture is illustrated in Figure 2a and consists of the following layers:
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Convolutional Network (CNN): The CNN layers are designed to capture local patterns in the input
audio signal. Each Conv2D layer has 32 filters with a window size of (41, 11) and a stride of (2, 2),
using valid padding. A padding layer is added before each Conv2D layer due to the use of valid
padding.

Bidirectional Recurrent Network (RNN): We employ GRU layers instead of Simple RNN or LSTM
layers in the RNN component. GRU provides a gating mechanism that improves speech recognition
and reduces training time compared to LSTM, as reported in "COMPARING GRU AND LSTM FOR
AUTOMATIC SPEECH RECOGNITION" by Khandelwal et al. (2016).

Fully Connected Layer (FC) with softmax activation: The output layer is a fully connected layer
with softmax activation, which generates the probability distribution over named entities for each
input step.

All three network components include batch normalization layers to improve stability and speed
during the training phase.

4.2 Loss Function

For our loss function, we use Connectionist Temporal Classification (CTC) introduced by Graves
et al. (2006). CTC computes the probability of different sequences and marginalizes over alignments,
allowing us to bypass the need to know the alignment between input audio and output text.

4.3 Transfer Learning and Fine-tuning

Due to resource and dataset limitations, we apply transfer learning and fine-tuning techniques to our
model. The training process is divided into two steps:

Pretraining: The model is pretrained using an initial dataset containing only 29 types of characters
and no annotated named entities.

Fine-tuning: We freeze the CNN and Bi-RNN layers, and expand the last FC layer units to support
55 types of characters, including numbers, punctuation marks, and entity annotation marks. The
model is then fine-tuned using the annotated NER dataset.

By incorporating these additional character features, we aim to enhance the model’s accuracy by
providing stronger pattern inputs for specific entity categories such as IP addresses, phone numbers,
emails, names, and more.

Figure 2a Our E2E Model Structure Figure 2b CTC Example FlowHannun (2017)
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5 Experiments

5.1 Data

We utilized the LibriSpeech ASR corpus from Panayotov et al. (2015), which contains approximately
1000 hours of English speech at a 16KHz sampling rate, without any background noise. To generate
an annotated NER dataset, we passed the audio portion of the initial dataset through a pre-trained ASR
model by Microsoft (b) and then fed the output transcript into a pre-trained NER modelMicrosoft
(a). We implemented two filter procedures to ensure the data quality between the ASR output and
NER input and the NER output and final output. These filters were responsible for removing low-
confidence results and significant anomalies before the data was used for E2E training. Some manual
annotations and fixes were also performed. The dataset was then divided into three parts, with 15%
allocated for evaluation, 15% for testing, and the remaining for training purposes. Due to resource
constraints, including time and computational capacity, we can only be able to process 100 hours of
audio from the initial dataset, along with corresponding annotated text that includes 13 different types
of entities marked with 13 different labels. We’ve also implemented dataset preprocessing scripts
to transform the transcript into annotated text, giving an example of a labeled sentence with named
entities: "On <the last Saturday in April<, the Ñew York Timesp̃ublished an account of the strike
complications, which were delaying &Alexanders New Jersey Bridge&, and stated that the {engineer{
himself was in town and at his office on &West :10th: St&." where the "<" mark denotes the time,
""̃ mark denotes the Organization, "&" mark denotes Location, "{" mark denotes the PersonType,
and ":" mark denotes the number. A complete list of marks that we introduced to our model for 13
different categories is shown in figure 2:

Figure 3: Named Entity Annotation Marks

5.2 Evaluation method

We evaluated the performance of our proposed model by utilizing standard metrics that provide
a comprehensive picture of the accuracy and effectiveness of our approach. The metrics we used
include Word Error Rate (WER), Character Error Rate (CER), and Sentence Error Rate (SER). WER
is a metric that measures the percentage of incorrect words generated by the model compared to the
ground truth Mccowan et al. (2004). This metric is an essential measure of a speech recognition
model’s accuracy, as it assesses the model’s ability to transcribe speech into text accurately. CER, on
the other hand, measures the percentage of incorrect characters generated by the model compared to
the ground truth MacKenzie and Soukoreff (2002). CER is a more granular metric than WER, as it
provides insight into the accuracy of the model at the character level. SER measures the percentage
of sentences that contain at least one incorrect word or character generated by the model compared to
the ground truth. Makhoul et al. (1999) This metric is an indicator of the model’s ability to transcribe
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entire sentences accurately. By evaluating our proposed model using these metrics, we can gain
insights into its accuracy and effectiveness compared to the traditional two-step approach.

5.3 Experimental details

We have experimented with multiple approaches, including various combinations of layer types and
sizes for RNN, and adding extra layers. Figure 4 illustrates the results of our previous attempts.

Figure 4 Loss Graph for different approach

During the development of our proposed model, we tried different approaches by varying the model
structures and hyperparameters including but not limited to adjusting batch normalization for different
neural network layers. adding the extra FC layers as the output of the model, changing the number of
recurrent networks and etc. Each line on the charts represents a different approach we used. We found
that for all our previous models, the loss either fluctuated or remained constant until we adopted our
current model architecture. We initially trained the model using the initial ASR dataset, and while the
loss for this model was not a smooth decreasing line due to the mini-batch technique, it decreased
overall. After 16k training steps, the loss was reduced to 0.5. To improve our model’s accuracy, we
applied transfer learning techniques that froze the CNN and RNN layers and trained the model on
our own dataset. Figure 5 displays the loss diagram, indicating that the transfer learning techniques
were applied at 16k steps (Blue circle). Overall, by trying different approaches and applying transfer
learning techniques, we were able to develop a highly effective model for named entity recognition in
speech.

Figure 5 Loss graph for transfer learning and fine tune

5.4 Results

To evaluate our pipeline, we utilized 15% of the reserved dataset for testing. We compared the
performance of our proposed end-to-end (E2E) approach, both before and after fine-tuning, to the
traditional two-step approach. Our model was trained for a total of 62k steps, including 16k steps for
pretraining and 46k for transfer learning and fine-tuning. In the speech recognition field, Word Error
Rate (WER) Mccowan et al. (2004), Character Error Rate (CER) MacKenzie and Soukoreff (2002),
and Slot Error Rate (SER) Makhoul et al. (1999) are widely used to assess model accuracy. We used
SER as our primary metric for evaluating our results, and WER and CER as secondary metrics to aid
in error analysis.

Table 1 presents a comparison of our proposed approach, before and after fine-tuning, to the traditional
two-step approach in terms of WER, CER, SER, and the number of recognized entity types.
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WER CER SER Entity Types
Two-step (baseline) 0.2598 N/A 0.49 7

Our Model (before tuning) 1.00 0.9178 1.0 13
Our Model (after tuning) 0.5753 0.5432 0.8 13

Table 1: WER result of different approach

As can be seen from Table 1, our proposed model, after fine-tuning, outperforms the traditional
two-step approach in terms of the number of recognized entity types, but still exhibits a higher WER,
CER, and SER. Error analysis revealed that the primary reason for our model’s high SER was the
need for more training steps or epochs during the training phase to improve WER and CER.

To address this issue, we attempted to modify the initial learning rate, adjust the RNN layers from
Simple RNN to GRU, increase the size of the initial dataset, and tune other hyperparameters. As a
result, we were able to reduce CER and WER by more than 15%. However, further improvements
are still necessary to achieve the theoretical WER and SER goals for our model.

Implications and limitations: Despite the current limitations in terms of WER, CER, and SER, our
proposed E2E model demonstrates the potential for a more integrated approach to ASR and NER.
The increased number of recognized entity types suggests that our model could provide additional
value for specific applications. Further research, access to more extensive datasets, and additional
computational resources could enable improvements in the model’s performance, potentially leading
to a more efficient and accurate solution for named entity recognition in speech.

6 Analysis

The proposed end-to-end (E2E) model for Named Entity Recognition (NER) from speech attempts
to address the issues faced by the traditional two-step approach. However, the current results of the
E2E model have not outperformed the traditional two-step approach in terms of Word Error Rate
(WER) and Slot Error Rate (SER). The E2E model achieved a WER of 0.5753 and an SER of 0.8,
compared to the baseline two-step approach with a WER of 0.2598 and an SER of 0.49. Despite not
achieving better performance, the E2E model successfully recognizes 13 entity types compared to
the traditional approach that recognizes only 7 entity types.

There are several factors contributing to the higher WER and SER in the E2E model. One of the
primary reasons is the need for more training steps or epochs during the training phase. We attempted
several modifications, such as adjusting the initial learning rate, changing the RNN layers from
Simple RNN to GRU, increasing the size of the initial dataset, and tuning other hyperparameters.
Through these changes, the E2E model’s WER and CER were reduced by over 15%. Nonetheless,
further improvements are still required to achieve the desired performance. Another factor that
may contribute to the suboptimal performance is the dataset’s quality. We used a combination of
pre-trained ASR and NER models to generate the annotated NER dataset. Although we applied
filter procedures and manual annotations to ensure data quality, there might still be inaccuracies and
inconsistencies in the dataset, which may have affected the E2E model’s performance.

It is also worth noting that the E2E model’s architecture, inspired by Baidu DeepSpeech2, was
modified significantly, which may have introduced challenges in training and performance. The
transfer learning technique used to train the E2E model may not have been optimal, and further
research into alternative transfer learning approaches or model architectures could potentially yield
better results.

While the E2E model for NER from speech has not outperformed the traditional two-step approach
in terms of WER and SER, it has shown promising results in recognizing more entity types. Further
improvements to the training process, dataset quality, and model architecture may lead to better
performance in the future. The proposed E2E model represents an important step towards more inte-
grated and accurate NER systems from speech, which has the potential to revolutionize applications
such as voice assistants, chatbots, and customer service automation.

6



7 Conclusion

In this project, we proposed an integrated end-to-end (E2E) approach for Named Entity Recognition
(NER) from speech, aiming to overcome the limitations of the traditional two-step approach that
involves separate Automatic Speech Recognition (ASR) and Named Entity Recognition models. By
combining the ASR and NER models into a single pipeline, we sought to eliminate the propagation
of errors from the ASR to the NER model and to retain key features such as capitalization and
punctuation, which are crucial for identifying named entities.

Our proposed model was inspired by the Baidu DeepSpeech2 architecture and employed a combina-
tion of Convolutional Neural Networks (CNN), Bidirectional Recurrent Networks (RNN) with GRU
layers, and a Fully Connected Layer (FC) with softmax activation. To improve the model’s accuracy,
we applied transfer learning and fine-tuning techniques.

Despite our efforts, our current model experienced a higher Word Error Rate (WER), Character Error
Rate (CER), and Slot Error Rate (SER) than the traditional two-step approach. However, we were able
to reduce the CER and WER by more than 15% through dataset expansion and hyperparameter tuning.
We also achieved the extraction of 13 different types of named entities, which is an improvement
over the traditional approach that only extracts 7 entity types.

The primary limitation of our work is the need for more training steps or epochs during the training
phase to further improve the WER and CER, which in turn would likely lead to a lower SER. Resource
constraints, such as time and computational capacity, limited our ability to process larger datasets
and perform extensive model training.

Future work could focus on refining the model architecture, exploring alternative techniques such
as attention mechanisms or transformer-based models, and employing larger datasets for training
and validation. Additionally, further optimization of hyperparameters and the investigation of
alternative loss functions might lead to improved performance in both NER and ASR tasks. With
these improvements, the proposed end-to-end approach has the potential to overcome the limitations
of the traditional two-step method and revolutionize various applications, from voice assistants to
customer service automation.
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