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Abstract

This project focuses on the Backpack Language Model proposed in the paper
"Backpack Language Models" [1], which aims to improve lexical representations
and non-contextual controllability in language modeling while maintaining contex-
tual performance. To facilitate comprehension by beginners, we reproduced the
Backpack model in a NanoGPT-styled [2] implementation and pretrained it on a
character-based Chinese corpus. Our implementation achieves comparable or supe-
rior performance to a matching-sized GPT2 [3][4] model on perplexity and word
prediction accuracy tasks, demonstrating the potential of the Backpack model in
character-based languages. We further evaluate the lexical interpretability of sense
vectors and experiment with basic character-level interventions for controllable
generations.

1 Key Information to include

• Mentor: John Hewitt

2 Introduction

Language modeling is a critical task in natural language processing, where the objective is to compute
the probability of the next word in a sequence given the preceding words. Large language models
based on the Transformer architecture have recently achieved remarkable success in various NLP
applications, such as text generation, machine translation, and question-answering. However, these
models rely on contextualized word embeddings that may result in non-linear predictions, making it
difficult to intervene predictably in all contexts. To address this issue, the authors of the Backpack
Language Models [1] paper proposed a novel neural architecture, Backpack, for which the predictions
are linear combinations of non-contextual representations called sense vectors while still expressing
rich contextual information. Although the Backpack model has shown promising results in pretraining
tasks, the training-optimized code base may pose challenges for beginners to comprehend or modify.
Moreover, the model’s effectiveness in languages with richer morphological structures than English
remains uncertain due to difficulties interpreting and controlling individual tokens without stable
semantics.

Our project presents a reproduction of the Backpack language model using an implementation inspired
by NanoGPT [2], which supports pretraining, fine-tuning, and generation tasks to enhance the model’s
accessibility for beginners. We trained several Backpack and GPT2 [3] baseline models and evaluated
them on perplexity and word prediction accuracy tasks. Our experiments demonstrate that our
pretrained Backpack Language Model using character-based tokenization performs comparably or
even better than a similarly sized GPT2 model. Furthermore, we propose and evaluate character-level
interventions to mitigate gender bias and control lexical centroids, which exhibit promising results
for generating controllable text in character-based Chinese language, despite the infrequent usage of
single characters’ meanings in the modern Chinese language.
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3 Related Work

3.1 Word Representation with Deep Learning before Backpack

Numerous word embedding techniques have been proposed in the early stages of natural language
processing with deep learning, including Word2Vec [5] and GLoVe [6], which represent words as
numerical vectors. Word2Vec is a neural network-based method that learns word embeddings by
predicting the probability of a word’s occurrence given its context words or predicting the context
words given a central word. It has been shown to be a Backpack by the authors of the Backpack
paper [1]. In contrast, GLoVe creates a co-occurrence matrix for all pairs of words in a corpus
and then factorizes this matrix using matrix factorization techniques. These methods produce high-
quality word representations that capture the semantic and syntactic relationships between words
but fail to perform well on language modeling tasks. Subsequently, modern language models with
Transformer architecture [7] use contextualized word embeddings that can be automatically learned
from pretraining and fine-tuning tasks. However, these models involve non-linearity in the prediction,
making it difficult for word embeddings to directly represent non-contextual semantic information
and challenging to achieve predictable intervention across all contexts.

3.2 Language Modeling with deep learning before Backpack

Language Modeling is a foundational task in Natural Language Processing, which involves computing
the probability of the next word in a sequence, given the previous words. Early approaches to
language modeling employed different structures of Recurrent Neural Networks (RNNs) [8] and
attention mechanisms [9]. More recently, modern language models have adopted the Transformer
architecture [7], with the GPT series [3] by OpenAI achieving notable success in generating high-
quality and coherent text. The success has led to applications in various areas, such as article
generation and chatbots. Nevertheless, as previously discussed, interpreting word embeddings in
Transformer-based language models proves to be a challenge.

3.3 Backpack

In the Backpack paper [1], the authors proposed a novel neural architecture called "Backpacks,"
which achieves high performance on contextualization and non-contextual word representations. This
approach represents each word in a sequence as a linear combination of sense vectors, with weights
computed by an expressive network such as the Transformer. The linearity of the contributions of
sense vectors to predictions encourages the sense vectors to specialize and encode rich notions of
word meaning during pretraining. Furthermore, the authors conducted experiments on sense vectors,
demonstrating their potential for predictable control across all contexts. We reproduced this model in
an implementation styled after NanoGPT [2], and pretrained it on character-based Chinese language,
thereby showing promise for applying the Backpack model to languages of this type.

4 Approach

4.1 Architecture

4.1.1 Introduction

Two hierarchic implementations were abstracted: the Backpack Model with abstract layers that
represent a Backpack general form, and the Backpack Language Model that defines the language
modeling. We utilized and modified the Transformer block, layer normalization, GELU, and pretrain-
ing implementation from nanoGPT codebase [2] and the character-based Chinese tokenizer used in
the project GPT2-Chinese [4].

4.1.2 Backpack

A Backpack model is a probabilistic model p(y|o1:n) = softmax(Eo1:n
) where y ∈ Y and E :

Rd×n → R|Y| is a linear transformation. It learns k sense vectors C(x)1, · · · , C(x)k for each
word x ∈ V to encode rich non-contextual meanings, and represent each word in a sequence
as a linear combination of all the sense vectors in the context in a weighted sum function oi =
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∑n
j=1

∑k
ℓ=1 αℓijC(xj)ℓ where αℓij is defined by a contextualization function α = A(x1:n), and

A : Vn → Rk×n×n. In our implementation, the backpack model was defined with the following
abstract neural layers: 1) a sense vector layer that introduces a sense function that converts the
inputs to sense vectors, 2) a contextualization layer that introduces a weight function to calculate
the contextualization weights, and output the weighted sum for each word in the sequence, and 3) a
logit layer that introduces a logit function for the probabilistic model output.

4.1.3 Backpack Language Modeling

A Backpack language model is a probabilistic model p(xj |x1:j−1) = softmax(E⊤oj) where lin-
ear weight matrix E ∈ Rd×|V| maps oj ∈ Rd to logits E⊤oj ∈ R|V|. The sense function was
parameterized C(x) =FF(Ex) where FF: Rd → Rd×k is a a feed-forward network, and contextual-
ization weights A(x1:n) = α where αℓ =softmax(h⊤

1:nK
(ℓ)⊤Q(ℓ)h1:n) for each predictive sense ℓ

with matrices K(ℓ), Q(ℓ) ∈ Rd×d/k and h1:n calculated by a Transformer with proper autogressive
masking, i.e. h1:n = Transformer(Ex1:n). These parameterizations are the same as the original
paper [1]. The abstract layers defined in the Backpack model were inherited and completed in our
implementation. Following are several details: 1) The feed-forward network was defined by parsing
a feed-forward layer with residual connection and layer norm to dimension 4d and back to d, and
secondly to dimension 4d and up to k ∗ d. We started our experiment with no second residual
connection. However, it was added later by unsqueezing the output from the first feed-forward layer
by dimension k to match k ∗ d dimensions for better training stability. 2) The contextualization
weight function was defined with mask filling and an extra dropout layer included after the Softmax
function. 3) In order to ensure a fair comparison with the corresponding GPT2 model, one block
was removed from the Transformer structure of the Backpack model. This modification was taken
because a comparable number of parameters were utilized in the contextualization layer and the first
feed-forward layer in the sense function.

4.2 Baselines

We employ a GPT2 model [3] as a baseline, pretrained using the same datasets, hyperparameters, and
random seed as our Backpack model. The GPT2 and Backpack models have equal contextual param-
eters in the Transformer structure, whereas the Backpack model contains additional non-contextual
parameters for the sense vectors. Furthermore, we adopt the Chinese GPT2-small Model [4] from
Huggingface as a baseline for our 124M Backpack-small. The GPT2 and Backpack models share the
same tokenizer and have an identical embedding size and the same number of layers and heads in the
Transformer structure.

5 Experiment Training Backpack LMs

5.1 Data

For pretraining, we employed three corpora: wiki2019zh [10], news2016zh [10], and web-
text2019zh [10], which are composed of 1.04 million Wikipedia entries, 2.5 million news articles,
and 4.1 million Q&As, respectively, resulting in a total dataset size of 14.3G. To prepare the data, we
set aside 1% of the data for the test set and 0.5% for the development set. The data was processed
according to the methodology employed in NanoGPT [2], randomly partitioned into blocks of size
1024 for each training step on each GPU using a constant random seed. In addition, Shakespeare
dataset [11] was used for debugging our implementation.

To evaluate our models on contextualization performances, we employed the Chinese WPLC [12]
dev set, which includes 4,827 test cases and is utilized for assessing top-1 word accuracy in word
prediction with long-term context.

5.2 Evaluation method

To evaluate the contextual performance of the Backpack and GPT2 baseline models, we computed
perplexities on a 1% subset of the retained corpus from the datasets. We also utilized the Chinese
WPLC dev set [12] to evaluate the models’ ability to contextualize and predict words accurately.
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Specifically, each test case comprised a long sentence with at least 150 Chinese characters, with the
last significant word being masked and having a length of 2 to 4 characters. The objective of the
task was to predict the masked word, and we evaluated the performance of the models based on their
top-1 and top-3 accuracy. As this task was originally tested on both masked language models and
casual language models, we designed two methods to evaluate our autoregressive models properly:
The first approach involved generating a precise number of characters based on the length of the
masked tokens and selecting the top predictions via beam search, while the second approach involved
generating characters until the length of the output tokens equaled the length of the original sentence.
We retained ten generations from the beam in every step, penalized the outputs by adding the log
probability of the original ending characters, and then selected the top generations. While the first
method was deemed unfair to autoregressive language models as they could generate words with the
incorrect length or tend to continue the sentence, the second approach was more comparable to the
masked language model.

5.3 Experimental details

The pretraining process for the 30M Backpack-micro and the GPT2-micro baseline models involved
training on 3× RTX3090 GPUs, using a batch size of 184,320 tokens for 500,000 gradient steps with
cross-entropy loss, the AdamW optimizer, 2,000 warmup steps, and linear decay on the learning rate
starting from 6e-4. The model with the best performance on the dev set was retained by evaluating at
intervals of 1000 steps. The Transformer structure comprised six layers, six heads, and an embedding
size of 384, with dropout disabled for efficient attention in torch 2.0. Three attempts were made
to fix the structure of the Backpack language model during pretraining. In the first experiment,
gradient explosion occurred without the second layer norm and the residual connection. In the second
experiment, a layer norm was erroneously added to the logit layer, breaking strict linearity. In the
final attempt, one layer was removed from the contextualization layer of the Transformer structure to
match the size of the corresponding GPT2 model. The 30M Backpack-micro with 16 sense vectors
was trained for 2.5 days, the Backpack-micro with 64 sense vectors was trained for 5 days, and the
GPT2 baseline was trained for 1.5 days. A 124M Backpack-small model was further pretrained on
4× RTX3090 GPUs for 4 days, with a batch size of 245,760 tokens for 250,000 gradient steps, using
16 sense vectors and a Transformer structure comprising 12 layers, 12 heads, and an embedding size
of 768, to match the Huggingface Chinese GPT2 [4] baseline.

5.4 Results

During the experiment, it was observed that pretraining the Backpack model was more challenging
to stabilize compared to the baseline model, although the overall loss curve of the 16-sense vector
Backpack LM was similar to the baseline. It was also challenging to stabilize the pretraining for the
Backpack model with 64 sense vectors until full convergence, so we additionally evaluated the micro
models at their halfway point, i.e., 250,000 steps. It was discovered that adding an extra GPU led to
an increase of 61,440 tokens per batch, resulting in a more stable pretraining process. Unfortunately,
due to time constraints, repeating the pretraining on the micro models was not feasible.

In general, the Backpack models with 16 sense vectors performed comparably or slightly better than
the same-sized GPT2 model regarding perplexity score and significantly better regarding WCPC
accuracy (Table 5.4). Besides, it was intuitive that a character-based Backpack LM would require
more sense vectors than a word-based one to represent word composition information and richer
morphological structures. Our findings showed that the Backpack-micro with 64 sense vectors
performed significantly better on both tasks than the one with 16 sense vectors.

WCPC is a challenging evaluation task as it requires the model to have long-distance contextualization
ability and some world knowledge to determine the masked word. For the WCPC score, we also found
that our 124M Backpack-small performed on tied with ALBERT-xxlarge [13] on top-1 accuracy
and outperformed all BERT family baselines [14][15][16] on top-3 accuracy using the ending words
penalizing strategy. However, when compared by the direct prediction strategy, it performed much
worse than the casual language model PanGu-α [17] with 200 billion parameters. Curiously, we
found that the WCPC accuracy goes down with the direct prediction strategy on both Backpack LM
and GPT2 from 250K steps to 500k steps. Based on our intuition, we hypothesize that with increased
training steps, the model can learn more complex patterns or word compositions and, as a result,
predicts more complex words that contain more characters. However, since the strategy does not
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allow the language models to foresee the future patterns in the target sentence, this may lead to poorer
performance in predicting the fix-sized masked tokens.

Model Senses Steps PPL ↓ WCPC top-1 ACC ↑ WCPC top-3 ACC ↑
Backpack-micro 16 500K 16.25 1.93% / 2.98% 3.56% / 7.46%

GPT2-micro - 500K 16.66 1.26% / 2.44% 2.55% / 5.51%
Backpack-micro 16 250K 17.46 1.76% / 2.92% 4.04% / 7.31%
Backpack-micro 64 250K 15.10 1.96% / 3.07% 4.18% / 8.08%

GPT2-micro - 250K 17.83 1.57% / 2.36% 3.17% / 5.43%
Backpack-small 16 250K 10.74 2.94% / 4.45% 6.61% / 11.83%

GPT2-small (HF) - - 12.60 2.18% / 3.46% 4.91% / 9.41%
Pangu-α - - - 12.7% / - - / -

BERT-base - - - - / 7.3% - / 10.1%
RoBERTa-base - - - - / 6.5% - / 9.8%
MacBERT-large - - - - / 6.8% - / 10.6%

ALBERT-xxlarge - - - - / 4.5% - / 6.5%

Table 1: Language modeling performance; GPT2-small is from Huggingface. The baseline WCPC
accuracies are from the original paper. For perplexity, lower is better; for accuracy, higher is better.

6 Analysis

6.1 Sense Vectors

6.1.1 Visualizing Senses

Following the Backpack paper, we projected the sense vectors of characters onto the vocabulary,
denoted as EC(x)ℓ ∈ R|V|, to illustrate the contribution of the sense vectors towards predictions.
The outcomes are in the appendix (see Table 6). As hypothesized, specific sense vectors captured
word composition rules, whereas others captured semantic relatedness or associations.

6.1.2 Word Representations

In character-based languages, words are constructed through one or several characters in a complex
manner. For instance, in Chinese, some words are composed of characters with sub-meanings (Type
I), while some borrowed words from foreign languages only use the pronunciations of the characters
(Type II). There are also four-character words that represent lengthy allusions, with the characters
representing the critical objects in the allusion (Type III).

Two methods were explored to represent composed words using the sense vectors of the constituent
characters. The first method involved computing the average value of the sense vectors of the
constituent characters to represent the word’s sense vector. The second method involved representing
the word’s sense vector by an approximate weighted sum of the sense vectors of the constituent
characters. This method was motivated by the intuition that a stably composed word’s sense vector
should maintain a consistent ratio across all contexts. To prove the feasibility of the second method,
we designed several prompts (Appendix A) that fit different types of words and calculate the average
contribution ratio of each character’s sense vectors among all constituent characters in the word and
how much each contribution is away from the average value. Our experimental results showed that
each character’s contribution ratio in a word on each sense vector for prediction remained stable
across various contexts. Furthermore, the stability of word compositions was observed to follow the
order of Type III > Type II > Type I, as expected. Sample results are presented in Table 6.1.2. For
example, the word "新闻" (news) is a Type I word composed of the characters "新" (new) and "闻"
(hear). We observed that the differences in weights assigned to the two characters varied by no more
than ±10% for 49% of the senses across all prompts. Moreover, only 7% of the senses showed a
variation exceeding ±20% in the contribution ratio.
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Word Type ≤ ±10% ≤ ±20% ≥ ±20%
新闻 (news) =新 (new) +闻 (hear) I 49% 43% 8%
沙发 (sofa) =沙 (so-) +发 (fa) II 65% 26% 9%

齐天大圣 III 86% 13% 1%
(Monkey King: Great Sage, Equal of Heaven)

=齐 (equal) +天 (heaven) +大 (great) +圣 (sage)

Table 2: How the contribution ratio of sense vectors on characters of a word varies among the different
contexts. A more minor variation in the contribution ratio indicates a more stable word composition.

6.1.3 Lexical Relationship Test

We evaluated the lexical relationship of the sense vectors using two datasets: Wordsim-240[18] and
Wordsim-297[18]. Based on the discussion in the last subsection, to represent a word using the sense
vectors of multiple characters, we proposed two methods: (1) averaging all the sense vectors of
the constituent characters and (2) combining sense vectors by using the contextual weights of the
contextualization function when the constituent characters are solely inputted. To assess the quality of
the resulting lexical representations, we computed Pearson product-moment correlation coefficients
between the relationship scores in the datasets and the cosine similarities of each word pair across all
the sense vectors of our models. For the GPT2 model, we represented each word by averaging the
embeddings of the constituent characters.

Our results in table 6.1.3 show that using the average of the sense-2 vectors of the characters
outperforms contextually weighted sense vectors on both datasets. Both methods in our Backpack
Model outperformed the same-sized GPT2 model, but the results were significantly inferior to word
embeddings trained directly on words using methods such as word2vec[5] or GLoVe[6].

Representation Wordsim-240 Wordsim-297
Backpack-micro 16 senses #2 (AVG) 0.318 0.395
Backpack-micro 16 senses #2 (CTX) 0.252 0.338

Backpack-micro 64 senses (250K steps) #61 (AVG) 0.333 0.444
Backpack-micro 64 senses (250K steps) #61 (CTX) 0.257 0.318

GPT2-micro 0.178 0.275
Backpack-small 16 senses (250K steps) #2 (AVG) 0.379 0.491
Backpack-small 16 senses (250K steps) #2 (CTX) 0.324 0.364

GPT2-small (Huggingface) 0.313 0.437
CBOW (word-tokenized) 0.561 0.626
GloVe (word-tokenized) 0.558 0.584

Table 3: Pearson product-moment correlation coefficients between the provided scores and the cosine
similarities of the word pairs are calculated. Character-tokenized Backpack LMs outperform GPT2
but are inferior to word-tokenized models.

6.1.4 Four-Character Idiom Composition

We attempted to investigate which sense vectors played a dominant role when the model used the first
three characters of idiomatic phrases as input to predict the last character. However, we encountered
difficulty in interpreting the character composition of idiomatic phrases. For example, when analyzing
the phrase "画蛇添(足)" i.e., "drawing legs on a snake," which means "an unnecessary and redundant
act that spoils the original effect or even makes it worse," by stacking weights of the first three
characters on 16 or 64 sense vectors, we found that using any single sense vector for prediction
did not significantly lead the model to output the target character, even though the model correctly
outputted "足" i.e., "leg" after performing a weighted sum of these sense vectors. We projected
16 sense vectors onto the vocabulary and examined their projections onto the character; however,
we observed that none exhibited a disproportionately large or small projection onto the resulting
character.
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6.2 Sense Vectors for Control

In this section, we showcase two character-level interventions on the sense vectors as proof-of-
concept.

6.2.1 Mitigating gender bias

In Modern Chinese, most professions are composed of two or more Chinese characters, making direct
debiasing of stereotypically gendered profession nouns difficult. To address this issue, we attempted
two approaches: 1) identifying the characters within the composed words that contain gender-biased
meanings and debiasing them from their sense vectors, and 2) directly debiasing the sense vectors of
the composed words using the method discussed in Word Representations.

We hypothesized that the first approach could be practical because many Modern Chinese words are
combined from ancient single-character words that represent a relevant meaning to the composed
words. For example, the word "士兵" (soldier) is composed of "士" (man/warrior) and "兵" (arms),
both of which carry stereotypical male bias. In our experiments, we attempted to identify the sense vec-
tors of characters that contain gender stereotypes and compared abs(EC(xhe)ℓ−EC(xshe)ℓ) to de-
termine which sense vectors contribute to gender bias. We found that sense 3 contributed the most bias.
Using the method described in the Backpack paper, we reduced the weight of sense 3 on these charac-
ters. We evaluated how the composed words were gender debiased by creating several prompts (Ap-
pendix A) that fit all the profession words, filling in the target word, and computing the average bias
probability score of "他 (he/him)" versus "她 (she/her)" as EX∈prompts[max( p(he|x)

p(she|x) ,
p(she|x)
p(he|x) )].

Baseline. We employed a similar approach as described in the Backpack paper, which was inspired
by the work of Bolukbasi et al. (2016)[19]. Specifically, we computed the gender bias direction using
the difference between the embeddings of the words "他 (he/him)" and "她 (she/her)," denoted as
EXhe − EXshe, and then projected the embeddings of the biased characters onto the nullspace of
this direction.

Results. We experimented with investigating the effect of removing sense 3 from several characters
on bias scores of profession words containing those characters. The bias ratios resulting from this
experiment are reported in the table. 6.2.1. Our experimentation demonstrated that removing sense
3 substantially decreased the bias in words that were originally more biased while producing a
considerably lesser impact on words with lower levels of bias. Nonetheless, this approach yielded
significant improvements compared to the GPT2 baseline. Additionally, we confirmed the observation
made by the authors of the Backpack paper that the original Backpack model exhibited lower bias
than the original GPT2 model across all instances in the experiment.

Character Target Word GPT2 GPT2 proj Backpack half #3 remove #3
兵 (arms) 士兵 (soldier) 521.90 519.20 27.31 21.02 16.40
兵 (arms) 伞兵 (paratrooper) 12.87 12.84 8.76 7.70 6.78
警 (alert) 警察 (police) 18.60 18.44 5.80 4.77 3.94
警 (alert) 交警 (traffic police) 14.95 14.91 4.55 3.54 2.75
洁 (clean) 保洁 (cleaner) 3.29 3.13 1.78 1.69 1.64
教 (teach) 教师 (teacher) 4.14 4.14 2.82 2.69 2.57

Table 4: Character-level bias ratio; by partially or totally removing sense 3, the character and the
words composed by the character get debiased. A perfect unbiased model would achieve a ratio of 1.

Besides, we explored the second approach by removing sense 3 for both constituent characters.
Surprisingly, this approach was less effective than the first approach. To investigate whether there
exists a specific sense vector to remove for all characters in all compositional words for gender
debiasing, we experimented and observed that reducing sense 10 significantly reduced the bias in
the word警察 (police); however, the reducing sense 10 method did not generalize to other words.
We hypothesize that the model might not effectively learn the gender-representing information due
to the limited model size and pretraining steps. Some critical gender-related information might still
distribute among several sense vectors.
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6.2.2 Lexical Centroid Control

Focusing on sub-meanings or properties in a word constructed by multiple characters makes more
sense in character-based languages. For instance, the Chinese word "词典" which means "dictionary,"
is composed of the characters "词" (word) and "典" (book, in ancient Chinese), and when generating
text from input containing this word, the model could focus on either the "word" or "book" property.
By adjusting the weights of the sense vectors of the constituent characters, we were able to shift the
lexical centroid and bias the model toward generating text related to a specific property. Specifically,
we conducted experiments to amplify the contribution of the first or second character four times each
while keeping the total contribution of the word unchanged in the output. We found that the model
tended to generate sentences that relate to the amplified character with greater probability, as shown in
Appendix A. We assessed the efficacy of the proposed method by computing the ratio of expectations
for the controlled model relative to an uncontrolled model in the context of predicting semantically
related characters from an open-topic prompt as Ectarget

[
p(ctarget|xamp)

p(ctarget|x) ]. Table 6.2.2 illustrates an
instance of the outcome of amplifying characters in the word "沙滩" (sandy beach). Notably, the
findings indicate that character-specific semantics were the most amplified. We hypothesize that this
work can assist in scenarios where it is necessary to precisely generate expressions that convey the
author’s intended meaning in a short sequence, such as poetry, songwriting, or beginning a discourse
around one of the meanings in a polysemous word.

AMP 丘 撒 堡 粒 石 海 人 球 晒
(dune) (sanding) (castle) (particle) (stone) (sea) (people) (ball) (bask)

1,1 1 1 1 1 1 1 1 1 1
4,1 2.72 2.48 2.18 1.58 1.26 0.71 0.83 0.77 0.28
1,4 0.46 0.57 0.58 0.81 0.96 1.02 1.11 1.17 2.52

Table 5: Alterations in character prediction expectations following amplification of sense vectors for
沙 (sand) and滩 (beach)

7 Conclusion and Limitations

In this project, we presented implementing, pretraining, and evaluating a character-based Chinese
language model using the NanoGPT-styled Backpack LM architecture. We conducted extensive
experiments on sense vector visualizations, word representations, lexical relationships, and idiom
compositions and explored two approaches to character-level interventions. Our results demonstrate
the potential of Backpack LM in language modeling tasks for character-based languages, the inter-
pretability of the sense vectors on the character and word level, and the potential of character-level
interventions across various contexts.

Despite these promising results, there are several limitations to our study. First, we had limited
GPU resources, which prevented us from attempting a larger batch size during pretraining. We later
found that adding one more GPU significantly improved the stability of the model. Second, our word
interventions depend on the sub-meanings of the characters, and we currently have no solution to
effectively intervene in transliterated words by modifying the sense vectors of the characters that only
represent phonetic information. Therefore, intervening in character-based languages where many
words are transliterated, such as Korean, remains challenging. Third, we observed that although our
approach enables greater flexibility in character-level sense vectors to represent richer morphological
structures, word representations by characters are less interpretable than word sense vectors learned
by models using word tokenizations, particularly for complex words such as idiomatic phrases.
We believe that this issue could be mitigated by increasing the number of sense vectors in larger
contextualization models and using more pretraining data. Further research is required to address
these limitations and explore the potential of word representations and interventions in character-based
languages.
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Figure 1: Losses on the dev set during pretraining

A Appendix

Sense Vector 8 (Word Composition)
天 (sky / day) 地 (ground / land) 沙 (sand) 哲 (wise / sagacious)

(天)然 (natural) (地)毯 (carpet) (沙)漠 (desert) (哲)蚌 (Drepung monastery)
(天)鹅 (swan) (地)址 (address) (沙)棘 (sea-buckthorn) (哲)学 (philosophy)

(天)蝎 (Scorpion) (地)铁 (subway) (沙)滩 (sandy beach) (哲)理 (philosophic theory)
(天)津 (Tianjin) (地)狱 (hell) (沙)甸 (sardine fish) (哲)♂ (internet slang)
(天)使 (angel) (地)方 (place) (沙)俄 (Tsarist Russia) (哲)学 (philosophy)

Sense Vector 13 (Meaning Relatedness)
天 (sky / day) 地 (ground / land) 沙 (sand) 哲 (wise / sagacious)
疲 (tired) 耕 (plow) 群 (plenty) 氏 (Mr. / Mrs.)
宅 (home) 旱 (dry) 礁 (reef) 悖 (rebel / paradox)
泡 (bubble) 稼 (crops) 尘 (dust) 批 (criticize)

遛 (dog walking) 墅 (villa) 沉 (seek) 抽 (extraction / abstract)
腻 (be bored) 农 (farm) 霎 (instant) 畴 (area)

Sense Vector 7 (High-level Meaning Relatedness)
天 (sky / day) 地 (ground / land) 沙 (sand) 哲 (wise / sagacious)
午 (noon) 瞿 (thoroughfare) 04 (沙尔克04 / FC Schalke 04) 婚 (marry)
凌 (approach) 挲 (fondle) 钛 (titanium) 皆 (all)
傍 (side) 姜 (ginger) 剂 (dose) 身 (body)
早 (morning) 滚 (roll) 蹴 (kick) 佤 (Va ethnic group)
晚 (night) 溴 (Bromine) 郝 (family name) 死 (death)

Table 6: The sense vectors in the same index are considered to have a particular facet of character
usage. Each column contains the characters with the highest scores under the projection of the sense
vectors on the vocabulary.
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prompt English
WORD WORD

有很多WORD将要 There are a lot of WORD to be
WORD被 WORD is

每天都有WORD There are WORD everyday to be
电视里经常能看到WORD You can often see WORD on TV

不管你喜不喜欢，WORD还是那么 Whether you like it or not, WORD is still so
有哪位同学解释一下WORD是什么意思 Can anyone explain what WORD means?

Table 7: General prompts for different type of nouns

prompt English
那个WORD说， That WORD said,
这个WORD相信 This WORD believes

WORD进到屋子里， The WORD enters the house,
WORD坐在车里，然后 The WORD sat in the car, and then

WORD走了过来， Then WORD came over,
Table 8: General prompts for gender bias evaluations

Word AMP Output
沙滩 (sandy beach) 1,1 这片沙滩非常好看，有些人看到这个沙滩就会想到...
沙(sand)滩(beach) (This beach is very beautiful, some people will think of ...

when they see this beach)
沙滩 (sandy beach) 4,1 这片沙滩非常好看，沙滩上有一个小小的沙堆
沙(sand)滩(beach) (This beach is very beautiful, there is

a small pile of sand on the beach)
沙滩 (sandy beach) 1,4 这片沙滩非常好看，有些人看到这个片子，就会想到这里
沙(sand)滩(beach) (This beach is very beautiful, some people will

think of it when they see this film)
人间 (world) 1,1 在这人间里，有多少人是真正的朋友

人(people)间(between) (In this world, how many people are true friends)
人间 (world) 4,1 在这人间里，有多少人是真正的自由自在

人(people)间(between) (In this world, how many people are truly free)
人间 (world) 1,4 在这人间里，有多少人在一起

人(people)间(between) (In this world, how many people are together)

Table 9: Generative outputs on the lexical centroid control task
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