
Improving Multitask MinBERT with Regularized
Optimization and Contrastive Learning

Stanford CS224N Default Project

Zhengdan Li, Weian Yin
Department of Statistics

Stanford University
zhengdan@stanford.edu, weiany2@stanford.edu

Abstract

The two-stage transfer learning framework, pre-train models on a large amount of
out-of-domain data and then fine-tune them on downstream tasks, has been widely
used in NLP. We seek to implement the minBERT model to obtain robust sentence
embeddings that can generalize across different natural language task. We experi-
mented with different model architectures and discovered that surprisingly a simple
design - using a single BERT - turned out to have the best performance. Further, we
applied regularized optimization at fine-tuning stage and used contrastive learning
aiming to improve the embeddings for all tasks.

1 Key Information to include

• Mentor: Sauren Khosla

• External Collaborators (if you have any): No

• Sharing project: No

2 Introduction

The difficulty to obtain large amount of labeled data has been an existing issue for applying natural
language processing techniques to specific downstream tasks. An effective way to address this issue
is to first train a large language model such as BERT on out-of domain tasks, and fine-tune the model
to obtain robust embeddings that generalize well to downstream tasks.

BERT is a transformer-based model that utilized deeply bidirectional word representations to generate
powerful contextual word representations. In this project, we incorporated a bidirectional transformer
language model, known as BERT, for obtaining lower level sentence embeddings shared between
tasks, and constructed task-specific layers on the top. After implementing the minBERT model, we
will perform sentence-level tasks including sentence classification, sentiment analysis, paraphrase
detection, and semantic textual similarity.

To prevent the fine-tuned model from overfitting the training data, we implemented a regularization
technique SMART proposed by Jiang et.al. Further, we built an unsupervised contrastive learning
framework aiming to improve the embeddings so that various tasks could benefit.

3 Related Work

One important high-level component of our project is multi-task learning based on BERT. Liu
et al. (2019) proposed a Multi-Task Deep Neural Network (MT-DNN) to learn representations
across various language tasks. MT-DNN benefits from cross-task data and can learn a more general
representations that help adapt to new tasks and domains.

Stanford CS224N Natural Language Processing with Deep Learning

Our main extension is based on smoothness-inducing regularization and Bregman proximal point
optimization presented (SMART) in Haoming Jiang (2020). The fine-tuning stage in the transfer
learning framework suffers from the limited data from the target domain and the high complexity of
the pre-trained model, leading to overfitted model that does not generalize well to unseen data. Using
a regularized optimization strategy can alleviate this problem.

4 Approach

Before feeding sentences to the BERT encoder, we designed a preprocessing procedure, which we call
"Simple BERT". The details will be discussed in section 4.2. The processed sentences is then fed to
the Bidirectional Encoder Representations from Transformers (BERT) with multi-head self-attention
in the transformer (Devlin et al., 2018). Each of the 12 transformer layers in addition contains a
feed-forward layer with an additive and normalization layer, and a residual connection in between
(Vaswani et al., 2017).

On the top of BERT, we used multi-task learning to obtain robust sentence embeddings that can
generalize across different natural language tasks. Multi-task learning is an effective approach where
the representations can take advantage of shared knowledge of various tasks by learning jointly (Liu
et al., 2019). This project focuses on three classification tasks: sentiment classification, paraphrase
detection, and semantic similarity prediction. For pairwise comparison tasks that involve two inputs
(paraphrase detection and semantic similarity prediction), we concatenate the inputs and add a
separator between them. Then we feed contextual embeddings obtained from BERT into different
feed-forward layers for each task.

To control the model complexity and prevent aggressive updating during fine-tuning, we employed the
Smoothness-inducing Adversarial Regularization technique (SMART) proposed by Haoming Jiang
(2020). We also used contrastive learning to improve the overall representations (Gao et al., 2022).

The model architecture can be summarized by the following chart:

4.1 Baseline

Sentiment Classification We obtained our predictions based on sentence embeddings generated by
the vannila BERT model.

Paraphrase Detection We employed a simplified version of the pairwise text classification
structure proposed by Liu et. al Liu et al. (2019). After obtaining the embeddings for the in-
put sentences, we compute their normalized difference and concatenate the results in the form
[embedding1; difference; embedding2]. Then we feed the output to a trainable linear layer to obtain
our predictions.

Semantic Similarity Prediction Same as paraphrase detection.

4.2 Simple BERT

For sentiment classification task, we employed the same structure as the baseline model.

For paraphrase detection and semantic similarity prediction tasks that involve two input sentences,
we first concatenated each pair of sentences and added a separator between them. The output for each
pair of sentences is in the form [sentence1; [SEP]; sentence2]. We then generate attention masks from
the output and feed them to BERT to obtain contextual embeddings. Finally, we add a trainable linear
layer on the top of BERT to generate final outputs.

4.3 SMART

Given the model f(·; θ) and n observations {(xi, yi})ni=1 from the target task, this technique solves
for the following optimization problem:

minθF(θ) = L(θ) + λsRs(θ) (1)

2

Figure 1: Model Architecture

where L(θ) is the loss function:

L(θ) = 1

n

n∑
i=1

l(f(xi; θ), yi)

l is the loss function depending on the target task, λs > 0 is the tuning parameter, and Rs(θ) is the
smoothness-inducing adversarial regularizer, defined as:

Rs(θ) =
1

n

n∑
i=1

max
||x̃i−xi||p≤ϵ

ls(f(x̃i), f(xi; θ))

where ϵ > 0 is a tuning parameter.

For classification tasks (sentiment classification and paraphrase detection),

ls(P,Q) = DKL(P ||Q) +DKL(Q||P)

For regression tasks (semantic similarity prediction),

ls(p, q) = (p− q)2

The optimization problem in 1 will be solved using the Proximal point Optimization method, which
prevents aggressive updating. f(·; θ0) is initialized using the pre-trained model. At the (t + 1)-th
iteration, the update rule is defined as follows:

θt+1 = argminθF(θ) + µDBreg(θ, θt)

3

where µ > 0 is a tuning parameter and DBreg(,) is the Bregman divergence defined as

DBreg(θ, θt) =
1

n

n∑
i=1

ls(f(xi; θ), f(xi; θt))

In general, SMART relieves aggressive fine-tuning through introducing a strong penalty on model
complexity and injecting noise into the model input.

4.4 Contrastive Learning

Another extension we introduced to the model is a contrastive learning framework using unlabeled
data called SimCSE. Contrastive learning can learn useful representations by pulling semantically
similar sentences close and pushing part others, and thus produce better sentence embeddings that
can benefit other language tasks.
As proposed in Gao et al. (2022), unsupervised SimCSE takes one input sentence and aims to predict
itself with standard dropout noise in Transformers used as data augmentation. Taking a collection
of sentences {xi}mi=1, we denote hz

i = f(xi, z) where z is a random mask for dropout. To generate
positive pairs, the same input is fed to the encoder twice, returning two embeddings with different
dropout masks z, z′. The training objective of unsupervised SimCSE in a size-N mini-batch is as
follows:

li = −log
esim(h

zi
i ,h

z′i
i)/τ∑N

j=1 e
sim(h

zi
i ,h

z′
j

i)/τ

(2)

where τ is a temperature hyperparameter and sim(a, b) = aT b
∥a∥·∥b∥ is the cosine similarity function.

Contrastive learning uses cross entropy as the loss function.

5 Experiments

5.1 Data

• Stanford Sentiment Treebank (SST) dataset (Socher et al., 2013)
This dataset contains 11,855 single sentences from movie reviews, parsed with the Stanford
parser and includes 215,154 unique phrases from the parse trees. Each phrase is annotated
by 3 human judges, labelled as negative, somewhat negative, neutral, somewhat positive, or
positive. We aim to predict the sentiment classification labels of the sentences using BERT
embeddings.

• Quora Dataset
This dataset contians 400,000 question pairs with binary labels No and Yes, indicating
whether the questions are paraphrases of each other. We will use this dataset to detect if a
pair of sentences are paraphrases.

• SemEval STS Benchmark Dataset (Agirre et al., 2013)
This dataset contains 8,628 different sentence pairs labelled with varying similarity from 0
(unrelated) to 5 (equivalent meaning). We aim to measure the semantic textual similarity of
sentence pairs using BERT embeddings.

• English Wikipedia Dataset (Gao et al., 2022)
This dataset contains a million sentences randomly sampled from English Wikipedia and
does not have any label. However, we only used 20,000 sentences in the dataset to reduce
the training time.
To setup the labels for the unsupervised learning, one input sentence is encoded twice with
different dropout masks as a positive pair. On the other hand, the input sentence and other
sentences in the same batch form negative pairs.
The dataset is used for contrastive learning to produce better general embeddings for other
tasks. Thus, we do not evaluate the unsupervised SimCSE task itself.

4

5.2 Evaluation method

• Sentiment Classification
We used the cross entropy loss function to update model weights and accuracy to evaluate
our results.

• Paraphrase Detection
We used the binary cross entropy loss function to update model weights and accuracy to
evaluate our results.

• Semantic Textual Similarity
We used mean squared error to update model weights and correlation between actual labels
and predictions to evaluate our results.

5.3 Experimental details

Our experiment was carried out in two phases, first with high-level model architecture and extended
approaches, and then with hyperparameters. For all experiments after the milestone, we used fine-
tuned embeddings. Each run was trained for 8 epochs.
The following table describes the model configurations we used for different approaches. After
adding SMART to the model, we changed to use 16 as the batch size as a larger number would lead
to memory error.

Approach Batch Size Dropout Prob Learning Rate

Baseline 32 0.3 1e-3
SimpleBert 32 0.3 1e-5
+SMART 16 0.3 1e-5

+Contrastive 16 0.3 1e-5
Table 1: Experiments for Different Approaches

After switching from the baseline model to SimpleBert, the extensions SMART and contrastive
learning were introduced to the model in an additive manner, which means the experiment with
contrastive learning also includes regularized optimization.

After adding the contrastive learning framework to our final model, we furthered tuned the learning
rate and the dropout probability sequentially. We ran with learning rates 10−3 and 10−5 with a fixed
dropout probability of 0.3. After find the learning rate 10−5 yielded a better result, we tested various
levels of dropout probability, 0.1, 0.3, and 0.5.

5.4 Results

The results of three tasks are visualized on Figure 2 for both the development and test datasets.
Although the baseline model predictions were not submitted to the test leaderboard, we can see
that it had a poor performance predicting the semantic textual similarity of sentence pairs with a
Pearson correlation value lower than 0.4. Adjusting the high-level architecture to SimpleBert largely
improved the correlation to 0.8. Besides, the accuracy of the task of paraphrase detection increased
from 0.67 to 0.88. However, the accuracy of sentiment classification has been consistent across
different approaches with a value around 0.5.

Table 4 contains the overall score and individual task results from on the test leaderboard for the final
model with extensions. Introducing SMART, the regularized optimization, boosted the overall test
score by 2%. On the other hand, adding a new task of unsupervised contrastive learning did not have
a significant effect on the model performance. With both extensions included, the final model reached
a score of 0.756.

It is observable from Figure 3 that the training curves followed a similar pattern for three approaches.
Although all experiments were trained for 8 epochs, they all converged relatively quickly after 3
epochs. As the training score continued to increase, the development score flattened out around 0.75
at Epoch 3, which signals the possibility of overfitting.

The model using SMART started with the lowest training and development performance

5

Figure 2: Task Results on Dev and Test Datasets

Overall Score Sentiment Acc Paraphrase Acc Similarity Corr

SimpleBert 0.734 0.500 0.879 0.824
+SMART 0.753 0.522 0.894 0.845

+Contrastive 0.756 0.529 0.890 0.850
Table 2: Test Leaderboard Results for Final Model with Extensions

score at Epoch 1 but ended with a similar score as other models. The regularized optimization was
only reflected at early epochs but did not have a larger impact on the final performance.

Figure 3: Training Curve of Results on Train and Dev Datasets

The results of hyperparameter tuning is summarized in Table 3. We can see that using a larger learning
rate yielded a poor result. In addition, adjusting the dropout probability had little effect on the overall
model performance. We failed to reach a better score through sequential hyperparameter tuning.

6

Tuned Parameter Value Overall Score

Learning Rate 10−5 0.740
10−3 0.30

Dropout Prob 0.1 0.737
0.3 0.740
0.5 0.735

Table 3: Scores of Hyperparameter Tuning on the Dev Dataset

6 Analysis

In comparison with the original paper, we used the vanilla Bregman proximal point (VBPP) method
instead of the momentum Bregman proximal point (MBPP) method for optimization due to the length
of this project. MBPP adds an additional momentum to the update which can accelerate the Bregman
proximal point method. This may explain the regularized model’s failure to obtain more significant
improvements on the dev set. For furture work, we will implement the MBPP method to gain full
strength of SMART and re-run our model.

As seen in the results above, adding unsupervised contrastive learning did not have a significant
impact on the overall model performance. A potential reason is the small training dataset size. We
only used 20000 out of the one million sentences in the English Wikipedia dataset for the sake of
training time. Further, we was not able to tune the hyperparameters such as temperature for the
SimCSE task. The sentence embeddings could not be improved also possibly because we did not
implement a supervised SimCSE, which is expected to be more effective than the unsupervised
learning.

We also compare the time and space complexity for different model architectures. Each model is ran
on a 24 GB GPU and we record the training and evaluation time for one epoch. For Simple BERT, a
batch size of 32 can fit the GPU while for the added extensions, a batch size of 16 already fits the
GPU.

training + evaluation / epoch

SimpleBert 18 min 21 sec
+SMART 29 min 25 sec

+Contrastive 38 min 27 sec
Table 4: Training and evaluation for Final Model with Extensions

The results in table 4 indicate that compared to Simple BERT, model regularized by SMART takes
about 10 minutes longer to run and model extended by contrastive learning doubles the running
time. This may be explained by the fact that SMART and constrastive learning are trained on smaller
batch sizes. If larger GPUs are accessible, we will be able to dive deeper in the comparison of time
complexities between different models.

7 Conclusion

In the project, we implemented key aspects of BERT including multiheaded self-attention and
transformer layers with adam optimizer. Multi-task learning was applied to obtain robust sentence
embeddings that can generalize across different natural language tasks. We experimented with
different architectures for the sentiment classification, paraphrase detection and semantic textual
similarity tasks. Surprisingly, a relatively simple structure where two sentences are concatenated
before passing into the encoder together outperformed other attempts. Further, we employed a
regularized optimization strategy to prevent aggressive updating during fine-tuning. In addition to the
three main tasks, we added a new task using unsupervised contrastive learning aiming to get better
overall embeddings. However, the improvement was not as good as we expected.

This project has several limitations. First of all, we did sequential hyperparameter tuning due to
time constraints while grid search is preferred for a thorough examination. Regarding to contrastive
learning, we only used a very small fraction of the dataset and could not improve the performance

7

significantly. A next step is to use a supervised contrastive learning framework and implement the
momentum Bregman proximal point for optimization to gain the full strength of SMART.

References
Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013. *SEM 2013

shared task: Semantic textual similarity. In Second Joint Conference on Lexical and Computational
Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the Shared Task: Semantic
Textual Similarity, pages 32–43, Atlanta, Georgia, USA. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language understanding.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2022. Simcse: Simple contrastive learning of sentence
embeddings.

Weizhu Chen Xiaodong Liu Jianfeng Gao Tuo Zhao Haoming Jiang, Pengcheng He. 2020. Smart: Ro-
bust and efficient fine-tuning for pre-trained natural language models through principled regularized
optimization. In Association for Computational Linguistics (ACL).

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019. Multi-task deep neural
networks for natural language understanding. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 4487–4496, Florence, Italy. Association for
Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1631–1642, Seattle, Washington, USA. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need.

8

https://aclanthology.org/S13-1004
https://aclanthology.org/S13-1004
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
http://arxiv.org/abs/2104.08821
http://arxiv.org/abs/2104.08821
https://doi.org/10.18653/v1/P19-1441
https://doi.org/10.18653/v1/P19-1441
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://doi.org/10.48550/ARXIV.1706.03762

	Key Information to include
	Introduction
	Related Work
	Approach
	Baseline
	Simple BERT
	SMART
	Contrastive Learning

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

