
Multi-task Learning with BERT in NLP
Stanford CS224N Default Project

Fan Wang
Department of Computer Science

Stanford University
wang420@stanford.edu

Abstract

In natural language processing, while deep learning techniques have achieved
remarkable success in many different problems, these models are mostly task
specific. When facing a situation in which multiple tasks are solved at the same
time, multi-task learning is a popular paradigm to sufficiently utilize information
across different tasks and to learn more efficiently or effectively. With the adoption
of large language models like BERT in NLP, however, there is little research
to enhance BERT to improve the performance on additional target tasks further.
The downstream tasks we are interested in are Sentiment Analysis, Paraphrase
Detection and Semantic Textual Similarity. In this project, we propose a multi-task
learning framework based on BERT, then experiment extensions to improve the
performance on the 3 tasks simultaneously. We have explored models with different
architectures, different loss functions, different optimizers, adversarial learning and
contrastive learning.

1 Key Information to include
• Mentor:
• External Collaborators (if you have any):
• Sharing project:

2 Introduction

Text classification as a classical problem in NLP has been studied extensively by various neural
network techniques, such as convolution model (Kalchbrenner et al. (2014), Zhang et al. (2015),
Conneau et al. (2016), Johnson and Zhang (2017), Zhang et al. (2017), Shen et al. (2018)), recurrent
models (Liu et al. (2019), Dani et al. (2017), Seo et al. (2017)) and attention mechanisms (Yang
et al. (2016), Lin et al. (2017)). On the other hand, recently, pre-trained models on large corpus
are are shown that are beneficial for text classification and other NLP tasks. As a state-of-the-art
language pre-trained model, BERT(Devlin et al. (2018)) has achieved amazing results in many natural
language understanding (NLU) tasks, however, there is little research to enhance BERT to improve
the performance on target tasks further(Sun et al. (2020)).

In this research report, we investigate how to maximize the utilization of BERT for three downstream
tasks simultaneously. The tasks we have studied are Sentiment Analysis, Paraphrase Detection and
Semantic Textual Similarity. We explore several extensions of fine-tuning BERT to enhance its
performance. We design exhaustive experiments to make a detailed analysis of different extensions.
The extensions we experiments are the following:

• Model architecture and number of layers
• Multi-task learning and training tactics
• Adversarial learning

Stanford CS224N Natural Language Processing with Deep Learning



• Contrastive learning

Our first extension is Sentence-BERT (Reimers and Gurevych (2019)), a modification of the BERT
network using siamese networks which takes a pair of sentences as input to derive semantically
meaningful sentence embeddings. The next step is to apply our Sentencet-BERT model in multi-
task setting which presents a number of optimization challenges due to the complicated shape of
multiple loss functions, making it difficult to optimize and learn efficiently compared to single task
problems. To overcome, we study the round-robin strategy, training on the total loss function instead
of individual loss functions, and the gradient surgery strategy (Yu et al. (2020)). One of the issues
in aggressive fine-tuning is over-fitting. To alleviate the problem, we have explored adversarial
learning (Goodfellow et al. (2015)) as the regularization method. The last extension we have studied
is contrastive learning, a simple framework which uses entailment pairs as positives and contraction
pairs (Gao et al. (2021), Jiang et al. (2022)) as hard negatives.

3 Related Work

We first introduce BERT, then, we briefly review the information related to extensions that we have
applied in fine-tuning the BERT model on our multi-task problem.

BERT (Devlin et al. (2018)) is a pre-trained large language model based on the transformer (Vaswani
et al. (2017)) structure. It sets for various NLP tasks the new state-of-the-art results, including question
answering, sentence classification, and sentence-pair regression. To apply BERT in sentence-pair
regression, the input consists of the two sentences, separated by a special [SEP] token. Multi-head
attention algorithm is applied and the output is passed to another activation function or a simple
regression function is derive the final prediction for backpropagation. A drawback of this input
structure is that no independent sentence embeddings are computed, which makes it difficult to derive
sentence embeddings from BERT.

3.1 Sentence-BERT

The Sentence-BERT (Reimers and Gurevych (2019)) method adds a pooling operation to the output
of BERT to derive a fixed sized sentence embedding. Then use a siamese network, the sentence
embedding generated by BERT are semantically meaningful and can be compared with a similarity
measure, such like cosine-similarity or Euclidean distance. In the siamese network, the two BERT
models have tied weights. The structure is illustrated in figure1.

Figure 1: SBERT architecture with siamese network structure

2



3.2 Gradient surgery

While the BERT model and deep learning techniques in general have shown remarkable promise in
NLP. The tasks are usually learned individually. Sometimes data availability / efficiency is a challenge.
Multi-task learning has emerged as the approach to learn more efficiently and shared knowledge
across different tasks. However, multi-Task learning can be very challenging when gradients of
different tasks are of severely different magnitudes or point into conflicting directions. Gradient
surgery method (Yu et al. (2020)) is a simple yet general approach for avoiding the interference
between gradients of different loss functions. As a model-agnostic approach, the method involves
projecting conflicting gradients (PCGrad) and will retain optimality guarantees.

Figure 2: Conflicting gradient and PCGrad

3.3 Adversarial learning

Aggressive fine-tuning in multi-task setting can cause over-fitting. Adversarial training provides a
meaningful way of regularizing supervised learning algorithms to combat the problem. Among the
many available adversarial techniques, FGSM (Fast Gradient Sign Method), FGM (Fast Gradient
Method), and PGD (Projected Gradient Descent) are the three related to this project. FGSM (Good-
fellow et al. (2015)) linearizes the cost function around the current value of parameters, obtaining an
optimal max-norm constrained pertubation, which can be computed efficiently by backpropagation.
FGM (Miyato et al. (2016)) takes one step further by removing the sign function used in FGSM and
normarlizes the gradient of loss function. One can intepret that FGM and FGSM as a simple one-step
scheme to solve the inner maximization problem. A more powerful adversary is the multi-step variant,
which is essentially PGD (Madry et al. (2017)) on the loss function.

3.4 Contrastive learning

The idea of contrastive learning is originally from computer vision. In the paper(Chen et al. (2020)),
the authors show that by combining the right data augmentations and the normalized temperature-
scaled cross entropy loss function, the model achieves a new state-of-the-art performance. The
key idea is to to learn effective representation by pulling semantically close neighbors together and
pushing apart non-neighbors. The application of contrastive learning in NLP is summerized in
SimCSE, Simple Contrastive Learning of Sentence Embeddings (Gao et al. (2021)) and PromCSE,
Prompt-based Contrstive Learning for Sentence Embedding (Jiang et al. (2022)). Supervised SimCSE
uses labels from the training data into contrastive learning and PromCSE connects contrastive learning
with energy-based learning. Both approaches have shown improvements over the previous best results.

4 Approach

We start from the BERT model as the bottom and build three towers on top for the multiple tasks.
The BERT layers across different tasks share the same weights. We have experimented a structure
in which the weights of pooling layers between taks 2 and task 3 are shared, it yields suboptimal
performance. Thus we have decided not to share any additional layers beside the BERT layer. The
overall network strcture is depicted in figure3. As for the baseline, we use the vanilla BERT fine-tuned
on task 1 only and evaluate the model on all 3 tasks.

4.1 Concatenated layer and feedforward network

There is no concatenated layer in task 1 since only one sentence is used as the input, we use a dropout
layer and a linear(BERT_Hidden_Size, Number_of_Labels) layer as the feedforward network. In
task 2 and task 3, we have explored the following three options shown in figure 44.

3



Figure 3: Multi-task network structure

Figure 4: Concatenated layer and feedforward network

4.2 Gradient surgery, round-robin and total loss

To train the multi-task model efficiently, we use three methods. The gradient surgery method is
introduced in paper (Yu et al. (2020)); we use an off-the-shelf implementation of the algorithm from
pytorch-optimizer package in github 1. The full update procedure is described in table1 below:

Gradient Surgery Algorithm

1. Compute number of batches for each tasks
2. While All(number of batches) > 0 do:
3. calculate loss of task 1, update batch counts
4. calculate loss of task 2, update batch counts
5. calculate loss of task 3, update batch counts
6. apply PCGrad and backpropagate

Table 1: Gradient surgery algorithm

1https://github.com/jettify/pytorch-optimizer

4



The round-robin and the total loss methods are relatively straightforward compared to the gradient
surgery approach, with the algorithms listed in table2 below. We implement the logic ourselves.

Round-robin Total Loss

1 Compute number of batches for each tasks Compute number of batches for each tasks
2 While sum(number of batches) > 0 do: While All(number of batches) > 0 do:
3 calculate loss of task 1, if loss, backpropagate calculate loss of task 1, update batch counts
4 calculate loss of task 2, if loss, backpropagate calculate loss of task 2, update batch counts
5 calculate loss of task 3, if loss, backpropagate calculate loss of task 3, update batch counts
6 update batch counts calculate the sum of loss, backpropagate

Table 2: Round-robin and total loss algorithms

4.3 Adversarial learning

The code to implement the 3 adversarial methods, FGSM (Goodfellow et al. (2015)), FGM (Miyato
et al. (2016)) and PGD (Madry et al. (2017)) is from github2. We list the key functions of each
method below:

• FGSM: xadv = x+ ϵ ∗ sign(∇xLoss)

• FGM: xadv = x+ ϵ ∗ ∇xLoss/L2norm(∇xLoss)

• PGD: xadv =
∏

x+S x+ α ∗ sign(∇xLoss)

4.4 Contrastive learning

We view contrastive learning as a data augmentation method. To set up the contrastive learning with
our labeled dataset, we implement the logic below ourselves. The current logic is based on a double
for-loop, and thus is very slow in running time. We note the vectorization of the logic as a TODO for
improvement. We have applied this logic in calculating the loss function in task 2.

Contrastive Learning

1. While number of batches > 0 do:
2. calculate logits and extract label from the batch input data
3. do i from 1 to batch size:
4. do j from 1 to batch size:
5. if i != j:
6. calculate logits based on input index i and input index j
7. set label to 0
8. concatenate logits from step 2 and logits from step 6
9. concatenate label from step 2 and label from step 7
10. calculate the updated loss function

Table 3: Contrastive learning

5 Experiments

5.1 Data

We use Stanford Sentiment Treebank Dataset for Task 1: Sentiment Analysis; Quora Dataset for
Task 2: Paraphrase Detection; and SemEval STS Benchmark Dataset for Task 3: Semantic Textual
Similarity.

Stanford Sentiment Treebank Dataset The Stanford Sentiment Treebank consists of 11,855 single
sentences extracted from movie reviews. Each phrase has a label if negative, somewhat negative,
neutral, somewhat positive, or positives. We the following splits:

2https://github.com/xiaopp123/adversarial_train

5



• train (8,544 samples)

• dev (1,101 samples)

• test (2,210 samples)

Quora Dataset The quora dataset consists of 400,000 question pairs with labels indicating whether
particular instances are paraphrases of one another. A subset of this dataset is provided with the
following splits:

• train (141,506 samples)

• dev (20,215 samples)

• test (40,431 samples)

SemEval STS Benchmark Dataset The STSB dataset consists of 8,628 different sentence pairs of
varying similarity on a scale from 0 (unrelated) to 5 (equivalent meaning). The splits are:

• train (6,041 samples)

• dev (864 samples)

• test (1,716 samples)

5.2 Evaluation method

Accuracy is used as the metric in the tasks of sentiment analysis and paraphrase detection. Pearson
correlation coefficient is used in the task of semantic textual similarity.

5.3 Experimental details

Our BERT model backbone is the provided default one: "bert-base-uncased", together with the
default learning rate (1e-5). We have explored different learning rate (2e-5 and 3e-5), it doesn’t seem
to have a big impact on the performance. We use the Adam optimizer in all experiments. The batch
size are modified to fully use the available GPU and to ensure the number of batches in each task is
roughly the same due to the imbalanced training data.

The table below summarizes the details of experiments we have performed. The option 2 and option
3 in model structure column are defined in figure 44 of section 4.1. We have also explored models
with option 1 as the structure, but their performance are usually worse than the other two options. We
feel that the two terms, abs(u-v) and u*v, are sufficient if not have more information than a simple
cosine-similarity term. Thus we haven’t combined option 1 with other extensions in our experiments.
In addition, we have observed a 10% improvement in performance after switching from option 2 to
option 3. Therefore, option 3 is selected.

Number Batch Size Model Structure Multi-task Loss Adversarial Contrastive

1 8/64/8 option 2 round-robin
2 8/64/8 option 3 round-robin
3 4/64/2 option 3 total loss
4 4/64/2 option 3 gradient surgery
5 4/64/2 option 3 round-robin FGM
6 4/64/2 option 3 round-robin FGSM
7 4/64/2 option 3 round-robin PGD
8 4/64/2 option 3 round-robin Contrastive

Table 4: Experimental details

5.4 Results

Our baseline is the model fine-tuned only on SST dataset. We note the baseline model as experiment
0 and report its performance together with other experiments described in section 5.3 in the table5.

6



Description sst-dev quora-dev sts-dev overall average

experiment 0 0.529 0.453 0.018 0.333
experiment 1 0.496 0.844 0.623 0.654
experiment 2 0.502 0.869 0.765 0.712
experiment 3 0.500 0.856 0.786 0.714
experiment 4 0.495 0.864 0.789 0.718
experiment 5 0.500 0.856 0.806 0.721
experiment 6 0.469 0.870 0.791 0.710
experiment 7 0.509 0.845 0.792 0.715
experiment 8 0.393 0.843 0.575 0.603

Table 5: Experimental results

Due to the limited numbers of submissions allowed to test leaderboard (i.e., 3 times in total), we only
report the model performance on development data.

The model submitted to leaderboard is from experiment 5, with overall performance metric 0.717 in
the test leaderboard and performance in each of the three tasks:

• SST test Accuracy: 0.498
• Paraphrase test Accuracy: 0.853
• STS test Correlation: 0.799

In experiment 8, the model is only trained with 1 epoch and takes 6 hours to finish due to the double
for-loop logic. Other than that, all our experiments have a better performance than the baseline model.
Using more layers results into a 10% increase starting from experiment 3. However, the overall
performance hits a plateau in the (0.71, 0.72) range. The multiple extensions we have tried don’t
improve the performance much.

Our model performs best in the Paraphrase Detection task since the we have the most samples in
the Quora dataset, around 144K. The performance in the Semantic Textual Similarity task is the
second best one since the input data to Paraphrase Detection and Semantic Textual Similarity are
both sentence pairs. The model performs worst in the Sentiment Analysis task, only around 0.5. This
might not be a surprise since the input data is single sentence.

6 Analysis

Without adding additional data into our training sample or ensembling with another model, we think
the peak performance is 0.5 for Sentiment Analysis task, 0.87 for Paraphrase Detection task and 0.80
for Semantic Textual Similarity task. Due to the high imbalance between training samples (task 1:
8K, task 2: 144K and task 3: 6K), the knowledge extracted from task 2 dominates our multi-task
models. Various extensions do not have a huge impact on the performance. Though it would be
interested to know the result if we are able to run experiment 8 for full 10 epochs.

7 Conclusion

In this research project, we have fine-tuned the BERT model in a multi-tasks setting. We think
that adding another Sentiment Analysis alike data will help to improve the model performance on
task 1 and adding another Semantic Textual Similarity alike data will help to improve the model
performance on task 3. In addition, we would like to fix the contrastive learning logic to observe its
impact and include another model with a different pre-trained BERT model as the backbone for the
next step.

References
Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A simple framework

for contrastive learning of visual representations. In arxiv.

7



Alexis Conneau, Holger Schwenk, Loıc Barrault, and Yann Lecun. 2016. Very deep convolutional
net- works for natural language processing. In arXiv.

Yogatama Dani, Chris Dyer, Wang Ling, and Phil Blunsom. 2017. Generative and discriminative text
clas- sification with recurrent neural networks. In arxiv.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language understanding. In arxiv.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. Simcse: Simple contrastive learning of sentence
embeddings. In arxiv.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and harnessing
adversarial examples. In arxiv.

Yuxin Jiang, Linhan Zhang, and Wei Wang. 2022. Improved universal sentence embeddings with
prompt-based contrastive learning and energy-based learning. In arxiv.

Rie Johnson and Tong Zhang. 2017. Deep pyramid convolutional neural networks for text catego-
rization. In In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics, pages 562–570.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. 2014. A convolutional neural net- work
for modelling sentences. In arxiv.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou, and
Yoshua Bengio. 2017. A structured self-attentive sentence embedding. In arxiv.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019. Multi-task deep neural
networks for natural language understanding. In arxiv.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. 2017.
Towards deep learning models resistant to adversarial attack. In arxiv.

Takeru Miyato, Andrew M. Dai, and Ian Goodfellow. 2016. Adversarial training methods for
semi-supervised text classification. In arxiv.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-
networks. In arxiv.

Minjoon Seo, Sewon Min, Ali Farhadi, and Hannaneh Hajishirzi. 2017. Neural speed reading via
skim-rnn. In arxiv.

Dinghan Shen, Yizhe Zhang, Ricardo Henao, Qinliang Su, and Lawrence Carin. 2018. Deconvolu-
tional latent-variable model for text sequence matching. In In Thirty-Second AAAI Conference on
Artificial Intelligence.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. 2020. How to fine-tune bert for text classifica-
tion? In arxiv.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In arxiv.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 1480–1489.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
2020. Gradient surgery for multi-task learning. In arxiv.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional networks for text
classification. In In Advances in neural information pro- cessing systems, page 649–657.

Yizhe Zhang, Dinghan Shen, Guoyin Wang, Zhe Gan, Ricardo Henao, and Lawrence Carin. 2017. De-
convolutional paragraph representation learning. In In Advances in Neural Information Processing
Systems, pages 4169–4179.

8


	Key Information to include
	Introduction
	Related Work
	Sentence-BERT
	Gradient surgery
	Adversarial learning
	Contrastive learning

	Approach
	Concatenated layer and feedforward network
	Gradient surgery, round-robin and total loss
	Adversarial learning
	Contrastive learning

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

