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Abstract

In an effort to build efficient deep learning networks which can be broadly applied
to a given field of tasks, many researchers have turned to multitask learning (MTL),
where a network is simultaneously trained on multiple tasks with their own loss
functions. A simple and efficient way to perform MTL is unitary scalarization,
where the multitask loss function is a weighted sum of the loss functions for indi-
vidual tasks. Some research suggests that more complex multitask optimization
methods, such as gradient surgery, lead to more reliable learning by reducing
destructive interference between the gradients of different tasks. However, others
argue that these methods are unneeded and any observed benefit is just a regulariza-
tion effect, which can be achieved through more efficient methods. In this work, we
extend past research on this topic (which has primarily been performed for image
recognition tasks) to the context of natural language processing. By finetuning
BERT sentence embeddings on three simple downstream tasks, using both unitary
scalarization and gradient surgery, we find that gradient surgery provides minimal
benefit over simple unitary scalarization, making it difficult to justify the additional
cost in time and memory. However, it may lead to faster learning when model
architecture is such that similar embedding features must simultaneously be applied
to two different tasks.
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2 Introduction

From a human perspective, an understanding of natural language involves simultaneous, often-
seamless integration of many different tasks. These tasks are closely intertwined: for example,
understanding the meaning of a word aids in understanding the meaning of a sentence, which is
necessary for higher-level tasks such as summarizing a paragraph. This intuition has led researchers
in the field of natural language processing (NLP) to construct neural networks capable of multitask
learning (MTL), potentially using information gained via training on one task to better perform on
another. MTL has further practical benefits: training on specific downstream NLP tasks is often
hindered by the limited size of pre-labeled datasets, so training on multiple tasks allows for further
training without need for additional task-specific data [1]. MTL is even more tractable thanks
to pretrained language models such as Bidirectional Encoder Representations from Transformers
(BERT) [2], which are effective starting points for many downstream tasks [L1]].
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The increasing prevalence of MTL in NLP tasks strongly motivates research about how best to
structure training regimens for simultaneous learning of many different tasks. In particular, one
fundamental question is how to incorporate information about different tasks when making gradient
updates. A simple and efficient approach, deemed “unitary scalarization,” is simply to minimize the
sum of task-specific loss functions, allowing one step of backpropagation to return a gradient update
incorporating information from every task [3]. However, the efficacy of this approach is cast into
doubt by the phenomenon of gradient interference, where learning of one task hinders the learning
of another rather than acting synergistically. For example, training a translation model on multiple
languages at once can result in both synergistic and interference effects [4]. As a way to remedy this
problem, some researchers have presented “gradient surgery” techniques, which aim to explicitly
remove the parts of gradient updates that contribute to interference, while leaving synergistic updates
intact [5]]. Despite their potential benefits, gradient surgery methods pay a cost for their increased
complexity in runtime and memory usage, making it important to test whether they are actually
effective [3]. Furthermore, much of the research comparing gradient surgery to unitary scalarization
has been performed on image processing tasks [3] [S]], leaving it unclear which approach is most
efficient in natural language processing.

In this work, we take a step toward addressing the question of whether gradient surgery outperforms
unitary scalarization on a simple multitask finetuning problem. We finetune BERT sentence embed-
dings [2]] on three downstream tasks (sentiment analysis, paraphrase detection, and semantic similarity
analysis) using both gradient update methodologies. We also use two different network architectures
to combine two separate sentence embeddings for the paraphrase detection and semantic similarity
tasks, in order to investigate whether destructive gradient interference is more evident when the model
uses similar embedding structures for different downstream tasks. We find that gradient surgery does
not result in a marked improvement over unitary scalarization, although it may speed up learning
when the joint sentence embeddings used for paraphrase detection and semantic similarity analysis
are similar. While more research is necessary to reach a firm conclusion (particularly research using
models with more than three downstream tasks), we suggest that more efficient methods of modifying
model architecture may be at least as effective as gradient surgery.

3 Related Work

Yu et al. propose a gradient surgery method called PCGrad to reduce destructive gradient interference
[S)]. This method identifies when gradients corresponding to different tasks conflict, and projects con-
flicting gradient updates to be orthogonal to each other while leaving synergistic updates unchanged.
The authors describe a set of circumstances where learning is stalled due to destructive interference
between tasks: conflicting gradients, variation in gradient magnitudes, and large local curvature in the
loss function. They argue that PCGrad helps learning escape these regions, and support their claim
by demonstrating that PCGrad leads to better performance on downstream image processing tasks.

However, some researchers are doubtful of the general applicability of PCGrad and similar methods of
modifying single-task gradients. Kurin et al. argue that these “multi-task optimizers” are essentially
acting as regularizers, meaning that the performance they achieve is no better than unitary scalarization
when combined with traditional, less computationally expensive regularization methods [3]]. The
computational cost of multi-task optimizers comes from the fact that calculating single-task gradients
requires a number of backpropagation steps proportional to the number of tasks, an issue which
unitary scalarization avoids. Kurin et al. find that neither PCGrad nor a variety of comparable
methods consistently outperform unitary scalarization on a suite of image analysis tasks. The conflict
between Yu et al. and Kurin et al. motivates further research: is gradient surgery truly necessary, or is
cost-effective unitary scalarization just as good? Moreover, should our conclusions change when we
move from the world of image analysis to natural language processing?

4 Approach

As a simple example of multitask learning, we simultaneously train a network on three tasks:
sentiment classification, paraphrase detection, and semantic similarity analysis. The backbone of
the model is the pretrained BERT model, which generates a vector embedding for a given sentence
or phrase [2]. We will not restate in detail the architecture of BERT here, but it is composed of
an embedding layer which combines embeddings for individual tokens and their positions in a



sentence, followed by a series of 12 BERT encoder layers, composed of multi-headed attention
and feed-forward components. The end result is a pooled output vector representing the sentence
embedding. The BERT model has been extensively pretrained on a next-sentence prediction task,
making it a good starting point for further finetuning on our more specific downstream tasks.

Since we are primarily concerned with the possibility of constructive or destructive gradient inter-
ference between tasks in the BERT layers, the “tails” of our network corresponding to each task
are relatively simple. For sentiment classification, a dropout layer followed by a dense linear layer
projects the embedding to a five-dimensional vector (corresponding to the five sentiment classifica-
tions in the SST dataset, detailed in Section 5.1), whose entries are interpreted as logits and used for
cross-entropy loss.

Paraphrase detection and semantic similarity analysis require incorporating information from two
different sentence embeddings. We have developed two possible approaches to accomplish this task.
In our “joint embedding” approach, we combine the two sentence embedding vectors 7}, 7 € R”
into a joint embedding vector 7y € R2" as follows:

Uy =[th+ 72 |0 — 2], ()
where the absolute value sign represents elementwise absolute value. This joint embedding vector is
then passed through a dropout layer and a fully connected linear layer to produce a single logit. In

the “multiplicative attention” approach, both vectors are passed through a dropout layer followed by
an attention layer to produce a single logit ¢:

0 =v(A+ AT + )53 +b, )

where A € R"*" is a learnable attention matrix and b is a learnable scalar bias parameter. Notably,
both of these approaches are manifestly symmetric under interchange of ¥; and v, reflecting the
symmetric nature of the tasks we are attempting to learn. In the case of paraphrase detection, the
logit is passed into a binary cross-entropy loss function. In the case of semantic similarity analysis,
the loss function is Lg,, = 1 — r, where 7 is the Pearson correlation coefficient between the logits
and true similarity scores over the batch. The overall network architecture is summarized in Fig. 1.
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Figure 1: Overview of model architecture as described in Section 4. Section (A) corresponds to the
joint embedding approach, while section (B) corresponds to the multiplicative attention approach for
extracting information from two sentence embeddings at once.

The main component of this project is how to perform gradient updates based on the three loss
functions corresponding to each task. For the unitary scalarization approach, we define our overall



loss function as
L= Esont + Eﬁpara + ’Yﬁsim; (3)

where 3 and «y are hyperparameters representing the relative weights for each task. For the gradient
surgery approach, we implement PCGrad [3]], both replicating the algorithm ourselves and using an
online implementation in Pytorch for comparison [6]. In order to tease out the presence of destructive
gradient interference, we will compare our multitask training to training on a single task. We will
also investigate whether gradient surgery is more effective when both the paraphrase and similarity
tasks use the same method of extracting a logit from two sentence embeddings (joint embedding
or multiplicative attention). It is possible that destructive interference is more likely when network
architecture produces similarities between the “tails” corresponding to two different tasks, which
must result in the “head” embedding vectors encoding more information in the same way (e.g., the
dot product of two vectors corresponding to semantic similarity and paraphrase probability).

As a baseline model for comparison, we have the minBERT implementation in the default project
handout, which only learns the sentiment classification task. Unitary scalarization can be considered a
baseline to compare against gradient surgery, as can runs trained only on single tasks (thus preventing
any possibility of gradient interference). Since we are not modifying the sentiment classification
tail, we do not necessarily expect improvement on that task over the baseline, but it is possible that
learning the other tasks could improve performance on sentiment classification.

S Experiments

5.1 Data

For sentiment analysis, we use the Stanford Sentiment Treebank (SST) as a dataset, which contains
11,855 sentences [7]. Phrases within these sentences are labeled into one of five categories, ranging
from negative to positive. We use 8,544 of these examples for training and 1,101 examples for
development testing, with 2,210 examples held out in the test set. The model is trained to minimize
the cross-entropy between its predicted probability across classes and the true class.

For paraphrase detection, we utilize the Quora dataset [8], which contains 400,000 question pairs
labeled based on whether or not the questions are paraphrases of each other. 141,506 examples will
be used for training, 20,215 for development testing, and 40,431 for final testing. Similarly to the
sentiment dataset, the model must correctly predict whether pairs of sentences are paraphrases or not,
minimizing cross-entropy loss.

For semantic textual similarity, we use the SemEval STS Benchmark dataset [9], which contains
8,628 sentence pairs with similarities rated on a 0-5 scale. 6,041 examples will be used for training
and 864 for development testing, with 1,726 examples held out. Since this is a continuous metric,
the model is evaluated based on the correlation of its predicted logits with the true similarity (as
measured by Pearson correlation).

5.2 Evaluation method

Accuracy is a reasonable initial metric to evaluate classification-based predictions (i.e., the sentiment
and paraphrase prediction). However, precision and recall provide a more complete summary of the
performance of the model on the binary classification task of paraphrase prediction — in particular,
it helps account for the test and/or training sets having unequal numbers of entries for each class.
Pearson correlation is our scale-invariant metric of choice to evaluate the sentiment data, which we
also use as a loss function. No single metric can fully evaluate performance of a multi-task model,
but we can extract meaningful qualitative insights from a variety of these simple quantitative metrics.

We are particularly interested in comparing the performance of our model across different conditions:
with and without gradient surgery, and using different combinations of joint sentence embedding
versus multiplicative attention to calculate paraphrase probability and similarity prediction. We
can also validate our implementation of PCGrad by comparing its performance to the out-of-the-
box implementation. Since PCGrad imposes a notable computational cost, it would also be worth
comparing runtime and memory cost of gradient surgery versus unitary scalarization. On a similar
note, the number of epochs it takes for the model to learn effectively is also relevant: perhaps gradient
surgery takes more time per epoch but requires fewer epochs for effective learning.



SST Batch Size | Quora Batch Size | STS Batch Size

No Gradient Surgery 16 40 16
Surgery (Our Implementation) 8 20 8
Surgery (Ref. [6] Implementation) 8 10 8

Table 1: Batch sizes used for experiments.

5.3 Experimental details

Experiments were run with a BERT hidden size h = 768, learning rate v = 10~°, paraphrase weight
B = log(1/5)/1og(1/2), and similarity weight v = —log(1/5) (chosen to roughly rescale loss
functions by the size they would be for a randomly guessing model). To account for the large size of
the Quora paraphrase dataset, larger batch sizes were used for this dataset, and data from the other
datasets were re-sampled within a given epoch until the training had covered an entire epoch of the
Quora dataset. Due to its larger memory cost, smaller batch sizes had to be used when implementing
gradient surgery. Combined batch sizes for different conditions are summarized in Table 1. The
number of training epochs ranged from 10 to 15, but all optimal models were obtained within 10
epochs. The AdamW optimizer (with or without gradient surgery) was used for all experiments.

5.4 Results

We first analyze the baseline results obtained via single-task training. The sentiment classification
dev accuracy (obtained via the simple minBERT model) was 0.518. Fig. 2 shows dev results for
the other two tasks. We observe that both multiplicative attention and joint embedding approaches
result in learning relative to the 0.5 paraphrase accuracy and O similarity correlation that would be
obtained from random guessing. The two methods seem equally effective in the context of similarity
correlation, but the joint embedding approach is slightly better for paraphrase detection. As such, we
use the joint embedding approach for the paraphrase tail of the model in future analyses.
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Figure 2: Comparison of dev performance for joint embedding and multiplicative attention approaches
for single-task training on paraphrase detection and similarity analysis.

What happens when we introduce multi-task learning with unitary scalarization (Fig. 3)? Compared
to single-task training (Fig. 2), not much changes: sentiment and paraphrase accuracies remain
mostly unchanged, while similarity correlation slightly increases from 0.564 to 0.621 (see Table 2 for
a full set of values). There is also little apparent difference in the accuracies obtained by using joint
embedding on both the paraphrase and similarity tasks, or a mixed model using joint embedding on
the paraphrase task and multiplicative attnetion on the similarity task. However, Fig. 3 shows one
interesting difference: the joint-attention-only model requires more training than the mixed model to
reach its peak dev similarity correlation, despite having similar correlations during training. This may
reflect that it takes more training to find vector embeddings which “work” for both the paraphrase
and sentiment tasks, when joint embeddings are being used for both.

Next, we investigate whether our results change when we implement gradient surgery. As shown in
Table 2, our evaluation metrics do not change much: the joint-attention-only model yields almost
identical results, while the mixed model appears to result in a slight increase in paraphrase accuracy
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Figure 3: Comparison of dev and train performance for multitask learning with unitary scalarization,
using models with only joint embedding and a “mixed” approach, where the paraphrase tail uses joint
embedding and the similarity tail uses multiplicative attention.

and a slight decrease in sentiment accuracy (Fig. 4). However, the slower learning of similarity data
for the joint-embedding-only model disappears, which may be a sign of gradient surgery eliminating
destructive interference. While these results are for the version of PCGrad we implemented, the
external implementation [6]] gave similar results (Table 2). Finally, as shown in Table 3, not much
changes when we consider the more fine-grained metrics of precision and recall for paraphrase
evaluation: there is not a large asymmetry between the two metrics, nor do our different model
choices have much impact. Perhaps our model is slightly better at recall (identifying the positive
paraphrase pairs) than precision (avoiding misclassifying the non-paraphrase pairs).
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Figure 4: Comparison of dev performance for multitask learning between unitary scalarization and
gradient surgery.

Overall, the effects of gradient surgery appear small at best, with minimal improvements to model
performance. Furthermore, it comes with an increase in memory overhead and runtime, due to the
need to calculate and store gradients for individual tasks. Indeed, we had to decrease batch size
to save memory when implementing gradient surgery, and training took more than twice as long.
Altogether, these results support the arguments of Ref. [3] that gradient surgery does not justify its
increased computational costs over unitary scalarization.



SST Dev | Quora Dev | STS Dev | SST Test | Quora Test | STS Test
Sentiment Only 0.518 - - - - -
Para. Only - 0.842 - - - -
Sim. Only - - 0.564 - - -
Unit. Sc. Joint 0.510 0.843 0.610 - - -
Unit. Sc. Mixed 0.513 0.843 0.616 0.517 0.846 0.599
Surgery Joint 0.512 0.844 0.614 - - -
Surgery Mixed 0.497 0.855 0.620 0.519 0.855 0.612
Surg. [6] Mixed 0.504 0.853 0.659 0.524 0.853 0.591

Table 2: Dev and test performances for the experiments described in the results section. SST and
Quora scores are accuracies, while STS scores are Pearson correlation between logits and similarity.
The first three rows are for single-task datasets using joint embedding for the paraphrase and similarity
tasks. “Joint” refers to models using joint embeddings for both paraphrase and similarity tasks, while
“Mixed” refers to models using joint embeddings for the paraphrase task and multiplicative attention
for the similarity task. The last row represents data using the implementation of PCGrad by Ref. [6]
for comparison.

Precision | Recall
Unit. Sc. Joint 0.759 0.852
Unit. Sc. Mixed 0.763 0.843

Surgery Joint 0.760 0.855
Surgery Mixed 0.801 0.816
Surg. [6] Mixed 0.781 0.847
Table 3: Dev precision and recall for paraphrase pair identification on the Quora dataset. Models are
as described in Table 2.

6 Analysis

Altogether, we observed that gradient surgery had very little impact in improving the performance of
our model, and there are likely less computationally intensive methods that could achieve similar or
greater performance increases. Why is this the case? Our single-task runs, which can be interpreted
as ablation studies removing any possibility of gradient interference, had similar performance to our
multitask model. This suggests that conflicting gradients may not have posed a barrier to learning
to begin with, meaning that the realized perfomance gains of gradient surgery are small. Perhaps
gradient surgery would be more useful for a model trained on more tasks, such as the 40 tasks in the
CelebA dataset analyzed in Ref. [3]. However, increasing the number of tasks also increases the
computational cost of gradient surgery relative to unitary scalarization, making it all the more crucial
to justify through performance gains.

We did observe some limited effects of gradient surgery which could be attributed to remedying
gradient interference. In the left panel of Fig. 4, the joint-embedding only model with unitary
scalarization requires many more epochs of training to reach accuracy similar to the one with gradient
surgery. This is possibly because in the joint-embedding only model, both paraphrase detection and
similarity must be encoded in the sum and difference of vectors — the only difference between the tails
corresponding to each task are the weights in the linear layer. The dificulty of finetuning embeddings
to work with both tasks at once may lead to slower training in a way that can be alleviated by gradient
surgery. However, this is just one example, and could be caused by randomness in initializing the
model; furthermore, the ultimate accuracies attained by each model are comparable.

Ref. [3]] argues that any observed benefit of gradient surgery can be attributed to its regularizing effect.
In this work, we only used dropout as an explicit regularization method across all models. Potentially,
this aspect of gradient surgery resulted in the slightly improved performance for paraphrase detection
and sentiment analysis observed in the “Surgery Mixed” runs; however, we also observe a comparable
drop in performance on the sentiment dataset (Table 3). Nonetheless, we argue that all of these effects
are small enough that gradient surgery does not justify its use for this set of tasks.



7 Conclusion

In this work, we have performed an analysis of the costs and benefits of gradient surgery in the
context of a natural language processing multitask learning problem. We have found that in the
context of these tests, gradient surgery fails to produce a noticeable enough benefit to compensate
for its additional computational cost, supporting the conclusion of Ref. [3]] that the simpler “unitary
scalarization” method is all that is necessary for multitask learning. Nevertheless, we have identified
potential signatures of the gradient interference which gradient surgery aims to solve, suggesting that
methods to resolve this problem are still important — whether they be changes to model architecture
or regularization.

Our work is extremely preliminary, and several extensions should be performed before relying on
its conclusions. A larger sample size of experiments for each set of conditions is crucial, so that
we have a sense of what variations between runs are due to random instantiations as opposed to the
effects of gradient surgery or other model choices. In addition, we did not have time to perform
a meaningful hyperparamter scan, varying the learning rate « or loss weights 5 and ~ to find an
optimal set of conditions. It is possible that one of the models tested would perform notably better at a
different set of hyperparameter values. Furthermore, changing regularization methods (e.g., removing
dropout or adding additional weight decay) could help identify whether gradient surgery provides
a regularization effect that is substitutable for more standard regularizers. Finally, performing a
similar study for a broader range of tasks would elucidate whether gradient surgery is more effective
when the same model must simultaneously learn more than three tasks at once, despite its larger
computational cost.

All in all, the promise of multitask learning algorithms demands a closer investigation into effective
methodology for simultaneous learning on multiple tasks. It seems likely that techniques like the
gradient surgery described in Ref. [S]] are useful in certain contexts. Yet even if the conclusion of Ref.
[3]] that such methods are unnecessary do not generalize to all fields, their work still emphasizes that
comparative studies of learning methodologies, rather than a variety of individual ad hoc methods,
are crucial to build better models.
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