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Abstract

We explore the application of two long-form question-answering (LFQA)
paradigms to the ominous and equally convoluted field of taxes. We first scrape
a text knowledge corpus from the federal tax code, IRS materials, and online
tax guides. We then distill from said corpus a set of 10,000 pertinent questions
whose answers are found in the text. Using these materials, we finetune (1) A
Generative Pre-trained Transformer model (GPT-2) and (2) a Retrieval-Augmented
Generation (RAG) model, assessing their performance with the aid of a certified
public accountant. Our goal is to build an LFQA tool that empowers the average
American taxpayer.

1 Key Information to include

No external collaborators, mentors, or sharing projects.

2 Introduction

Tax season can be daunting for many Americans, as it involves dealing with complex and inscrutable
tax codes and regulations. In fact, according to a recent survey, Americans spend on average anywhere
between 11-13 hours preparing and filing their tax returns every year (FreshBooks, 2023).

Not only are tax codes lengthy and convoluted—they also change frequently. This presents a challenge
for people looking to stay informed with the latest tax laws, regulations, and loopholes. As a result,
many opt to instead hire expensive accountants, which can be costly and still time consuming.

Most tax education software available today fails to capture the intricacies and nuances of how
certain tax laws apply to an individual’s situation. Advances in Natural Language Processing (NLP)
techniques expose an opening in the market for an intelligent tax question-answering system, one
that can provide more customizable and robust tax education services.

In this research report, we aim to develop a question-answering system that uses Natural Language
Processing techniques to provide accurate and reliable tax advice. Our system aims to go beyond the
current generation of models and provide personalized tax advice that is tailored to the individual’s
specific situation. By doing so, we hope to bridge the gap between the complexity of tax codes and
the general public’s understanding of them. Our proposed system intimates time- and money-saving
potential for individuals and businesses, arming them with greater confidence as they head into tax
season.
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3 Related Work

Given our goal to answer tax-related questions, we explore two types of models: (1) Autoregressive
Transformer models such as GPT and (2) Retrieval-Augmented Generation (RAG) models that use
document retrieval in conjunction with a generative model.

Long-Form Question-Answering Long-form question-answering (LFQA) is a special variant of
open-book abstractive QA. The term is first presented by a group of Facebook researchers in 2019
(Fan et al., 2019). Described as "a task requiring elaborate and in-depth answers to open-ended
questions," LFQA is realized through a dataset comprised of 270K threads from a Reddit forum titled
"Explain Like I’m Five" (ELI5). Compared to existing datasets, ELI5 contains diverse questions
requiring multi-sentence answers. In the tax industry, where complex laws can take on numerous
interpretations and often require substantial explanation and simplification, we hypothesize that a
pre-trained ELI5 model is an ideal component of our project.

Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks (RAG) This paper
on Retrieval-Augmented Generation presents a general RAG model that finetunes a pre-trained
parametric language model and excels in knowledge-intensive tasks (Lewis et al., 2020). The RAG
model combines both pre-trained parametric and non-parametric memory for language generation
tasks, generating more detailed and accurate texts than parametric-only models. The paper describes
a RAG model that uses a Dense Passage Retrieval (DPR) model, which is capable of retrieving top-k
documents and building a document index using a double-encoder architecture. After concatenating
an input question and the retrieved documents, the generator component is then modeled with BART,
a bidirectional autoregressive transformer that combines BERT’s bidirectional encoder and GPT’s
autoregressive decoder. The RAG model then marginalizes over seq2seq predictions with various
documents. See the figure below to better understand the RAG model. After joint training of
the retriever and generator components, open-domain RAG models outperform previous language
generation approaches in knowledge-intensive tasks.

Figure 1: RAG Model Approach (Lewis et al., 2020)

Given the success of the RAG model with knowledge-intensive tasks, we reference the approach
presented in the paper as a likely solution to our goal, mimicking the retriever and generation
components of the RAG model. In deciding which encoding or retrieval model to use, we consider
Dense Passage Retrieval, BM25, Universal Sentence Encoder and S-BERT, but refine our experiments
to the latter two for the scope of this project.

Universal Sentence Encoder (USE) Google’s Universal Sentence Encoder encodes sentences into
512-dimensional embedding vectors that can be used in a variety of NLP tasks (Cer et al., 2018) While
previous language models use pre-trained word embeddings such as word2vec or GloVe, Universal
Sentence Encoder enables the creation of sentence embeddings that outperform word embeddings in
many transfer task performances. The Universal Sentence Encoder presented in the paper also has
two different encoding models, one that uses a transformer-based sentence encoding and another that
uses a Deep Averaging Network (DAN). The transformer-based sentence encoding uses the encoding
sub-graph of the transformer architecture, while the DAN averages embeddings for words and passes
them through a feedforward deep neural network. For our purposes, the general Universal Sentence
Encoder is a potential option as an encoding and retrieval model, as it can be used to encode both
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queries and documents and is referenced as a baseline for comparing our finetuned S-BERT-based
retrieval model, explained in the following subsection.

Sentence BERT: Sentence Embeddings using Siamese BERT-Networks (S-BERT) While
models based on DPR, BM25, and Universal Sentence Encoder are all options for our retrieval
model and can be used on tasks such as open-domain QA, the paper on S-BERT provides a model to
learn semantically meaningful sentence encodings by modifying the standard BERT with a siamese
network architecture, allowing fixed-size vectors to be created for entire input sentences (Reimers and
Gurevych, 2019). S-BERT’s siamese network architecture relies on two BERT networks with mirrored
weights. Each BERT sub-unit generates word encodings for separate sentences, then employs a
pooling operation (either mean or max pooling) to produce a single embedding for each sentence.
The resulting semantically meaningful sentence embeddings can be compared with functions such as
cosine-similarity or softmax. Importantly, the S-BERT model greatly improves computational speed
compared to other BERT sentence encoders and can outperform the Universal Sentence Encoder on
Semantic Textual Similarity tasks. For our purposes of generating answers for tax-related questions,
which require a detailed understanding of an industry-specific knowledge base, we utilize the S-BERT
model’s ability to learn sentence embeddings by finetuning it to the tax domain.

Figure 2: SentenceBERT with a Siamese Network

4 Approach

Compiling a Segment-Specific Knowledge Base We invest significant time in amassing and
processing a large text knowledge base surrounding tax laws and certified advisory materials, we
explain these in depth in Section 5.

Approaches to Long-Form Question-Answering (LFQA) When given a large knowledge
database, there are two primary approaches we can take to answer questions in an LFQA man-
ner.

The first involves fine-tuning an autoregressive language model on text data covering the topics
in question. This approach is effective when the knowledge base is relatively consistent and the
questions being asked fall within a specific domain. In the case of tax codes and guides, we surmise
that the preceding qualities held true, hence, we choose this as our first approach. Additionally, this
approach requires little to no data labeling, as this class of LLMs can train on raw text alone. By
training a generative model on our knowledge base, it can gain a better understanding of the language
and terminology used in that domain, making it more fluent in answering questions.
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The second approach we attempt is Retrieval Augmented Generation (RAG), which incorporates an
information retrieval component that is then fed into the prompt for a generative component. This
allows the model to access and integrate information from the knowledge base into its generated
responses, ideally resulting in more accurate and informative answers. While standalone generative
models can be finetuned on knowledge bases, they easily lose accuracy or factual correctness in their
responses—despite sounding correct. RAG overcomes this by retrieving the original knowledge
passages and presenting them to a generative model at the point-of-prompt rather than relying on
parametric knowledge recall from training.

4.1 Autoregressive

4.1.1 GPT-2 Baseline

For our baseline model, we deploy Huggingface’s GPT-2 medium model (355M parameters) without
any task-specific fine-tuning (Radford et al., 2019). GPT-2 uses a transformer architecture that
is composed of only decoder blocks. Every new word is predicted by using the prior word and
self-attention (for contextual dependencies). It is trained on an industrial-scale web-scraped dataset
using unsupervised learning. This is an intuitive baseline since we plan on finetuning and modifying
our GPT-2 based model under the context of tax-related questions and information.

4.1.2 Finetune GPT-2

Our first major step is finetuning GPT-2 over our tax corpus. We make sure to clean our text corpus
to remove potentially errant formatting characters. We then retrain the HuggingFace out-of-the-box
GPT-2 model on the unlabeled corpus text with the ultimate hope that the model will adopt tax-
specific language to more thoroughly and knowledgeably answer questions. The performance of
our finetuned GPT-2 model surpassed that of our baseline GPT-2 model. We’ll further address these
results in the Experiments and Analysis sections below.

4.2 RAG

While finetuning GPT-2 shows promise, there is concern that purely autoregressive models often lack
correctness in fact or logic-intensive responses. Retrieval Augmented Generation offers a promising
solution. RAG models retrieve relevant information from the broader knowledge base and incorporate
that into a generator’s prompt. In effect, this leads to better knowledge-base preservation, as we
retrieve and prompt content, contrary to just training on it. RAG models therefore allow for a more
closely guided generator output.

As Figure 2 shows, we parse our corpus and generate embeddings sentence-by-sentence. The tax-
related query is also encoded, and the corpus sentences with the highest cosine similarity to the
query vector are then prompted to the generative model, along with the query itself. The following
subsections explore the encoder and BART models in greater detail.

4.2.1 USE + BART

We first utilize Google’s Universal Sentence Encoder to generate 512-dimensional sentence embed-
dings which are optimized to encapsulate the semantic meaning of the text. USE is trained on a
variety of sources—including web pages, news articles, and books—and is known for it’s ability to
encode text of any length without truncation. While this may seem a convenient solution for large
text body encoding (as opposed to sentence-level encoding), embeddings for larger texts undergo
significant dilution. This effect makes text comparison of varying lengths—such as a question and
paragraph—quite unstable and thus inspires alternative approaches to encoding.

4.2.2 S-BERT (sentence encoder)+ BART

As mentioned in Section 3, BERT typically operates on a word-by-word basis, making it inefficient
and ineffective at capturing semantic meaning of sentences. Sentence-BERT (S-BERT) addresses
this issue, allowing us to compute dimension 768 embeddings over a maximum of 128 tokens, which
is sufficient for most sentences. The Siamese BERT network can then draw comparisons between the
two sentences. We use S-BERT to determine which sentences in our corpus are most cosine similar
to the query, pulling top-k matches to be fed into a BART generator via prompting.
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Figure 3: Our RAG Approach

4.2.3 S-BERT (sentence encoder) fine tuned + BART

Finally, we repeat the same step from above, this time finetuning our S-Bert model on question-answer
data which we generate. The open-source nature of S-BERT models certainly provides an advantage
to Google’s Universal Sentence Encoder, which is notoriously difficult to finetune and lacks any
substantive developer community.

5 Experiments

5.1 Data

Our retrieval documents are harvested from myriad sources:

1. The entire United States Federal Code Title 26: Internal Revenue Code is scraped, collated,
and summarized into continuous, digestible prose using OpenAI’s GPT 3.5-turbo API. The
resulting output constitutes over 3.5 megabytes of text (OpenAI, 2020; Office of the Law
Revision Counsel of the United States House of Representatives, 2023).

2. The IRS Website hosts a number of resources to help Americans file their tax returns, the
most bountiful of which include (1) a large collection of FAQs with answers and (2) tax
guides for each major section of tax law (Service, 2023). We scrape and process both
of these sources into raw text files for finetuning. Together, these sources comprise 6.5
megabytes of text.

3. Beyond the IRS, there exist a number of commercial tax guides, all of which are available
online. We download, convert, and use the following guides in our training processes:

• Lower Your Taxes - BIG TIME! 2023-2024 Small Business Wealth Building and Tax
Reduction Secrets from an IRS Insider Botkin (2022),

• Financial independence (getting to point X) a comprehensive tax-smart wealth man-
agement guide Vento and Mackay (2018),

• J.K. Lasser’s 1001 Deductions and Tax Breaks 2022 Your Complete Guide to Everything
Deductible Weltman (2021),

• The Book on Advanced Tax Strategies Cracking the Code for Savvy Real Estate Investors
Han and MacFarland (2020),

These materials are then concatenated into a single text corpus representing our knowledge base. In
total, for our context documents, we have over 100,000 sentences at our disposal for fine-tuning and
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evaluation. While raw, unlabeled text is sufficient for fine-tuning an autoregressive model such as
GPT-2, QA-formatted data is required for our case of effective passage retrieval. Once more using
GPT-3.5 Turbo, we are able to successfully generate 10,000 question-answer pairs by segmenting our
corpus into 5-sentence sections and running the following script:

prompt = """Given the following context, generate:
(1) a tax-related question whose answer can be found in the context
(2) The particular sentence that best contains the answer within the
context, verbatim.

Output all of this like you would declare a python list (with brackets)
of strings in this particular order. The list should only contain
these two elements. \n context: """

try:
response = openai.ChatCompletion.create(

model="gpt-3.5-turbo",
messages=[

{"role": "user", "content": prompt+section},
],

temperature = .4,
top_p=1

)
except: continue

We split this labeled data into training and evaluation sets for retrieval finetuning and evaluation.

5.2 Experimental details

5.2.1 Autoregressive

We finetune HuggingFace’s GPT-2 medium model using the raw text of our knowledge corpus with a
batch size of 16 over 5 training epochs. For generation, we set temperature to default (0.7), top_k to
50, top_p to 1, and do_sample to true.

5.2.2 RAG

We operate our retrieval process on a sentence-by-sentence level, generating embeddings for each
sentence within our knowledge corpus and uploading to a Pinecone S1 index for easy retrieval. For
each question posed, the model generates query embeddings and requests a top-k number of sentences
from Pinecone, each of which ideally contains relevant corpus text. Since answers to questions can
exist over multiple sentences, we concatenate the surrounding 4 sentences within the context to each
of these top-k Pinecone results. This technique allows for larger passage retrieval despite only having
sentence-level training data. We also notice that S-BERT and USE both work optimally when the two
texts being compared are of similar lengths, so this approach should optimize retrieval performance.

Then, as mentioned in Section 4, we structure a query consisting of the original question—followed
by all relevant context passages—and feed that to the BART model for answer generation.

Our pre-trained S-BERT model is trained on Microsoft’s mpnet-base model and fine-tuned on a 1
billion sentence pair dataset(Reimers, 2021). We finetune this model on pairs of sentences comprised
of the generated question with its corresponding answer sentence in the corpus. 8400 of these pairs
were randomly selected for training, while 1582 were reserved for evaluation. We train with a batch
size of 64 spanning 5 epochs with the number of warmup steps equal to the size of the training data
multiplied by the number of epochs multiplied by 0.1 (representing 10% of the training data). Since
our data lacks a cosine similarity label, we use Multiple Negative Ranking Loss as our loss function,
which is quite effective for training datasets consisting of positively-related pairs. We did not finetune
BART, the generative part of our RAG structure. We use a HuggingFace model pre-trained on
ELI5(Jernite, 2021) and find its performance to be more than sufficient. With finetuning complete,
we then set out to evaluate the performance of our 5 models.
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5.3 Evaluation method

First, we quantitatively evaluate the retrieval components of our RAG models: S-BERT, Finetuned
S-BERT, and USE, using our evaluation set. Before any querying, each model generates an encoding
for every corpus sentence and uploads them to Pinecone. When a question is presented to the model,
it’s embedding is sent to Pinecone, and the top-k most similar context sentences are returned in order
of decreasing similarity. We assess for, within a top-k of 20 results, how many times a question’s
correct answer sentence appears. These question-answer pairs come from our evaluation set of size
1528. Additionally, as a sanity check, we evaluate 500 random question-answer pairs from our
training set to gauge Finetuned S-BERT’s training retention relative to out-of-the-box models. At
the very least, we expect Finetuned S-BERT to outperform on this set of questions. See Figure 4 for
results.

We further assess with what level of success these models find the correct answer sentence within
a top-k of 5, and we weigh the ranking in which they are returned. We score each position using a
decay factor of 2 so that the similarity results earn the following points in order from first to fifth:
100, 50, 25, 12.5, 6.25. See Figure 5 for results.

To assess the correctness of the generative models, we composed a test of 50 tax-related questions.
25 of these questions are pulled from our evaluation set, and the following 25 are supplied to us by a
certified public accountant. We then query all five models: GPT-2, GPT-2 Finetuned, S-BERT+BART,
S-BERT Finetuned+BART, and USE + BART, and submit the results to the CPA to assess. We
(kindly) ask the CPA to rank each model for each question based first on correctness then on clearness
in the case of any draws. See Figure 6 for results.

Figure 4: Observation counts of correct context sentence within the top 20 model results.

Figure 5: Position-weighted score of correct context sentence observed within the top 5 model results
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Figure 6: Frequency of ranks by model, as scored by a certified public accountant. 50 questions total.

6 Analysis

For retrieval, our finetuning proves successful in augmenting S-BERT’s comprehension of tax-specific
language. The finetuned model is able to recognize specific sections and form numbers, whereas the
other two tend to lose them entirely. Furthermore, the non-finetuned models are overly sensitive to
commonly occurring words in the corpus such as “tax” or “deduction,” often neglecting other, more
unique keywords within the question text. This behavior leads to more semantically irrelevant results.

RAG models outperform their purely autoregressive counterparts when it comes to assessing cor-
rectness and overall quality of generated response. One factor that may contribute to the poor
performance of the finetuned GPT-2 FT’s model is the sheer variety of structure, content, and tone
encompassed within our training corpus. We initially assume that the corpus text was uniform, but
later discover that the tone and person of the commercial tax guides varies dramatically from that of
the IRS. As such, it is not uncommon for GPT-2 FT’s output to read as disjointed or hard to follow
on a sentence-by-sentence basis. Further, while the majority of our training corpus is easy to read,
certain documents (particularly those scraped from the IRS) contain complex language that assumes
fairly extensive reader knowledge. We theorize that these documents often contribute to densely
generated language. We further theorize BART is able to cut through this more successfully due to
its ELI5 dataset pre-training. Note also, as Figure 6 shows, GPT-FT tends to perform at the ranking
extremes.

7 Conclusion

We set out to use advanced NLP techniques to help the average American better understand the com-
plicated and lengthy tax code. We attempt five different approaches, a handful of which incorporate
current state-of-the-art models. Next steps include finetuning BART for generation and incorporating
a bag-of-words algorithm like Okapi BM25.

It’s also important to note that all models’ performance still fall short of a certified accountant’s for
the majority of questions, and significant improvement remains in order to achieve market viability.
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