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Abstract

Recent advancements in deep learning have led to notable improvements in the
ability to learn meaningful embeddings from whole slide images of tumor (WSIs),
applicable to clinically relevant tasks such as patient survival analysis or disease
classification. These works are only guided by image based semi-supervised pre-
training, however several works suggest that robust, human-interpretable image
representations can be learned through supervision via unstructured language. To
address this gap, we are the first to leverage unstructured pathology reports to guide
representation learning of WSIs through neural natural language methods. We
propose a contrastive pre-training pipeline that peforms co-attention on reports
and WSI patches, enabling slide-level attention heatmap generation and zero-shot
classification on downstream tasks. By comparing multi-class AUC to existing
baselines on disease classification, we find that domain-specific pre-training on
pathology data improves representation quality of image embeddings.

1 Key Information to include
• Mentor (custom project only): Elaine Sui

2 Introduction

The field of computational pathology involves extracting and interpreting meaningful features from
whole slide images (WSI) of tumor. In recent years, the use of deep learning in computational pathol-
ogy has led to notable advancements in the ability to learn and visualize meaningful representations
applicable to downstream tasks such as patient survival analysis or disease classification Chen et al.
(2022). In particular, since WSIs are gigapixels in size and are therefore traditionally complex to
model, prior works have focused computational efforts towards learning regions of interest that are
most relevant for clinical prognoses (Chen et al., 2021). These works are primarily guided by image
based semi-supervised pre-training and do not leverage any other modalities. However, several works
in the field of multimodal natural language processing demonstrate that better representations can be
learned through supervision via unstructured language.

For instance, Radford et al. (2021) propose a joint image-language model that can map images and
text into the same joint embedding space via self-supervised contrastive learning, which they name
contrastive language image pre-training (CLIP). In addition to improving image embedding quality,
CLIP enables multi-class classification to be performed in a zero-shot fashion, in which no fine-tuning
on labeled data is required to classify images at high performance.

In our work, we are therefore motivated to extend prior joint image-language methods to guide
interpretable representation learning of histopathology slides. To do so, we leverage raw pathology
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reports paired with whole slide images (WSI) from The Cancer Genome Atlas (TCGA) to pre-train a
joint image-language model. Unlike prior contrastive methods however, we propose the addition of a
co-attention mechanism between text and image embeddings which enables an attention map to be
created per slide for a text query. This contribution is motivated by the need to better understand and
interpret clinically important regions on a large WSI.

Our contribution is therefore two-fold: 1) we are the first to apply joint image-text contrastive
pre-training in the domain of histopathology slides and reports to improve embedding quality and
enable zero-shot classification, and 2) introduce co-attention mappings between reports and slides
to increase model interpretability with respect to text queries. To evaluate the performance of the
pretrained model, we perform disease type classification on a held out test dataset. We compare our
method to a ViT baseline, a CLIP pre-trained model, and compare results with and without language
guided co-attention in both the linear probe and zero-shot settings.

3 Related Work

While language has guided the improvement of downstream tasks in other biomedical fields such as
radiology, computational pathology has been slow in this adoption. Because WSIs are a complex and
information rich data source, recent works have prioritized extracting signal via traditional neural
image processing pipelines rather than drawing signal from additional modalities. Chen et al. (2022)
apply DINO, a self-supervised pre-training method, to learn scale-invariant image embeddings. (Lee
et al., 2022) apply graph neural networks on WSIs to derive histopathological features that have
prognostic context. However, recent works have demonstrated that language can be used to improve
image embeddings, even for complex medical image interpretation tasks, which motivates us to
explore the untapped intersection of language and images in pathology.

Tiu et al. (2022) build upon the self-supervised joint image-language model CLIP proposed by
(Radford et al., 2021) to demonstrate that a similar language-guided pre-training method can be
applied for complex medical image interpretation tasks. In particular, they show that chest x-ray
image embeddings can be used for downstream disease classification tasks and can match radiologist
performance. They demonstrate this in the zero-shot setting, claiming that these models can perform
well without training on any expert annotated datasets. Due to recent success of language models
improving model performance in complex medical tasks, we are motivated to extend these methods
to pathology to both improve embedding quality of histopathology slides and enable zero-shot
classification via text queries.

Although prior work has not leveraged natural language, more recent methods have aimed to use
multiple modalities to guide learning of histopathology slides. (Chen et al., 2021) apply co-attention
on WSIs and genomic features to generate genomic guided attention maps, and obtain genome
guided slide-based representations. We extend this method to natural language by using pathology
reports instead of genomic features, to enable model interpretability as a tool to augment pathology
analyses. However, (Chen et al., 2021) perform survival analysis in a fully supervised manner by
training directly on labeled data. Our method aims to bypass the need for fully supervised training by
using a contrastive loss proposed by (Radford et al., 2021) over the image and text embeddings from
coattention. Thus, our work draws upon the joint contrastive image-pretraining methods of (Radford
et al., 2021) and (Tiu et al., 2022) to enable zero-shot classification, while simultaneously introducing
additional interpretability through co-attention methods proposed by (Chen et al., 2021).

4 Approach

4.1 Method

In this section, we present the overall framework, PathZero, which consists of contrastive pretraining
on slide level embeddings learned from language-guided co-attention and corresponding pathology
report text embeddings. The image enoder pipeline is referred to as Path-Coattn-ViT in the remaining
sections of this paper.
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Figure 1: The contrastive training pipeline with co-attention. The image model learns fea-
tures from raw pathology reports (n=1401) which act as a natural source of supervision.

4.1.1 Problem Formulation and Notations

Contrastive pre-training is a self-supervised task and framework that maximizes similarity of positive
pair embeddings while minimizing the similarity of negative pair embeddings. In our setup, we
propose a joint image-language contrastive pre-training setup where positive pairings consist of a
whole slide image and its corresponding pathology report. In the framework of Multiple Instance
Learning (MIL), whole slide images can be represented as a bag of patches where P is the number of
patches and each it is a 224× 224× 3 image. We represent a single image and a single report as

Imi = {i1, . . . , iP } ∈ RP×dim , Rei ∈ RT×dtxt

where P is the number of patches and T is the number of tokens. Batches of images and reports as
It ∈ RN×P×dim and Tt ∈ RN×T×dtxt respectively. We represent the full image encoder and text
encoder as ϕ and γ, where for a single Imi and Txti. ϕ : RP×dim → Rdl and γ : RT×dtxt → Rdl .
ϕ and γ are applied to each image and text within a batch to get Il ∈ RN×dl and Tl ∈ RN×dl . The
objective is to minimize cross entropy loss over similarity scores computed pairwise between Il and
Tl.

4.1.2 Input preprocessing

Images Whole slide images are patched into 224x224 pixel images at 10x resolution after Otsu
thresholding to retain relevant tissue regions and remove whitespace. We perform stain normalization
on all patches to minimize the effect of domain shift across different sites.

Text The CLIP Text Encoder has a max token size of 76. To abide by this token constraint, we
extracted only the "Diagnosis" section of the pathology reports. The TCGA pathology reports are not
uniformly formatted, so we extracted with the heuristic of matching the starting token "Diagnosis"
and extracting the following 200 tokens.

4.1.3 Training

As depicted in 1, our co-attention model can be broken up into three primary components: an
image pipeline, a text pipeline, and the contrastive learning objective which maximizes the similarity
between image and text embedding pairs.

Image Encoder Pipeline (ϕ) Due to computational constraints on storage, embeddings for all
patches are passed through an ImageNet pre-trained ResNet-50 model, creating image embeddings
with size di. This ResNet-50 embedding is then passed through a linear layer to create an image
embedding that is of dimension ∈ Rde which is the same corresponding pathology report embedding
before co-attention. We then co-attend report tokens across a slide to develop Token Guided WSI
embeddings that are of shape T x dl, where T is the number of tokens for a pathology report. Self-
attention is then performed across this embedding resulting in a embedding ∈ Rdl before being used
in our contrastive learning framework. When applied to all images in a batch, we obtain Il ∈ RN×dl
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Text Encoder Pipeline (γ) Pathology report sections are first tokenized using the Byte Pair
Encoding (BPE) scheme used by (Radford et al., 2021) to obtain a T x dt sized embedding. Following
this is a fully connected layer to create token embeddings ∈ RT×de used for co-attention. These
token embeddings are passed through a fully connected layer to reach a dimensionality (T x dl)
which matches corresponding Token-Guided WSI embeddings post self-attention. This Tl ∈ RT×dl

is then used in the contrastive learning framework.

Contrastive learning Given a batch of text and co-attended image features in shape (N , dl) and
(N , dl); these are Il and Tl respectively. The N ×N matrix of cosine similarities, also referred to as
the logits by the authors, is then created by computing the dot product of Il and T⊤

l . A cross-entropy
loss is then computed between logits ŷi and a pre-defined labels vector yi of length N which contains
values 0 . . . N − 1.

LCE = −
N∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi)

4.1.4 Co-Attention

Our co-attention mechanism is a single-head attention layer which attempts to relate pathology token
word embeddings to pathology slide pairs using the method described by Chen and He. We use
X ∈ RT×de to guide features in the image embeddings Y ∈ RP×de using the following mapping:

CoAttnX→Y (X,Y ) = softmax(
WqXY ⊤W⊤

k√
dk

WvY ) → AcoattnWvX− > X̂

Here the tokens embeddings X serve as our queries and our patches Y serve as our key-value pairs.
Acoattn ∈ RT×P is the co-attention matrix used to computed weighted averages across our patches
Y . Looking at this equation, we see that a single token xt ∈ X scores the pairwise similarity for
how much each patch yp attends to xt. Wq , Wk, and Wv ∈ Rde×de are trainable weight matrices. A
visual example can be seen in 5.

4.1.5 Zero-Shot Classification

For our zero-shot evaluation pipeline outlined in 2, we performed multi-class classification across
a held out test set of whole slide images. Given an encoded input slide Im ∈ Rdim , and M class
label queries Q ∈ RM×T×dtxt , we compute ϕ(Im) and all {γ(Rei) | ∀Rei ∈ Q} to obtain an
image embedding and M query embeddings. Cosine similarity is computed between the image
embedding and query embeddings to obtain probability scores for each slide, P ∈ RM . We compute
Softmax(P) to obtain a probability distribution over classes for a slide.

4.2 Baseline

The goal of this project is to see if we can improve image embeddings of pathology slides to be
utilized in clinically relevant downstream tasks. Therefore, as a baseline, we performed our linear
probe evaluation on a ViT-B@32 with no pre-trained weights. The ViT we used for the baseline has
the same vision transformer model architecture as the pre-trained models. We expect meaningful
performance improvements over these baseline-embeddings because they have not been pre-trained
on natural images and language, nor on pairs of pathology slides and reports.

5 Experiments

5.1 Data

To evaluate the quality of embeddings, we perform 5-way disease type classification on (n = 561)
images taken from cancer patients across 5 different disease types: Adenomas and Adenocarcinomas,
Cystic, Mucinous and Serous Neoplasms, Ductal and Lobular Neoplasms, Gliomas, and Squamous
Cell Neoplasm. The dataset we have chosen to use is The Cancer Genome Atlas (TCGA) dataset.
The dataset includes roughly 11,000 pathology reports with 1 or more corresponding slide for each
report. Our pretraining dataset consists of n = 1401 slide and pathology report pairs, randomly
subselected from the full TCGA dataset due to storage constraints. For linear probe, we use a train
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Figure 2: a) Diagram of zero-shot classification pipeline. b) Generation of attention heatmaps on
slide based on textual query. Method allows model to map language to visual concepts with semantic
meaning, enabling language-guided interpretations of predictions.

dataset with n = 562 and we evaluate all methods on a held-out test dataset with n = 561 randomly
subsampled from the original TCGA cohort of 11,000.

5.2 Evaluation method and Metrics

We evaluate our model both using a linear probe as well as in a zero-shot fashion. We compare our
method to two baselines, a ViT with random initialized weights and a model with CLIP pretrained
weights from Radford et al. (2021). Additionally, we perform an ablation of our model embeddings
with and without a co-attention pipeline appended to obtain slide level embeddings. To adapt this
binary classification metric to the multi-class setting, we computed one-vs-rest (OvR) AUROC on
each class, and computed the macro-average AUROC across all classes. For each class, the correct
class is treated as a positive value whereas all other classes are considered to be negative. Due to
class imbalance, both precision and recall are computed on the outputs of each of the classes. We
report macro averaged precision and recall for each method.

5.3 Experimental Details

We performed the disease type classification task with 4 different models, all of which use the
hyperparameters proposed by Tiu et al. (2022), and trained with an SGD optimizer at a learning rate
of 1e-4 and momentum 0.9. All models are trained on a single Tesla T4 GPU with NVIDIA CUDA
with 14GB of RAM. All slides, patches, and reports were stored on at 7TB Volume on AWS.

ViT Baseline A ViT-B@32 with an embedding dimension of 512. The baseline model uses no
pre-trained weights. Additional model hyperparameters are selected based on the suggestions of
(Radford et al., 2021). This model takes as input slide patches at a resolution of 224 x 224.

CLIP-ViT A ViT-B@32 that uses image and text encoder weights from CLIP pre-training on
natural images and language. No further fine-tuning was performed on CLIP-ViT. We compare
Path-ViT to CLIP-ViT to see the impact of in-domain self-supervised pre-training on embedding
quality for pathology based tasks. To abide by memory constraints, CLIP-ViT is trained with a batch
size of 64 patches.

Path-Coattn-ViT Image pipeline depicted in 1. Slide patches are passed through a frozen ResNet-
50 pretrained on ImageNet to generate image embeddings. These embeddings are passed through
token guided co-attention to get language-gudided WSI level representations. A smaller batch size
of 8 is used for pre-training since unlike other self-supervised methods, we perform the contrastive
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learning objective on the slide level rather than the patch level, so for each slide the data for all
patches must be loaded into memory at once.

Path-ViT A ViT-B@32 that is pretrained on pathology images and pathology reports. The same
ViT model architecture as CLIP-ViT is used. Both the image encoder and the text encoder use
pre-trained weights of the CLIP model from Radford et al. (2021).

5.4 Results

AUROC Accuracy Precision Recall

Linear Probe
ViT Baseline 0.483 0.189 0.286 0.203

CLIP-Vit 0.792 0.434 0.657 0.665
Path-Coattn-ViT 0.515 0.200 0.329 0.574

Path-ViT 0.817 0.550 0.686 0.697

Zero Shot
ViT Baseline n/a n/a n/a n/a

CLIP-Vit 0.498 0.189 0.194 0.057
Path-Coattn-ViT 0.557 0.228 0.355 0.078

Path-ViT 0.546 0.229 0.433 0.155

Linear Probe Results Path-ViT performs better than
CLIP-ViT after pre-training on pathology slide and report
pairs, indicating that pathology reports act as a reasonable
supervisory signal to learn representations of pathology
slides. We observe that our Path-Coattn-ViT performs bet-
ter than our ViT Baseline, but performs significantly worse
than both our CLIP and Path ViT. We expected the super-
visory signal provided by the pathology reports to create
meaningful class clusterings of the image embeddings.
However, our results and t-SNE plots of the co-attention
image embeddings that minimal clustering occured 4

Adenomas and Adenocarcinomas (n=322) Cystic, Mucinous, and Serous Neoplasms (n=38)

Ductal and Lobular Neoplasms (n=48) Gliomas (n=30)

Squamous Cell Neoplasms (n=123)

Figure 3: AUC curves for each class from linear
probe evaluation. Path-ViT outperforms other self-
supervised baselines across all classes.

Zero-Shot Results We expected Path-Coattn-
Vit to close the modality gap between queries
and slide images, but this did not occur with
Path-Coattn-ViT performing worst than Path-
Vit across 3 different metrics. However, all self-
supervised methods underperform in the zero-
shot setup.

6 Analysis

In this section, we perform error analysis on the
zero-shot classification of the semi-supervised
models, explore the performance of co-attention,
and suggest potential avenues to address issues.

6.1 Correct and Incorrect Classifications

We will begin our analysis by examining cor-
rectly classified and incorrectly classified exam-
ples by Path-ViT on linear probing. After look-
ing at 3 we chose these 2 classes as an example
because Gliomas had the highest AUC value and
Cystic, Mucinous, and Serous Neoplasms had the lowest. Our most notable observation was the low
quality of the pathology reports which often included extraneous information and misspellings. 6 in
the Appendix for image and report samples.

6.2 Zero-Shot Inference

Our original hypothesis was that language pre-training should enable zero-shot learning, however
we find that all self-supervised models perform poorly in the zero-shot setting. Our initial set of
hypotheses for why we observed poor performance was that a large proportion of the reports that
the model was pre-trained on may not have contained the corresponding class label. Therefore, the
model would not have learned to relate those class labels to the corresponding pathology slides. In a
similar vein, since the model was not explicitly trained for this task, more careful prompt engineering
may be required to make text queries closer in similarity to the report embeddings the model was
pre-trained on. In this section, we conduct a series of analyses to shed light on the validity of our
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Figure 4: t-SNE plots of image and text embeddings for each self-supervised method, labeled by
class. Image and text embeddings are additionally plotted in the same embedding space to highlight
the effect of in-domain pre-training.

original hypotheses. We also discuss the lack in quality and non-uniformity of the reports themselves,
and how this may have contributed to noisy pre-training.

First, we check whether class labels generally appear in the corresponding pathology reports. For
instance, for all reports categorized as "Adenomas and Adenocarcinomas", we check how many
contain the words "adenomas" or "adenocarcinomas". We find that out of all reports in the TCGA
dataset, 8.440% of reports contain a subset of the class label. We include a class-specific breakdown
in the Appendix A. Based on the low proportion for most classes, it suggests that using the class
labels as zero-shot queries may not reflect the text embeddings that we would expect to obtain from
corresponding reports. Thus, further prompt engineering strategies, such as using a description of a
particular disease rather than the disease name itself, could improve model performance.

However, while prompts are a potential source of error, it is still unclear whether or not the text
representations learned by the model have any semantic meaning to begin with. To gain clarity on
this matter, we perform t-SNE on the text embeddings outputted by each self-supervised method
to determine whether the model learns text representations with semantic meaning. In Path-ViT,
the most performant model on all classes, we observe distinct learned clusters. For instance, we
observe "gliomas" and "ductal and lobular neoplasms" clustered in 4. This supports the hypothesis
that text representations have semantic meaning based on disease type, thereby highlighting the
promise of this method for zero-shot tasks given more careful prompt engineering. We note that the
image embeddings show some semblance of clustering, but not to the degree of separation of the text
embeddings. Since text embeddings show more distinct clusters, this could reflect that longer training
on more data could allow image embeddings to cluster in a similar manner to the text embeddings.

Additionally, as a sanity check, we observe that Path-ViT image and text embeddings are the
closest amongst the methods, suggesting that self-supervised pretraining in the pathology domain
is contributing to the model’s ability to learn a joint embedding space. This supports the claim
that. Based on these analyses, a future experiment could involve more careful prompting in the
zero-shot setup, and more model pre-training on additional data for more epochs. Other ideas
include performing binary classification on each class rather than multi-class classification, using a
biomedically pre-trained text encoder to speed up learning, and using descriptions of the disease as a
query rather than the disease type itself.

6.3 Co-Attention

In our results, we observed that the embeddings obtained from co-attention did not improve per-
formance in both linear probe and zero-shot settings. To analyze these results further, we generate
language guided attention heatmaps to determine if any language-relevant patches were displayed.
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Furthermore, we conduct a case-study analysis where we visualize co-attention with different prompts
on a single slide to better understand if the co-attention maps reflect any noticeable semantic visual
patterns.

Full ReportAdenomas and adenocarcinomasDuctal and lobular neoplasms

Bottom-16 PatchesTop-16 Patches

a) 

b) c) Pathologist annotated 
“Ductal and lobular neoplasms”

Figure 5: a) Attention maps for different queries
on a patient with "Ductal and lobular neoplasms".
Each title represents the text query used to generate
the respective heatmap. b) Top-16 and bottom-16
patches taken from the attention map generated by
"Ductal and lobular neoplasms" query. Selected
to highlight any evident qualitative differences be-
tween patches with high attention vs. low atten-
tion. c) Sample images of “ductal and lobular neo-
plasms” expressed on a whole slide image anno-
tated by pathologist. Used as a baseline for what
we expect the model to attend to in a slide. Figure
taken from (Chaudhary et al., 2013)

In 5, we present co-attention heatmaps generated
from different queries on a single slide selected
from the "Ductal and lobular neoplasms" class.
We first examine the effect of different queries
including the class label, the full report, and an-
other class label not for the slide, to determine if
semantic regions of attention varied depending
on the query. We observe that regardless of the
prompt, there do not seem to be any visual clus-
ters of attention on the slide, which we would
expect to see since such neoplasms are generally
clustered in distinct regions (Chaudhary et al.,
2013). We test the full corresponding report as
a query as well to determine if the issue was a
result of distribution shift between queries and
the pathology reports, however the full report
co-attention map also does not highlight any
noticeable clusters. We perform a patch level
analysis in the Appendix A.1.

Based on the attention heatmaps, co-attention
outputs have likely not learned semantically
meaningful regions of interest. To help explain
this finding, we analyze the t-SNE plots from 4.
We hypothesize a potential reason that the model
did not learn is that the ImageNet pre-trained
image encoder was frozen and not in-domain,
so initial image representations were poor. How-
ever, the text encoder was also not in-domain, and is trying to learn from image embeddings that were
not representative of the original images. Since the image encoder was frozen, it could not update its
weights to reflect improved signal from the text encoder, making it difficult for the model to learn.

To address these issues, we can 1) unfreeze the image encoder that was frozen due to memory
constraints, and use Path-ViT instead of a ResNet-50, since Path-ViT image embeddings show
clustering on the t-SNE, 2) use the text encoder that was pretrained from Path-ViT so that it is in
domain, and 3) increase the amount of data the model was trained on and subselect higher quality
reports to eliminate noise.

7 Conclusion

We build a contrastive pre-trained image-language model that leverages unstructured pathology
reports to improve embedding quality of histopathology images. Our proposed method has the
potential to enable language-guided interpretability of model outputs via co-attention as well as
zero-shot classification on clinically relevant downstream tasks. We find that two modes of potential
improvement include zero-shot evaluation and co-attention pre-training. One limitation was the
lack of richness within our pathology reports; because class labels rarely appeared in a report, this
inhibited the model from learning to relate class labels to the corresponding pathology slides. Second,
computational contraints prevented the model from directly learning features from images. In future
works, we envision expanding the pre-training dataset to more slide-report pairings from TCGA, or
even pathology textbooks to provide a more salient substitute over pathology reports. Lastly, we
hope to apply our method to clinically relevant tasks such as survival analysis to influence patient
treatment decisions and personalize patient care.
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A Appendix

Class-wise percentages for class labels contained in reports. Adenomas and adenocarcinomas: 589 /
4373 = 13.466%
Cystic, mucinous, and serous neoplasms: 85 / 893 = 9.518%
Ductal and lobular neoplasms: 47 / 1204 = 3.904%
Gliomas: 0 / 1101 = 0%
Squamous cell neoplasms: 589 / 1339 = 43.988%

A.1 Co-attention Patch Analyses

For further analysis, we additionally sampled top-100 patches with the highest attention and the
bottom-100 patches with the lowest attention to determine if there were any noticeable qualitative
distribution differences. We observed that patches sampled from either high attention or low attention
appeared to have been sampled from a similar distribution, meaning that attention maps still have not
learned to differentiate patches with high and low semantic importance conditioned on the query. We
also compare to pathologist annotated images of "ductal and lobular neoplasms" as a baseline for
what we would expect relevant patches to look like. Since both high and low attention patches contain
images that appear similar to this ground truth, we can not conclude that high attention patches reflect
the actual regions of interest.
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Figure 6: Examples of a positive, false negative, and false positive, for both the Gliomas class and
Cystic, Mucinous, and Serous Neoplasms class
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