
Paper Trading From Sentiment Analysis on Twitter
and Reddit Posts
Stanford CS224N Custom Project

Eden Wang
Department of Computer Science

Stanford University
eyw@stanford.edu

Chinmaya Andukuri
Department of Computer Science

Stanford University
andukuri@stanford.edu

Shobha Dasari
Department of Computer Science

Stanford University
sdasari1@stanford.edu

Abstract

Many papers develop NLP neural-network models to predict stock movement based
on financial sentiment, typically using only Twitter data and predicting the output
of a single pre-selected stock price. We seek to extend the approach to determine
an intelligent portfolio strategy based on predictions for multiple stocks.
Our model takes as input clustered S-BERT embeddings (from Reddit and Twitter
posts) and historical stock mean vector and covariance matrix over the past d days
(from Yahoo Finance and NASDAQ data). Our model’s outputs are the mean
change in stock price and Cholesky factorization of the GT stock covariance matrix,
both of which are estimated from Yahoo Finance and NASDAQ data. We evaluated
three model architectures: a 4-layer linear model, a 6-layer linear model, and a
final model with a 1D convolution layer followed by three linear layers.
To evaluate our model, we use the yield on investment of the predicted optimized
investment spread to evaluate our paper trading predictions compared to the ground
truth investment yields calculated from historical prices. All model architectures
performed better than the baseline (uniform investment distribution across all
stocks), with the 1D Convolution model architecture having the best returns.

1 Key Information to include

• Mentor: None

• External Collaborators (if you have any): None

• Sharing project: None

2 Introduction

Researchers have been investigating the validity of the widely-accepted Efficient Market Hypothesis,
which states that stock market prices are driven by new information and follow a random-walk pattern.
Therefore, stock prices cannot be predicted, since new information constantly enters the market.
Solutions to this problem are of interest in financial engineering.

Investigating this hypothesis has become significantly easier in recent years given the accessibility
of both large pre-trained word-embedding models and APIs for large social media platforms. Many
papers develop NLP neural network models to predict stock movement based on financial sentiment

Stanford CS224N Natural Language Processing with Deep Learning

but fall short by focusing on predicting specific stock prices or the Dow Jones index. There is an
opportunity to extend current approaches to the problem, to devise intelligent portfolio management
strategies across multiple stocks, which is of interest in financial engineering.

Our goals are to investigate the potential applications of neural-network-based NLP methods to:

1. Evaluate and generalize community sentiment (in Reddit and Twitter comments) towards
the most popular stock tickers.

2. Understand the potential influence of public sentiment and community discussion on multiple
stocks’ price movement.

3. Develop an intelligent portfolio strategy based on predictions for multiple stock tickers.

3 Related Work

Many research papers in this space have common characteristics. They generate social media data
(such as Tweets) to either (1) perform general sentiment analysis under the assumption that general
sentiment correlates with public sentiment or (2) specifically investigate financial sentiment by
filtering for names of companies, their stock tickers, or discussion of financial current events in
general. In either case, the papers may investigate a few particular stocks or instead choose the Dow
Jones Industrial Average. Some papers use the pre-trained BERT model for word embeddings and
build sentiment classifiers on top, while others rely on pre-trained sentiment libraries like TextBlob.

A particularly important contribution from a paper of interest, Thormann et al. (2021), is the use
of both sentiment- and non-sentiment-based features to predict stock prices. Thormann et al. use
metadata like the frequency of mention of particular stock tickers, the length of those tweets, volatility
of the frequency of mentions, and more. These "content-unrelated features" provide additional
information beyond the discrete categorization of tweets into a small number of predefined mood
buckets, which made up the bulk if not all of the features in previous literature. The use of additional
features beyond text serves as motivation to incorporate a wider variety of inputs or output formats in
our research, including a covariance matrix discussed in the Approach section.

Thormann et al. (2021) also showed the convenience of an RNN framework for sequential data,
including stock prices. The architecture allows context to inform current output, which is useful in
incorporating previous stock information to the current state of the model. However, the paper only
pulls Twitter data, limiting the expression of sentiment to pull from to 140 character units. Other
public forums may provide a greater amount of rich text information, particularly those like Reddit
known for speculation and discussion of the financial market. The paper also limited its outputs to
a single stock price after choosing a stock of interest, and provided forecasts in pre-specified time
intervals ahead. Therefore, there is an opportunity to extend the approach to determine an intelligent
portfolio strategy based on predictions for multiple stocks.

4 Approach

To curate our dataset of Reddit comments and Tweets, we used open-source web scrapers to source
comments about four stock tickers: $META, $GOOGL, $MSFT, and $AAPL. We leveraged SBERT
to generate appropriate sentence representations of comments, then run k-means to generate repre-
sentative embeddings.

For a specific trading day, we define our model to predict the mean vector and covariance matrix of
the four discussed stocks, provided k sentence cluster embeddings for each stock. The model’s inputs
are the clustered sentence embeddings (computed by inputting comments into a distilBERT model
and performing k-means on output embeddings) concatenated with historical stock mean vector
and covariance matrix over the past d days (computed using data retrieved from Yahoo Finance and
NASDAQ APIs). The model’s outputs are the mean vector and Cholesky factorization of the GT
covariance (to ensure a PSD covariance output).

To generate our output, we performed the following sequence of steps:

1. Curated a scraped and processed dataset of comments, obtained by applying sentence
transformers to generate embeddings for each sentence.

2

2. We leveraged k-means clustering on the sentence embeddings for each stock and concate-
nated the cluster centers with historical stock data to form the input into our model.

3. We leveraged both processed embeddings and historical stock data to form the ground truth
for our predictions.

We evaluated three model architectures in this project; a 4-layer linear model, a 6-layer linear model,
and a model with both a 1D convolution layer and linear layers. Our baseline assumes a uniform
allocation with equal and identical returns for all assets. We compared this baseline model against
our SBERT-based models to evaluate overall trading performance.

5 Experiments

5.1 Data

For our dataset, we sourced our data from Reddit comments and Twitter tweets through open-source
web scraping tools. For Twitter Tweets, we used Social Networking Scrape (snscrape), a general
scraping library with a Twitter-specific sub-module (SNScrape). For Reddit comments, we used
PRAW (Python Reddit API Wrapper), a Python package that allows for simple access to Reddit’s
API (Documentation).

Using these tools, we generated 146,466 total Tweets and Reddit posts over a 90-day period. Our
scraping criteria were (1) comments that specifically mentioned the stock tickers $META, $GOOGL,
$MSFT, and $AAPL and (2) were within the date range between December 1, 2022 and February 28,
2023 (Finance; API). We then sampled data from each data to curate batched X,Y data to curate
train, dev, and test sets for our training flow. For days without tweets / comments, we replace the
mean embedding with a zero vector of the same shape.

For our training labels, we sourced data from publicly-available APIs from financial data providers
(NASDAQ and Yahoo Finance) to provide ground-truth mean and covariance data on the change
in daily stock prices from December 1, 2022 to February 28, 2023 (5 years) for the stock tickers
$META, $GOOGL, $MSFT, and $AAPL.

The model’s inputs are clustered sentence embeddings (generated by a SBERT embedder and
performing k-means), concatenated with historical stock percent change in price over the past three
days. Figure 1 shows the structure of the model input.

Figure 1: Model input structure, with clustered sentence embeddings and historical stock mean vector
and covariance matrix.

3

5.2 Evaluation method

We evaluated the performance of our model by reserving a test set and using our outputted means
and covariance matrix to optimize an automated paper trading setup. This setup leveraged convex
optimization to determine the ideal allocation of funds, using the yield on investment and risk-reward
tradeoff of the optimized investment spread to evaluate our paper trading predictions. We defined our
own performance metrics to be the following:

Yield on Investment: We used the mean daily yield on investment, which is the average daily yield
(i.e., the income returned on investment) expressed as a percentage over our withheld test set. This
yield is defined by predicting the change in value, then evaluating the resulting asset allocation against
the ground truth change in value. This indicates the effectiveness of our paper trading scheme to
predict an optimal investment portfolio.

Risk-Reward Tradeoff: We used the risk-reward tradeoff, which is the correlation between the level
of risk and the level of potential return on investment. To determine this metric, we vary a gamma
value, which is a risk tolerance parameter, determine risk-reward profiles with varying degrees of
variance.

Both metrics also account for a cash asset with zero risk and return, which allows our model to
opt out of trading on days with overall negative portfolio value. We defined our baseline to be a
uniform investment distribution across all stocks, which one can assume to be simply holding all
stocks and cash in equal reserve. We compared our different model architectures and the baseline
model performance against the yield on investment and risk-reward tradeoff of real-world stock trade
performance.

5.3 Experimental Details

In our model, the input X , for a particular date, consisted of clustered sentence embeddings and
vectors representing stock prices in the d days leading up to that date. The output is defined as
concatenated vector containing the predicted mean and a decomposed covariance matrix (which
ensures our resulting covariance is positive semi-definite), and is compared against labels Y , which
are ground-truth stock mean and covariance matrices which we manually calculate.

For each experiment, the task is defined as predicting average stock prices and pairwise covariances
for each of n companies, for day i, given (1) average embedding for a sample of online mentions for
companies from day i and (2) stock prices for days i− 1, i− 2, i− 3.

We trained and evaluated our model on our data with an AdamW optimizer and mean-squared error
loss (MSE) between the ground-truth mean and covariance matrices and the analogous matrices
generated by our model outputs for all examples in our test set. Specifically, for each test example
i, we summed the element-wise squared differences between the label and the output matrices to
generate a scalar squared error for i. We then took the mean of all these squared errors over all i.

We ran three experiments in this study, with varying model scales and architectures, which were
each compared to the baseline. In each experiment, we evaluated one of the three following model
architectures, as shown in Figure 2.

The hyperparameters used were the following:

n = 4 (number of stocks to predict)
k = 1 (number of k-means clusters)
d = 3 (number of days of historical data to use in training)
embed_dim = 768 (embedder embed size)
kernel_size = 3 (for 1D Conv layer)
p = 0.2 (dropout hyperparameter)
max_epochs = 100
lr = 1e-5
gamma = 0.875 (for learning rate scheduler)
betas = (0.9, 0.99) (for AdamW optimizer)
batch_size = 64

4

Figure 2: Model architectures evaluated in this study – Basic (4-layer linear model), 6LayerLinear
(6-layer linear model), and 1DConvolution (1D convolution layers and 3 linear layers).

5.4 Results

During training and validation, loss convergence was achieved early in both train and validation sets,
though training was continued for all 100 epochs and evaluation was performed with our last epoch.
The model performed well with low MSE losses, as shown in Figure 3.

Figure 3: Loss convergence in the basic model architecture.

When evaluated on our withheld test set, the different model architectures achieved the following
yield on investment metric values:

• Baseline (uniform investment distribution): 0.0059 mean daily returns
• Experiment 1 (4 linear layers): 0.0070 mean daily returns
• Experiment 2 (6 linear layers): 0.0078 mean daily returns
• Experiment 3 (1D convolution + 3 linear layers): 0.0081 mean daily returns

For our selected tickers, we believe our improvements over the baseline reflect our model’s ability to
learn from underlying stock sentiment and gauge stock volatility based on commercial sentiment.
Our baseline approach, assigning equal portfolio distribution to each asset, retrieves a mean return of
5.92e-3 and variance of 2.22e-4.

5

6 Analysis

Compared to the baseline, the Basic Stock Prediction model produced higher mean daily returns. The
6LinearLayer model produced higher returns than the Basic model, and the 1DConvolutionLayer
model produced the best returns of the three models. Figure 4 shows the annual returns on investment
from the different model architectures.

Figure 4: Mean yield on investment from the different model architectures.

In order to more rigorously analyze our model outputs, we perform several tests by varying the
risk-return parameter during portfolio optimization on our withheld test set. We vary a parameter γ
that correlates with relative risk aversion; higher values of γ correspond to greater risk aversion and
push our optimal portfolio distribution towards less volatile assets. These experimental results are
shown in Tables 1-3 below:

Gamma Mean Variance

0 0.00690 0.000328
1 0.00688 0.000325
2 0.00672 0.000315
3 0.00654 0.000313
4 0.00651 0.000313
5 0.00615 0.000303

Table 1: Exp. 1: 4 Linear Layer

Gamma Mean Variance

0 0.00758 0.000358
1 0.00746 0.000348
2 0.00716 0.000341
3 0.00678 0.000333
4 0.00647 0.000315
5 0.00614 0.000289

Table 2: Exp. 2: 6 Linear Layer

6

Gamma Mean Variance

0 0.00791 0.000358
1 0.00779 0.000345
2 0.00791 0.000352
3 0.00708 0.000330
4 0.00741 0.000319
5 0.00690 0.000293

Table 3: Exp. 3: 1D Conv + Linear

Note that linearly increasing parameter γ does not directly correlate with lower variance and mean;
our optimization leverages our predicted means and covariances, which is a proxy for the true
historical data. We observe that even with relatively high γ parameter values, our mean returns still
outperforms our baseline, though with higher variance.

Interestingly, Tables 1-3 above show that a decrease in γ results in an increase in mean return on our
test set in all cases except two (γ = 2 to γ = 1 and γ = 4 to γ = 3 in Table 3). Generally, returns
decreased in all model architectures as risk tolerance decreased, with the 6LayerLinear model having
the largest decrease in yield of all three model architectures, as shown in Figure 5 below.

Figure 5: Mean yield on investment from the different model architectures at varying risk tolerances
(higher gamma values mean lower risk tolerance).

It is unclear why this pattern emerged – one possibility is that the time period from which the data
was pulled favored high-risk investments. The same weights might perform differently given data
mere weeks after the existing data, in the face of the collapse of important financial institutions and
changing labor market conditions. While the performance on the held-out test set is promising, we
remain cautious and acknowledge that the model could benefit from a larger range of data from
varying market conditions and online sources.

7 Conclusion

Overall, our results indicate that general trading sentiment and comment features can often be a
predictor of stock performance. The results provide evidence against the Efficient Market Hypothesis:
NLP neural network-based models can achieve greater returns than uniform investment strategies
given only recent financial history and sentiment.

All model architectures performed better than the baseline (uniform investment distribution across
all stocks), with the 1D Convolution model architecture having the best mean yield on investment.
Our improvements over the baseline, even with a basic 4-layer linear model, reflect the emerging

7

paradigm that simple linear probes developed on top of large language models can yield powerful
models for downstream tasks. In our case, even relatively simple models (with 100-300k parameters)
are able to leverage latent information in our sentence embeddings to yield improvements in investing
outcomes.

One limitation of this study was the availability of efficient and well-documented open-source
scraping tools. As a result, we utilized weighted sampling necessary to combat sparsity in raw
data when generating training pairs. This study was also limited by the restriction of the dataset to
social media comments that directly mentioned the stock ticker name. The omission of social media
comments that mentioned the company’s name generally likely has implications for the performance
of the model.

Extensions of this study could include the following:

• Extending stock prediction model to a wider variety of companies or stock indices through
the generation of additional data.

• Expanding the search keywords through query engineering during the data collection process
to increase the scope of inputs to the model.

References
NASDAQ Historical Stock Data API. https://data.nasdaq.com/tools/api.

Python Reddit API Wrapper (PRAW) 7.7.0 Documentation. https://praw.readthedocs.io/en/stable/.

Yahoo Finance. https://finance.yahoo.com/.

SNScrape. https://github.com/JustAnotherArchivist/snscrape.

Marah-Lisanne Thormann, Jan Farchmin, Christoph Weisser, Rene-Marcel Kruse, Benjamin Säfken,
and Alexander Silbersdorff. 2021. Stock price predictions with lstm neural networks and twitter
sentiment. Statistics, Optimization Information Computing, 9(2):268–287.

8

	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental Details
	Results

	Analysis
	Conclusion

