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Abstract

Recipe generation from recipe titles only is currently unsolved, as state of the art
models require both recipe titles and ingredients lists for instruction generation
(Lee et al., 2020). This project investigates if a number of different architectures
such as Long Short-Term Memory (LSTM) encoder-decoders, LSTM decoders, or
Transformer-based decoders, can produce meaningful ingredient lists when given
recipe titles only. The recipe titles and generated ingredients are then passed into an
existing recipe instruction generation framework to produce cooking instructions
(Liu et al., 2022). Our best ingredient generation model yielded qualitatively
coherent ingredients lists with BLEU score 11.2 and F1 score 8.9, however, the
BLEU and ROUGE-L scores for the final recipe instructions with ingredients from
our selected transformer decode were 3.4 and 22.7. The baseline plug-and-play
recipe instruction generation framework, relying on RecipeGPT and ground truth
recipe title and ingredients demonstrates BLEU and ROUGE-L scores of 13.73
and 39.1 respectively for instruction generation. Since BLEU and ROUGE-L
performance are influenced by n-gram matching and order, further evaluation
would be required with metrics such as Semantic Textual Similarity (STS) to
evaluate the meaning of the produced ingredients in thee context of each recipe.

1 Key Information to include
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2 Introduction
Although natural language generation models have become increasingly fluent, it is still difficult
to control their output for specific qualities or content. Much work has been done on controlling
output with single specific attributes, for example sentiment (Ghosh et al., 2017), but controlling
multi-sentence text output with long-term content planning is still an unsolved problem. One task that
captures this specific need of long-term content planning over multiple sentences is recipe generation
with instructions (Marín et al., 2018). Existing recipe generation models require both a title and
ingredients list to provide recipe instructions (Liu et al., 2022). However, it is often easier for a user
to provide only a recipe title as input. This project explores designing an ingredients-list generating
model provided a recipe title to serve as functional inputs for recipe instruction generating models.

The work of Liu et al. (2022) presents one existing model that generates recipes by creating a stage
plan with DistilBERT using the combination of recipe title and ingredient inputs prior to recipe
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text generation with GPT-2. The stage planner DistilBERT is a Transformer model that is based on
BERT architecture and is designed to be more efficient. It achieves this by employing knowledge
distillation during pre-training, which reduces the size of a BERT model by 40 %. Additionally, the
model leverages the pre-training inductive biases of larger models through a triple loss that combines
language modeling, distillation, and cosine-distance losses.

The approaches we tried for generating ingredient lists from recipe titles included a number of
different architectures such as Long Short-Term Memory (LSTM) encoder-decoders, LSTM decoders,
and Transformer-based decoders. The recipe titles and produced ingredients are then passed into
an recipe instruction generation framework to produce cooking instructions (Liu et al., 2022). The
recipe generation the ingredients generated in this project resulted in a decrease in the BLEU and
ROUGE-L performance of the output recipes. The BLEU score decreased from 13.73 to 3.41 at best,
and the ROUGE-L decreased from 39.1 to 22.7 at best.

3 Related Work
To the best of our knowledge, there is not much existing academic literature on generating recipe
ingredients and instructions from recipe titles only. RecipeGPT can generate ingredients, but requires
both the recipe title and recipe instructions as input (Lee et al., 2020). The majority of existing
recipe generation models require both ingredient title and ingredients. For these methods, there is
much work on controlling recipe instruction generation. Some approaches have included modifying
the architecture of and then retraining pretrained language models, including CTRL (Keskar et al.,
2019), and POINTER (Zhang et al., 2020), which are effective but require a lot of computational
resources and task-specific labeled data (Liu et al., 2022). There are also finetuning methods such
as ParaPattern (Bostrom et al., 2021) and prefix-tuning (Li and Liang, 2021), which require less
computation and often perform adequately, but cannot enforce hard constraints on the outputs directly
(Liu et al., 2022). Finally, there are post-processing methods such as PPLM (Dathathri et al., 2019),
FUDGE (Yang and Klein, 2021), and neurologic decoding (Lu et al., 2020), which use a separate
guiding module to control output. These methods require the least computational resources, and are
flexible in design because the guidance module is separate from the pretrained language model (Liu
et al., 2022). In our paper, we utilize the plug and play recipe generation method (Liu et al., 2022)
because it achieves state of the art performance and is open sourced. We also focus on experimenting
with different model architectures, training methods, and simple decoding methods (top-k, top-p,
beam search) for ingredient generation.

4 Approach
Our very first approach began as an encoder-decoder LSTM with Luong multiplicative attention
(Luong et al., 2015) trained as a machine translation task between recipe title and recipe ingredients.
However, we quickly re-architected our model as the outputs were largely nonsensical after training
over several epochs. We transitioned to using next-token prediction with a two-pronged approach:
LSTM and transformer models.

4.1 Text Generation Task Architecture

4.1.1 LSTM

For the LSTMs, we experimented with three separate models: Two LSTM decoder models with block
size 16 and 64 and one LSTM encoder-decoder model with Luong multiplicative attention as a single
linear layer in order to target ingredient outputs based on the most substantive aspects of the recipe
title. For all models we optimized cross-entropy loss:

L(y, ŷ) = −
N∑
i=1

yi log(ŷi) (1)

The decoder models comprised of an embedding layer of size 1024, 2 hidden layer LSTM with a
hidden state size of 1024 and a dropout rate of 0.5. The last fully connected layer yielded a distribution
over the entire vocabulary of size 29,058.

The encoder-decoder model mirrored the same embeddings, however, they were fed into a 2 hidden
layer LSTM encoder with a fully connected layer. The decoder featured a block size of 64, a single
attention layer with block size of 16, dropout layer of 0.5 and a final projection layer producing
distributions for a sequence length of 64.
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4.1.2 Transformer

The second architecture investigated was a transformer-based text generation model. For the imple-
mentation of the model, we used the GPT-like implementation provided in the assignment 5 model
(Hewitt and Khurana). In this model, the input tokens are encoded using both a word-token and
position embedding. Then, the embedded inputs pass through a sequence of transformer blocks. Each
transformer block consists of layer normalization of the input, followed by a self-attention layer, layer
normalization, and finally a multi-layer perceptron block consisting of two linear layers with a RELU
activation function applied after the first linear layer. All connections are residual connections within
and between the transformer blocks. The final output head is a linear projection from the embedding
size to the vocabulary size, which is fed into softmax to produce a probability distribution over the
possible output tokens in the entire vocabulary.

Figure 1: Diagram of the transformer architecture ((Hewitt and Khurana)) that we used, with
inputs/outputs shown for our finetuning setup.

4.1.3 Training Approaches

4.2 LSTM

The LSTMs decoders were trained on next-token prediction for block sizes of 16 and 64. The titles
were suffixed with a special token <title-end> and individual ingredients were split by <ingr-end>,
which qualitatively improved outputs. All examples were joined together and chunked into sequences
of 16 and 64.

Input: ["<sos >, "Teriyaki", "chicken", ..., "with", "miso"],
Target: [" bokchoy]

Input: ["<title -end >", "3", "chicken", "breasts", "<ingr -end >",
..., "1", "teaspoon"],

Target: [" paprika "]

The encoder-decoder model with attention, however, set input length equal to target length and tokens
in the target were merely shifted by 1 (see transformer below). Notably, the encoder-decoder model
relied on teacher-forcing to selectively provide the decoder the target token from t− 1, rather than
the predicted token, with a probability 0.5 during training.

4.3 Transformer

We trained the transformer models for next-token prediction using two different methods. In the first
method (Transformer A), we constructed a custom dataset of input and target token sequences using
the Recipes1M+ dataset. Each example corresponded to one recipe, and the input consisted of the
tokenized recipe title, followed by the tokenized ingredients. An example is in the appendix. In the
second method (Transformers B and C), we pretrained the model on a span corruption objective,
similar to what was used in assignment 5 (Hewitt and Khurana). Details and an example are in the
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appendix. For finetuning, the input was the tokenized sequence of the recipe title and ingredients,
and the target was the same sequence shifted by one, with the title tokens replaced by pad tokens. An
example below:

Input: [oprah ’ s pomegranate martini <start > 12 cups pomegranate
juice <ingr_end > 2 ounces absolute citrus vodka <ingr_end > ...
<end > <pad > ...]

Target: [<pad > <pad > <pad > <pad > <start > 12 cups pomegranate juice
<ingr_end > 2 ounces absolute citrus vodka <ingr_end > ... <end

> <pad > <pad > ...]

4.3.1 Decoding Approaches for Ingredient Prediction as Text Generation

When decoding, we prompted both the LSTM and transformer models with the recipe title only,
and then constructed the generated ingredients list with top-k sampling, top-p sampling, and both
combined. For the transformer, we also tried beam search from the model’s output distribution.
When combining top-k and top-p decoding, we select the top k results, and then sample from the
results within the top-p percentile of the reduced set. To find the best-performing hyperparameters
for decoding, we conducted a grid search across top-k values (1, 3, 5), top-p values (0.3, 0.9), and
temperatures (0.8, 0.9, 1). For beam search, we tried three different beam sizes (2, 5, 10). We then
selected the top-performing methods for further evaluation using F1 and BLEU scores, along with
qualitative human review of the model outputs.

4.4 Baseline Recipe Plug and Play

Since our ultimate goal is to feed ingredient predictions into the plug-and-play framework, we ran
a baseline experiment based on an established recipe generation model https://github.com/
williamLyh/RecipeWithPlans using the existing dataset title and ingredients rather than our own
(Liu et al., 2022). This uses the DistilBERT model as the planning stage classifier to label individual
recipe instruction sentences as a particular stage ("Pre-processing", "Mixing", "Cooking", etc) (Sanh
et al., 2019). Then it uses a BART model, a denoising auto-encoder for pretraining sequence-to-
sequence models, Lewis et al. (2019) to consume a recipe title and ingredients list and produce an
outline of recipe stages. Finally, a GPT-2 model, fine-tuned on Recipe1M+ dataset (Marín et al.,
2018) populates the recipe with natural language cooking instructions conditioned on the stage (Liu
et al., 2022).

Figure 2: Baseline Architecture for Recipe Generation (Liu et al., 2022)
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5 Experiments
5.1 Data

The Recipe1M+ dataset has served as a seminal source of data for projects within this domain (Marín
et al., 2018). The Recipe1M+ dataset is the primary dataset for training the ingredient and recipe
generation tasks in this project. The dataset includes over 1 million recipes, constituted of lists of
ingredients and sequential cooking instructions. Each data entry, as depicted in Appendix A, provides
ingredients with quantities, a source url, recipe title, and instructions. The dataset is split into three
partitions which we used accordingly: train (720,639 examples), validation (155,036 examples), test
(154,045 examples).

5.1.1 Data Preprocessing

We used only the recipe title and ingredient fields of the Recipes1M dataset. We cleaned the dataset
by splitting quantities from the measurements and ingredients and removing extraneous descriptive
text between parentheses (for example, "15g chicken (see note below)" becomes "15 g chicken" after
cleaning). We then tokenized the dataset on a word level and then constructed a vocabulary using all
of the tokenized recipe titles and ingredients with a minimum frequency of 5. Special characters that
we included are described in the Training approaches section and shown within the input/target pair
examples. The total vocabulary size was 29058.

5.2 Evaluation method

5.2.1 Ingredient Generation Evaluation

For ingredient evaluation, we used F1 scores and BLEU scores with a maximum n-gram length of 3
and equal weighting across all ngram lengths. When calculating scores, we removed special tokens
(such as padding, start, end, and ingredient delimiting tokens). We choose to measure BLEU scores
with a max n-gram length of 3 because individual ingredient entries are commonly 3 tokens long (eg
"3 cups flour"), and as a way to measure more complex lexical similarity than token-level F1 scores.
F1 scores are useful as a completely order-agnostic measurement.

5.2.2 Recipe Generation Evaluation

Quantitative evaluation of the plug-and-play recipe generation includes the BLEU and ROUGE-L
scores. Qualitatively, the recipes are read to determine their fluency, quality, completeness, and
coverage of input ingredients.

5.3 Experimental details

5.4 LSTM

To evaluate the ingredient generation for the LSTM, we used the model fine-tuned on next-token
prediction to generate ingredients based on title input. Two models were trained on batch sizes of 128,
block sizes of 16 and 64, respectively, so for a given title, the model sampled until a max length of
size 184 to capture both title and ingredients. All model variants had learning rate (1e− 4), dropout
rate (0.5), gradient norm clipping (max norm 1), and the Adam optimizer. Both models were trained
on 100,000 examples using the cross-entropy loss between predicted ingredients and ground-truth
items for 22 and 17 epochs, respectively, at a learning rate of 0.001. The attention model’s loss,
however, converged by the third epoch using a repetition penalty γ of 0.1. Experiments were run for
both top-k (1, 3, 5) and top-p (0.3, 0.9) decoding with temperature sampling (0.8, 0.9, 1).

5.5 Transformer

We used a block size of 184 for the transformer, truncating the recipe title to 30 tokens and target
ingredients to 150 tokens in each example, inclusive of special delimiting tokens; these values were
selected to fit most of the examples in the dataset without increasing the computational complexity of
the transformer excessively. The remainder of the block accomodates the additional special tokens
that we used to indicate the start of the ingredients list, the end of the ingredients list, and mask
tokens for the pretraining objective. Examples were padded to the block length, if shorter than the
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block length. We used AdamW as the optimizer and a cross-entropy loss. In general, we stopped
training once the training loss had converged.

We trained three different Transformer models: Transformer A, Transformer B, and Transformer C.
A table of their hyperparameters is below.

Model layers attn heads embed size learning rate pretrain epochs finetune epochs

A 4 8 256 3e− 4 None 1
B 4 8 256 3e− 4 1 1

10
C 8 8 1024 4.5e− 4 1 1

Table 1: Transformer model configurations and training hyperparameters. For transformers A and B,
we used default hyperparameters from assignment 5 (Hewitt and Khurana). For Transformer C, we
conducted a hyperparameter search over the learning rate and dropout rates applied at the embedding
layer, attention outputs, and within transformer layers, but found the original dropout rates (0.1) to be

best.

5.6 Results

5.6.1 LSTM Ingredient Generation

Model config and training # Decoding parameters F1 BLEU

LSTM decoder block size 16 k = 1 10.93 5.34
LSTM decoder block size 64 k = 1 11.16 5.96
LSTM decoder block size 64 k = 1 and p = 0.3 11.31 6.17
LSTM decoder block size 64 k = 1 and p = 0.3 and t = 0.9 11.67 6.40
LSTM with attention and title k = 5 and p = 0.3 and t = 0.9 12.4 7.2

Table 2: Results of training for the best decoding hyperparameters, evaluated on the test set.

The LSTM decoders performed worst of all approaches. The block size of 16 performed worse than
that of block size 64. The task itself requires sequences that are often longer than 64, therefore we
expected that a smaller sequence size would lead the model to stray further from accurate ingredient
predictions. Results may improve with even larger sequence lengths, however, given the limitations of
LSTMs and long sequences, we saved additional experimentation for the transformer, which limited
our ability to test this hypothesis. Decoding with top p at p = 0.3 and scaling temperature to 0.9
did improve BLEU scores ≈ 1, however, led to diminishing returns by p = 0.9. While we ran top-k
decoding for both LSTM decoders, it only yielded largely incoherent recipes at a BLEU score of 0.
Perhaps with increased number of examples this may have improved since we limited our training to
100,000 examples.

5.6.2 Transformer Ingredient Generation

Results for transformer ingredient generation show that increasing model size and using masked
pretraining, together, increase model performance. We did not find that our pretraining objective, on
its own, increased performance, and perhaps actually made it decrease. This might be because our
pretraining objective was very similar to the finetuning objective and used the same data; it did not
introduce new data sources, while optimizing the model for a different task than the final objective.
Future work may include a pretraining objective that includes recipe instruction text to allow for
learning richer token embeddings for ingredients. Increasing model size may have helped the model
learn more nuanced ingredient embedding representations, and also build more complex relationships
between different ingredients and recipe titles. The consistent performance across train, validation,
and test sets indicate that the model is not overfit, and further increasing model size/complexity may
bring greater gains in performance. During hyperparameter tuning for Transformer C we also found
that the lowest amounts of regularization we tested brought the best training results. The BLEU
scores are low for all models, which is partially expected because ingredients lists should be evaluated
as an order-agnostic list of ingredients, and the F1 scores are low as well, likely because the tokens
used may be synonymous but not identical (eg: "teaspoons" vs "tsp.").
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Transformer Decoding params Test Val Train

k p t F1 BLEU F1 BLEU F1 BLEU
A 10 0.3 0.8 30.6 9.3 30.3 9.0 30.1 9.1
B 3 0.3 0.9 29.9 8.9 29.2 8.9 29.9 9.0
C 8 0.9 0.8 34.7 11.2 34.7 11.1 34.2 10.8

Table 3: Results of training for the best decoding hyperparameters with the transformer models,
evaluated on 1000 examples from each of the training, validation, and tests sets. Beam search did not

perform as well as top-k and top-p decoding methods, so we did not evaluate beam search as a
decoding method further but some sample results are included in the appendix.

5.6.3 Quantitative Results for Recipe Generation

The findings indicate that the performance of recipe generation models, as measured by both BLEU
and ROUGE-L scores, decrease om 13.73 to 3.41 and 39.1 to 22.7 at best, respectively, when
generated ingredients are employed. This outcome was anticipated due to the fundamental differences
in the order and phrasing of the ingredients. The decrease in performance may be attributable to
the inaccuracies associated with the ingredient generation process, such as missing ingredients or
varied quantities. Additionally, the performance decline may also be attributed to the limitations of
the evaluation metrics employed. Specifically, the reliance of BLEU score on n-gram overlap and
ROUGE-L score on word order may adversely impact the performance of recipe generation models
when generated ingredients are used.

The expected recipe outputs adhere to the order of Recipe1M+ ingredients, which may not be
preserved in the ingredient generation pipelines. While the semantic meaning of the ingredients
may remain intact, the exact format and order may vary, leading to a degradation in quantitative
recipe generation performance. These findings underscore the importance of carefully considering
the evaluation metrics employed and the specific characteristics of the generated ingredients when
assessing the performance of recipe generation models.

Ingredient Generating Model Decoding Parameters BLEU ROUGE-L

Baseline Recipe1M+ Ingredients N/A 13.73 39.1
Transformer B Ingredient Generation k = 3 p = 0.3 t = 0.9 3.41 22.7
Transformer B Ingredient Generation k = 5 p = 0.9 t = 0.9 3.20 22.6

Table 4: BLEU and ROUGE-L for Recipe Generation

6 Analysis
6.1 LSTM Ingredient Generation

Below is an example of ingredients generated by the LSTM decoder, block size 64 with p = 0.3 and
t = 0.9.

Output: noodle if desired | 2 cans beans , drained well | 1
tablespoon tomato paste | 2 cups low sodium chicken broth | 5
ounce large spanish onions | 3 tablespoons chopped jalepeno
peppper | 1 cup arugula , roughly chopped | 1 cup long grain
milk , ...

Target: 1 cup lentils | 12 onion | 1 tomatoes | 2 medium carrots |
2 stalks celery | 3 tablespoons extra virgin olive oil , or 3

tablespoons vegetable oil , 1 teaspoon garlic powder , 1
teaspoon fresh ginger root juice | 4 cups vegetable broth | 3
cups water , ...

7



With LSTM decoders of size 16 and 64 (even when decoding with top p = 0.3), the ingredients grow
less coherent as predictions move further away from the title. This accords with the architecture of
the model: though LSTMs maintain longer memory than RNNs they still underperform with longer
sequences. The title becomes less relevant as the list of ingredients grows as it’s moving further
away from the beginning of the input. When decoding with top-k, the results were still coherent food
items but didn’t accord with each other or the title. As the example in the appendix shows, straying
from the most-likely token (k = 3) leads to more variable ingredients that also stray too far from the
title to produce meaningful results and lead to more repetition, which is reflected by a BLEU score
of 0. The encoder-decoder did not fare much better, achieving just a ≈ 1 point increase in BLEU
score. This is likely due to the block size limitation that the model did not have access to the title
after token 64. When decoding by k greater than 1, the outputs grew far worse and both models lost
the <ingr-end> tokenization to separate out ingredients, given the lack of thematic conciseness in
other experimentations, it made sense that adding variation worsened outcomes. Ultimately, we don’t
believe LSTMs are the best architecture for this task given their sequence length limitations.

6.2 Transformer Ingredient generation

Subjectively, we find that our transformer models are capable of producing ingredients that are
valid food items and approximately related to the recipe title most of the time and outperform
LSTMs. The best model (Transformer C) is often able to cover ingredients mentioned in the title and
presents common ingredient pairings together. For example, below is one sample recipe title, and
predicted/target pairs in which the model outputted realistic results (formatted for readability).
Input: butternut squash soup or bisque (roasting method)
Output: 1 whole butternut squash , peeled , seeded , and diced | 1 whole

onion , peeled and diced | 1/2 teaspoons salt | 1/2 teaspoons black
pepper | 1/2 teaspoons cinnamon | 1 cup water | 1 cup chicken

broth or bouillon | 1/4 cups heavy cream or half -and -half | 1/4
cups butter

Target: 1 small butternut squash , peeled , diced | 1 medium onion ,
large dice | 1 tablespoon olive oil | 1 apple , skinned , large dice
| 48 ounces chicken broth | 1 cup half -and -half | 2 tablespoons

parsley , fresh , chopped | 1 tablespoon thyme , fresh , chopped |
crouton | sour cream

We found that our transformer models all made similar errors, which were common across all three
different model configurations and hyperparameters for decoding methods. These are detailed in
table 5. In summary, some of the errors are due to dataset errors, which could be resolved by
cleaning the data to remove web scraping errors such as advertisement text and extraneous numerical
quantities. Ingredient relevance and coverage based on the title could be improved by decreasing k, p,
t and increasing model size; however there was a tradeoff where decreasing k, p, and t seemed to
increase frequency of ingredient repetition. Increasing beam size increased F1 and BLEU scores (see
Appendix), and decreased ingredient repetition, suggesting that with a large-enough beam size, results
could further be improved. However, because beam search is slow and computationally expensive
with large beam size compared to sampling, we did not experiment with larger beam sizes than 10.
There was no combination of hyperparameters we explored that completely eliminated the repetition
problem, so we think that this is something inherent to the model architecture, training method, and
decoding strategies that we used.
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Error Example Explanation/Analysis

Repeated Ingredi-
ents

Output: [1 tsp . dried
thyme | 1 tsp . dried
thyme | 1 tsp . dried
thyme ...]

Increasing k, p, and t values and model size
reduced repetition.

Two sequential
quantities

Output: [1 12 cups all-
purpose flour ..]

Web scraping errors (present in Recipes1M+
dataset).

Inappropriate
quantities

Output: [14 cup olive
oil | 2 lbs skinless
chicken pieces]

Some of this is inherent to the problem setup
because recipe titles do not include a quanti-
fier for the number of portions. However the
ingredient ratios are still incorrect; this is a
limitation of the approach we used.

Predicting adver-
tisement text

Output: [1 medium
onion , chopped king
sooper ’ s 1 lb for $0 .
99 thru 02/09 ...]

Web scraping errors (present in Recipes1M+
dataset).

Missing ingredi-
ents mentioned in
title

Input: [leek , potato
, and bacon casserole]
Output does not in-
clude leek or bacon.

Reducing k, p, and t (temperature) and increas-
ing model size reduced these errors.

Inappropriate in-
gredients

Input: [spanish mus-
sels vinaigrette] Out-
put: [1/2 cup lager-
style pickles...]

Reducing k, p, and t (temperature) and increas-
ing model size greatly reduced these errors.

Table 5: Analysis of some errors common to transformer models.

6.3 Analysis for Plug and Play Recipe Generation

The recipe generation was compared qualitatively for the "Steak Asparagus Wraps" recipe created
using the Recipe1M+ baseline ingredients and transformer generated ingredients. Table 4 depicts
the expected recipe from the Recipe1M+ dataset. The transformer model produced the ingredient
list below provided the recipe title. The ingredients from the transformer are missing the steak and
marinade, and added an onion. The corresponding recipe generated below provides reasonable steps
to prepare the ingredients provided, suggesting the generated ingredients provide a reasonable format
for the recipe generation to provide interpretable recipes. However, the absence of key ingredient
presents a weakness in the current transformer ingredient outputs.

Recipe
Title

Ingredients
(Transformer)

Ingredient
Source

Generated Results

Steak
and As-
paragus
Wraps

2 cups sliced fresh
asparagus , trimmed
and cut into 1-inch
pieces
1 lb . asparagus , ends
trimmed , cut into
1-inch pieces
1 cup sliced fresh
asparagus , trimmed
and cut into 1/2-inch
pieces
1 cup chopped onion
1/2 cup kraft classic
ranch dressing ,
divided
large flour tortillas ,
cut into 1/2-inch cubes

Recipe1M+ Pour marinade over steak in resealable plas-
tic bag. Seal bag; turn to evenly coat steak
with dressing. Refrigerate at least 30 min. to
marinate. Meanwhile, preheat grill to medium
heat. Remove steak from marinade; discard
bag and marinade. Grill steak 13 to 16 min.
or until medium doneness (160F), turning oc-
casionally. Meanwhile, steam asparagus 8 to
10 min. or until crisp-tender. Cut steak into
thin strips. Place 1 to 2 steak strips and about
2 asparagus spears on each tortilla strip
roll up. Secure with frilled toothpicks or red
bell pepper ties, if desired. Serve warm.

Transformer
Generator

Cook and stir asparagus and asparagus in 1/4
cup dressing in large skillet on medium heat
5 to 7 min. or until crisp-tender. Add onions;
cook and stir 2 min. Stir in 1/4 cup dressing;
cook and stir 1 min. Add asparagus mixture;
mix lightly. Spoon onto tortillas; roll up.
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Table 6: Analysis of Recipe Generation Example

7 Conclusion
We find that generating recipe ingredients and recipe instructions given a title only is feasible using
LSTM and Transformer-based text generation models, however more work is needed to achieve
ingredient generation from recipe titles that are consistently realistic, cover the ingredients relevant
to the title, are not repetitive, and have correct quantities.

Although we did some regex cleaning of the dataset, we found that some web scraping errors were
prevalent enough to make it to the final model. These included advertisement text that would show
up in predictions, and extraneous numerical quantities for the ingredients. In the future, it would be
good to clean the data to remove these errors. We would also want to strip out titles that don’t provide
meaningful direction (i.e. "Chocolate bonanza"). These models would also benefit from pre-trained
recipe word embeddings that have a rich representation of which foods relate well together.

The LSTM would benefit from a more complex attention scheme, like forcing increased attention
on the title or removing ingredient quantities in order to make examples more concise given the
constraint of a small sequence size.

Additionally, the transformer training pre-training and fine-tuning methods only exposed the model to
the database examples, while at test time, the model is making predictions based on model-generated
examples. This is a significant distribution shift especially when p, k, t are large. It could be
beneficial to try training the model on model-generated samples occasionally during training to
address this. A more structured complex decoding method may be worth exploring in the future
as well. We could train a model to predict a high-level content plan of ingredients based on the
recipe title (including number of ingredient and type of ingredients), and then use another, separate
ingredient classification model to re-rank the transformer generation model’s outputs conditioned on
the ingredient content plan. It would be similar to the modular controlled generation method used in
Plug and Play article (Liu et al., 2022), which the authors noted as reducing the frequency of repeated
instructions compared to other decoding approaches. To address the inappropriate quantity errors,
it would be interesting to see if we can train on data labeled with desired portions, forgo predicting
quantities altogether, or assess if the predicted ingredient quantity ratios are correct. Finally, a better
evaluation metric for recipe ingredient generation would be useful, as neither BLEU score nor F1
score fully capture the semi-order-agnostic nature of ingredient lists.

The quantitative evaluation of recipe generation using BLEU score relies heavily on n-gram matching,
which may not always reflect the quality of the generated text. It also doesn’t capture more complex
aspects of language such as coherence, overall meaning, and fluency. ROUGE-L is designed to be
more robust to differences in word order and vocabulary; however, it is still limited by its reliance on
lexical overlap. Investigating a Semantic Textual Similarity (STS) evaluation metric may be more
indicative of true recipe performance regardless of differences in word choice, syntax, and other
linguistic features from the Recipe1M+ dataset. It measures the degree of similarity between two
tests based on semantic meaning. This would also help remedy the dependence on ingredient order,
since erring from the ground-truth order does not in fact indicate a degredation in quality, however
lowers n-gram accuracy, which is reflected by our model’s lower BLEU scores.

8 Contributions
Justine worked on the data parsing and pipelines for all models and implemented all LSTM variations
and worked on decoding methods. Ben worked on implementing the recipe generation pipeline
and conducting recipe generation evaluation experiments with the ingredient generation models
established by Kerrie and Justine. The experiments involved generating stage plans for the ingredient
sets, processing ingredient inputs, and evaluating recipe outputs. Kerrie worked on implementing,
evaluating, and hyperparameter searching for the initial LSTM with attention NMT approach and the
transformer-based ingredient generation approaches. All team members contributed to researching +
discussing approaches and writing up the final report and poster.
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A Appendix: A Single Recipe1M+ Dataset Entry
{" ingredients ": [{" text": "6 ounces penne"}, {"text": "2 cups Beechers

Flagship Cheese Sauce (recipe follows)"}, {"text": "1 ounce
Cheddar , grated (1/4 cup)"}, {"text": "1 ounce Gruyere cheese ,
grated (1/4 cup)"}, {"text": "1/4 to 1/2 teaspoon chipotle chili
powder (see Note)"}, {"text": "1/4 cup (1/2 stick) unsalted butter
"}, {"text": "1/3 cup all -purpose flour"}, {"text": "3 cups milk
"}, {"text": "14 ounces semihard cheese (page 23), grated (about 3
1/2 cups)"}, {"text": "2 ounces semisoft cheese (page 23), grated
(1/2 cup)"}, {"text": "1/2 teaspoon kosher salt"}, {"text": "1/4

to 1/2 teaspoon chipotle chili powder"}, {"text": "1/8 teaspoon
garlic powder"}, {"text": "( makes about 4 cups)"}], "url": "http
:// www.epicurious.com/recipes/food/views/-world -s-best -mac -and -
cheese -387747" , "partition ": "train", "title ": "Worlds Best Mac
and Cheese", "id": "000018 c8a5", "instructions ": [{" text": "
Preheat the oven to 350 F. Butter or oil an 8-inch baking dish."},
{"text": "Cook the penne 2 minutes less than package directions

."}, {"text": "(It will finish cooking in the oven.)"}, {"text": "
Rinse the pasta in cold water and set aside ."}, {"text": "Combine
the cooked pasta and the sauce in a medium bowl and mix carefully
but thoroughly ."}, {"text": "Scrape the pasta into the prepared
baking dish."}, {"text": "Sprinkle the top with the cheeses and
then the chili powder ."}, {"text": "Bake , uncovered , for 20
minutes ."}, {"text": "Let the mac and cheese sit for 5 minutes
before serving ."}, {"text": "Melt the butter in a heavy -bottomed
saucepan over medium heat and whisk in the flour ."}, {"text": "
Continue whisking and cooking for 2 minutes ."}, {"text": "Slowly
add the milk , whisking constantly ."}, {"text": "Cook until the
sauce thickens , about 10 minutes , stirring frequently ."}, {"text":
"Remove from the heat."}, {"text": "Add the cheeses , salt , chili

powder , and garlic powder ."}, {"text": "Stir until the cheese is
melted and all ingredients are incorporated , about 3 minutes ."},
{"text": "Use immediately , or refrigerate for up to 3 days."}, {"
text": "This sauce reheats nicely on the stove in a saucepan over
low heat."}, {"text": "Stir frequently so the sauce doesnt scorch
."}, {"text": "This recipe can be assembled before baking and
frozen for up to 3 monthsjust be sure to use a freezer -to -oven pan
and increase the baking time to 50 minutes ."}, {"text": "One -half
teaspoon of chipotle chili powder makes a spicy mac , so make sure
your family and friends can handle it!"}, {"text": "The

proportion of pasta to cheese sauce is crucial to the success of
the dish."}, {"text": "It will look like a lot of sauce for the
pasta , but some of the liquid will be absorbed ."}

B Appendix: B Transformer training input and output pairs
Here is one sample input-target pair use for training Transfomer A, untokenized for readability. We
used special tokens "→" and "←" for delimiting the start and end of ingredients, a "<recipe_start>"
token, and "<start>" and "<end>" tokens to indicate the start and end of the ingredients list.

Input: [<recipe_start> saskatoon berry jam <start> → 4 cups saskatoon berries ,
crushed ←→ 4 tablespoons lemon juice ← ... <end> <pad> <pad>...]

Target: [saskatoon berry jam <start> → 4 cups saskatoon berries , crushed ←→ 4
tablespoons lemon juice ← ... <end> <pad> <pad> <pad> ...]

For pretraining Transformers B and C, we used a span corruption objective with masking. Similar
to assignment 5 (Hewitt and Khurana), We selected the masked portion with uniformly randomly
selected start locations and lengths between 1

4 and 3
4 of the total tokenized title and ingredient length.

The masked portion is replaced with the "<mask>" token, and after the end of the original input
sequence, we append the <mask> token again, followed by the masked portion of the sequence. The
target is the input shifted by one token to the left. An example is below.

Input: [spiced rice <start> 1 tbsp vegetable oil <ingr_end> 1 <mask> cloves <
ingr_end> ... <end> <mask> clove garlic , smashed <ingr_end> 2 <pad> ...]
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Target: [rice <start> 1 tbsp vegetable oil <ingr_end> 1 <mask> cloves <ingr_end>
... <end> <mask> clove garlic , smashed <ingr_end> 2 <pad> <pad> ...]

C Appendix: C Beam Search Hyperparameter tuning results
For Beam Search we used an implementation adapted from that used in assignment 4 (Yin et al.)

Figure 3: Transformer B beam search hyperparameter tuning results

Figure 4: Transformer C beam search hyperparameter tuning results
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D Appendix: D Additional Recipe Generation Comparisons
Recipe Title Ingredients Ingredient Source Generate Results

Lentils Vegetable
Soup

1 cup lentils

1 onion , chopped

1 cup chopped onion

12 cup chopped carrot

1 tablespoon olive oil

1 tablespoon minced
garlic

2 cups vegetable stock

1 teaspoon dried
oregano

1 teaspoon dried
thyme

1 teaspoon dried
thyme

12 cup chopped celery

12 cup chopped carrot

1 cup chopped
zucchini

12 teaspoon salt

14 teaspoon pepper

Recipe1M+ Saute the onions, carrots,
celery with olive oil by
gradually adding half cup
of water until soft. Add
to the saute onions, diced
tomatoes, hot red pepper
powder and stir for five min-
utes; add 3 cups of wa-
ter, leave it to boil. Rinse
the lentils with cold wa-
ter. To the boiling sauce,
add lentils, ginger juice,
white pepper and two cups
of vegetable broth; reduce
the heat to medium; cook
for 30 minutes or until the
lentils are very soft. Using
a cooking stick, puree the
soup in its pot or transfer
to a food processor, blend
the lentils until smooth; and
bring it back to its saucepan.
Add the rest of the veg-
etable broth or water as
need; then in a lower heat
stir the soup for 10 minutes.
Add salt and black pepper.
Remove from heat. Garnish
it with fresh parsley, basil
or cheese of your choice.
Serve it hot or cold. Keep it
in the fridge.

Transformer in a large pot, bring lentils,
lentils, onion, salt, and car-
rot to a boil, stirring occa-
sionally. reduce heat to low
and simmer for 20 minutes.
in a large saucepan, saute
garlic in olive oil until ten-
der. add vegetable stock,
oregano, thyme, celery, car-
rots, zucchini, salt, and pep-
per. bring to boil, reduce
heat to low, and simmer for
20 minutes. add lentils and
simmer for 10 minutes.

E Appendix: E LSTM analysis
Full example of Vegetable Lentil Soup:

Top-k decoding k = 3:
[’dry’, ’white’, ’wine’, ’<ingr_end>’, ’1’, ’tablespoon’, ’chopped’, ’fresh’, ’flat-

leaf’, ’parsley’, ’<ingr_end>’, ’1’, ’tablespoon’, ’thinly-sliced’, ’fresh’, ’
basil’, ’leaf’, ’<ingr_end>’, ’salt’, ’,’, ’to’, ’taste’, ’<ingr_end>’, ’3’, ’
teaspoons’, ’freshly’, ’squeezed’, ’lemon’, ’juice’, ’<ingr_end>’, ’12’, ’cup’,
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’heavy’, ’cream’, ’<ingr_end>’, ’1’, ’tablespoon’, ’chopped’, ’fresh’, ’
tarragon’, ’<ingr_end>’, ’2’, ’tablespoons’, ’butter’, ’<ingr_end>’, ’available
’, ’chives’, ’,’, ’for’, ’topping’, ’<ingr_end>’, ’mini’, ’marshmallows’, ’,’, ’
for’, ’topping’, ’<ingr_end>’, ’4’, ’manicotti’, ’,’, ’cooked’, ’to’, ’only’, ’
firm-tender’, ’with’, ’kitchen’, ’string’, ’<ingr_end>’, ’12’, ’slices’, ’of’, ’
homemade-type’, ’white’, ’bread’, ’,’, ’each’, ’slice’, ’toasted’, ’and’, ’cut’,
’into’, ’a’, ’decorative’, ’shape’, ’<ingr_end>’, ’4’, ’slices’, ’of’, ’

italian’, ’sausage’, ’,’, ’prosciutto’, ’removed’, ’and’, ’cut’, ’into’, ’a’, ’
decorative’, ’shape’, ’<ingr_end>’, ’4’, ’slices’, ’aged’, ’sharp’, ’cheddar’, ’
cheese’, ’,’, ’grated’, ’<ingr_end>’, ’2’, ’tablespoons’, ’butter’, ’,’, ’
melted’, ’<ingr_end>’, ’1’, ’teaspoon’, ’salt’, ’<ingr_end>’, ’1’, ’small’, ’
egg’, ’,’, ’beaten’, ’<ingr_end>’, ’10-’, ’1/2’, ’ounces’, ’,’, ’weight’, ’
ready-made’, ’rolled’, ’puff’, ’pastry’, ’<ingr_end>’, ’1’, ’pound’, ’asparagus
’, ’,’, ’ends’, ’trimmed’, ’<ingr_end>’, ’1’, ’cup’, ’melted’, ’butter’, ’,’, ’
as’, ’an’, ’accompaniment’].

Top-p decoding p = 3:

[’6’, ’large’, ’green’, ’onions’, ’<ingr_end>’, ’10’, ’garlic’, ’cloves’, ’,’, ’
minced’, ’<ingr_end>’, ’4’, ’ounces’, ’,’, ’weight’, ’feta’, ’,’, ’cubed’, ’<
ingr_end>’, ’1’, ’pound’, ’shelled’, ’and’, ’deveined’, ’shrimp’, ’,’, ’halved’,
’lengthwise’, ’<ingr_end>’, ’14’, ’cup’, ’chopped’, ’fresh’, ’parsley’, ’<

ingr_end>’, ’14’, ’cup’, ’chopped’, ’parsley’, ’<ingr_end>’, ’salt’, ’&’, ’
freshly’, ’ground’, ’black’, ’pepper’, ’<ingr_end>’, ’14’, ’cup’, ’chopped’, ’
parsley’, ’<ingr_end>’, ’4’, ’tablespoons’, ’sour’, ’cream’, ’<ingr_end>’, ’1’,
’tablespoon’, ’chopped’, ’fresh’, ’tarragon’, ’<ingr_end>’, ’2’, ’tablespoons’,
’chopped’, ’fresh’, ’basil’, ’<ingr_end>’, ’12’, ’teaspoon’, ’salt’, ’<

ingr_end>’, ’14’, ’teaspoon’, ’ground’, ’black’, ’pepper’, ’<ingr_end>’, ’2’, ’
cups’, ’grated’, ’monterey’, ’jack’, ’cheese’, ’<ingr_end>’, ’avocado’, ’,’, ’
cut’, ’in’, ’wedges’, ’<ingr_end>’, ’additional’, ’salsa’, ’verde’, ’cheese’,
’,’, ’grated’, ’<ingr_end>’, ’12’, ’cup’, ’cheddar’, ’cheese’, ’,’, ’grated’, ’<
ingr_end>’, ’12’, ’cup’, ’colby’, ’cheese’, ’,’, ’grated’, ’<ingr_end>’, ’12’, ’
cup’, ’colby-monterey’, ’jack’, ’cheese’, ’,’, ’grated’, ’<ingr_end>’, ’14’, ’
cup’, ’parmesan’, ’cheese’, ’<ingr_end>’, ’1’, ’bunch’, ’green’, ’onion’, ’,’, ’
chopped’, ’<ingr_end>’, ’1’, ’tablespoon’, ’ground’, ’black’, ’pepper’, ’<
ingr_end>’, ’1’, ’teaspoon’, ’smoked’, ’paprika’, ’<ingr_end>’, ’1’, ’teaspoon’,
’ground’, ’thyme’, ’<ingr_end>’, ’1’]
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