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Abstract

Generalizing Natural Language Processing (NLP) models to multiple tasks can
provide advantages including robustness, improved real-world applicability, and
greater data efficiency. This is because multi-task models are capable of utilizing
diverse input data types during their training, and can develop a better understanding
of patterns in language [1]. The BERT language embedding model achieves high
accuracy in downstream language tasks, although separate fine-tuning is necessary
for each individual task.[2]. In this paper, we conduct experiments to create a
multi-task model that leverages BERT embeddings for various downstream tasks,
demonstrating the benefits of multitask learning and achieving good performance.
We focus on sentiment classification, paraphrase detection, and semantic textual
similarity tasks through exploring different model architectures, loss functions,
optimizers, and hyperparameters [Sec 3]. We present our results for the three
downstream tasks [Tab 4].

1 Introduction:

Advances in NLP have been driven by the use of pre-trained language models such as BERT, which
have shown remarkable performance on a wide range of NLP tasks [3][4].

An advantage of BERT is its ability to capture the semantic information present in text through its
deep neural network architecture. However, the potential of BERT can only be realized when it is
fine-tuned on a specific downstream task [5].

Multitask learning involves training a single model to perform multiple related tasks simultaneously,
rather than using a separate model for separate tasks. The benefits of multitask models in NLP include
improved data efficiency, robustness, and generalization [6]. Multitask learning utilizing the BERT
model has the potential to produce models capable of performing a wide range of tasks [7].

In this paper, we investigate the performance of one multi-task deep neural network that leverages
BERT to create embeddings and branches out into sentiment classification, paraphrase detection, and
semantic textual similarity (STS) layers. We experiment with a pure transfer learning approach where
we only train the additional task-specific layers added on top of Bert. We also experiment with model
ensembling and weight averaging to produce a model with a single BERT stem.

2 Related Work:

Devlin et al. [2] introduced BERT, a pre-training approach for deep bidirectional transformers aimed
at achieving high performance on transfer learning. By leveraging BERT as an embedding layer in
neural networks tailored to specific natural language processing tasks, Devlin et al. began a trend in
research to construct models that could leverage large-scale pre-training.
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Expanding on this foundation, Sun et al. [8] proposed novel fine-tuning strategies for BERT on
sentence-level tasks such as sentiment analysis, question classification, and topic classification,
resulting in highly accurate models. Sun et al. introduced multitask training, a method proposed by
Collobert et al. [1], which has shown potential for improving generalization and performance across
multiple tasks.

To promote the development of models that perform well on multiple tasks, Wang et al. introduced
GLUE [7], a set of evaluation metrics for sentence-level language tasks. The GLUE leaderboard fos-
ters competition within the NLP research community and has encouraged research and development
on multitask models.

Sentiment Analysis (SA) is a widely used machine learning task, useful in real-world applications
such as movie review processing and political analysis. Hoang et al. [9] demonstrated the potential
of fine-tuning BERT on SA and more complex tasks such as Aspect-based SA (ABSA). Sun et al.
[10] proposed further work on fine-tuning BERT for SA by converting ABSA to a sentence-pair
classification task.

Paraphrase detection is useful for tasks such as linking posts together in online databases such as
Quora. Arase et al. [11] explored various methods of fine-tuning BERT for paraphrase detection
tasks by modifying BERT to inject phrasal paraphrase relations, achieving promising results.

Semantic Textual Similarity (STS) involves measuring the relatedness of two pieces of text, and is
critical to many NLP applications such as text classification, information retrieval, question answering,
and machine translation. Ranasinghe et al. [12] explored transfer learning architectures such as
siamese neural networks with RNN layers to process the output of BERT and finetune the model to
achieve high accuracy on STS tasks.

3 Approach

For our approach we implement a minimal version of the BERT model. We then extend that
BERT model with several task-specific transfer layers to produce outputs for multiple downstream
sentence-level tasks.

3.1 Minimal Implementation of BERT

MinBert [13] is a minimal implementation of the BERT model [2] provided as start code by the
Stanford CS224N teaching staff [14].

BERT is a deep neural network that consists of an embedding layer and 12 transformer encoder
layers. The transformer layers utilize multi-head attention and a feed-forward layer, as defined by
Vaswani et al. [15]. The model also includes dropout applied to the output of each sub-layer and the
sums of the embeddings layer. MinBert is fine-tuned on next-sentence prediction.

Our provided implementation of MinBERT includes a tokenizer for data preprocessing, the embedding
layer, the forward pass, and the fine-tuning layer. We implement the transformer layer and multiheaded
self-attention components described in the original model’s paper [2].

For the transformer layer, we calculate multiheaded attention following the methods described by
Vaswani et al. [15]. We use linear layers to generate the key, value, and query for each token, and
then apply Equation 1. The queries, keys, and values are packed together into Q,K, V respectively,
and dk is the dimension of the keys. We also apply an attention mask to the result of QK⊤ to mask
out padding tokens.

Attention(Q,K, V ) = softmax(
QK⊤
√
dk

)V (1)

We also implement various sections of the full transformer layer such as the Add and Norm layer
defined [15], and the forward pass for a layer.

To test our BERT implementation, we validate on a downstream sentiment analysis task. We use
the SST [16] and CFIMDB [17] datasets to achieve a base accuracy on sentence-level sentiment
classification [Tab 1]. We interpret the BERT pooler output with a dropout layer for a sentence. We
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Figure 1: Ensembled Multitask BERT Model with Multiple Stems

Figure 2: Multitask BERT Model with Single Stem

then project the embeddings to have length n for each sentiment category with a fully connected
linear layer. We implement the step function of the Adam Optimizer by Kingma et al. [18] to train
the sentiment classifier.

We evaluate the accuracy of our model for sentiment analysis on the the SST[16] dataset with both
finetuning and no-finetuning of weights in the BERT stem. We achieve the accuracies shown in Table
1.

3.2 Multitask Learning

We will refer to the BERT embedding layers as the BERT stem and task-specific layers as task
branches. In order to generalize BERT to multiple tasks, we fine-tune the model for each task
individually with additional BERT pre-training [Extension #1]. This approach provides benefits such
as allowing us to ensemble the model with multiple BERT stems [Other Improvements #5][Fig 1]
as well as average the weights together to create a model with a single BERT Stem [Fig 2]. This
approach can also help determine weight initialization and baseline hyper-parameters for additional
multitask finetuning.

We implement extra features that improve training performance on all downstream task such as
weight decay and grid-based hyper-parameter search. We also implement various improvements
to training speed such as downsampling, single-task training, and calculating a training accuracy
estimate from the output of each training epoch as opposed to re-evaluating our model on the training
set.

When training our model on multiple tasks, we commonly encountered model overfitting. We
combat overfitting by increasing dropout probability, increasing the weight decay of our model, and
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Figure 3: Visual of a Bi-Directional RNN from [20]

reducing layer sizes where applicable. We optimize hyperparameters [Other Improvements #6]
using grid-search after finding good baseline hyperparameter values.

For our task-specific layers we experiment with multiple model architectures with feed-forward and
RNN approaches as well as different optimizers and loss functions including Multiple Negatives
Ranking Loss [Extension #2] for paraphrase detection, which we implement from scratch. We also
experiment with Cosine Similarity [Extension #3] as a metric for trainig our STS task layers.

3.2.1 Sentiment Classification

We experiment with several approaches for additional training and fine-tuning BERT for Sentiment
Classification. For each branch architecture in experiments, we take the hidden layer output of BERT
[2] or the pooler output of BERT, and output a vector of size n, where n is the number of sentiment
categories. In the case of the Stanford SST dataset [16], n = 5 with values corresponding to the
probability of each category. We set loss to be the cross entropy 2 of this ouput with labels t being
one-hot vectors representing the correct category index for a given sample, and p(i) being the softmax
probability output from our model of the ith class. We use the AdamW optimizer.

LCE = −
n∑

i=1

ti log p(t) (2)

We train on the Stanford SST Dataset [16] with various branch architectures, hyperparameters, and
fine-tuning the BERT Stem.

For our baseline, we implement a dropout layer followed by a single linear layer. We then experiment
with additional linear layers of varying hidden sizes with the goal of introducing more complexity
to our model. This approach, however, was prone to overfitting due to the increased number of
parameters.

Following the work of Qiang et al. [19], we experiment with replacing our output linear layer
with Bidirectional GRU (BiGRU). BiGRU uses two separate GRU layers, one to process the input
sequence forward and one to process the input sequence backward. Each GRU layer contains a series
of nodes or neurons that maintain a hidden state, which is updated at each time step based on the
input and the previous hidden state. This allows the model to capture past and future context. The
figure 3 from [20] illustrates the concept of a Bi-Directional RNN.

3.2.2 Paraphrase Detection

For paraphrase detection, we take as input two sentence representations and output a binary digit
that encodes whether the two sentences are paraphrases of one another. For all our experiments
on paraphrase detection, we use pooled outputs from BERT as our input, and we use the AdamW
optimizer. We experiment with multiple model architectures and loss functions.
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Our first baseline approach is to concatenate sentence pairs’ BERT pooler outputs of dimension d
into a single vector, and apply a dropout layer and a linear layer of size 2d× 1. With this setup and
Binary Cross Entropy Loss, we achieve the results shown [Tab 2].

Binary Cross Entropy Loss (BCE Loss) measures the difference between a predicted probability
distribution and the true distribution for binary classification. The equation is shown 3 where N
is the total number of samples, yi is the true binary label of the ith sample, and pi is the predicted
probability of the ith sample being in class 1.

LBCE = − 1

N

N∑
i=1

yi log(pi) + (1− yi) log(1− pi) (3)

We experiment with multiple linear layers, but saw similar over-fitting problems to sentiment classifi-
cation. 3.2.1

We experiment using Multiple Negatives Ranking (MNR) Loss [Extension #2] but saw decreased
accuracy [Tab 2]. Multiple Negatives Ranking Loss is used when the goal is to learn a ranking
function that can distinguish between different levels of similarity between pairs of sentences, but for
this task our goal is binary classification, so Binary Cross Entropy was sufficient as it is a simpler
loss function that is easier to optimize.

LMNR = − 1

K

K∑
i=1

[S(xi, yi)− log

K∑
j=1

eS(xi,yj)], i ̸= j (4)

MNR Loss is shown 4 where S(xi, yi) is the score of a similar pair and S(xi, yj) is the score of a
dissimilar pair. We implement MNR Loss from scratch making use of Pytorch [21] tensors. For
each batch, we select pairs with true labels from the Stanford SST dataset [16]. We set K to be
the number of true pairs found in our current batch. Next, we calculate scores for similar pairs and
dissimilar pairs by matching each first sentence with every other second sentence and running all
pairs through our model to calculate S(xi, yi) and S(xi, yj). We use these scores with our vectorized
implementation of MNR Loss [Eq 4].

3.3 Semantic Textual Similarity

For the Semantic Textual Similarity (STS) task, we are provided two sentences and output a continuous
score between 0-5 that expresses how similar sentences are and what semantic similarity categories
they fall into [22].

Our task layers for STS take two sentence pooled embeddings from BERT as input, and output a
single logit between 0-5.

For each of our experiments for the STS task, we use mean squared error loss 5. Where yi is the true
value of the target variable for the i-th instance in the dataset, ŷi is the predicted value for the same
instance, and n is the total number of instances in the batch.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (5)

.

Our baseline approach is similar to paraphrase, where we concatenate pooler outputs for both
sentences, and predict the digit with a single linear layer. Our baseline achieves low accuracy due to
the high-complexity of STS tasks.

For our second approach, we follow the implementation from [23]. We implement Siamese Linear
Layers on the output of BERT for each embedding, where the input and output size is the size of
the embedding. Next, we use Cosine Similarity [Extension #3] [Eq 6] to calculate the similarity
between the output of the embedding pairs. Cosine Similarity outputs a score betweeen [-1, 1], so
we normalize and multiple our result by 5 to correspond with our training labels. Cosine Similarity
is shown 6 where A and B represent a pair of feature vectors, and ϵ is a small number to avoid
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divide-by-zero errors. We use the MSE loss function [Eq 5] on the cosine similarity scores between
the pair of vectors in each batch.

Cosine Similarity(A,B) =
A ·B

max(|A||B|, ϵ)
(6)

We also experimented with replacing our linear layers with bi-directional GRU [23], but saw signifi-
cant overfitting to our training data. This is because the number of parameters in bi-directional GRU
is great enough to memorize our training data for STS. Note that we train on only 6,041 examples
from the STS benchmark dataset. Due to this relatively low sample-size, overfitting is a concern.

We experiment with additional datasets [Extension #9] through data augmentation by reformatting
the QQP training data to train our STS model. We assign 1 QQP labels a random STS value between
4-5 and we assign 0 labels a random STS value between 0-4. While this approach is ad-hoc, it works
to improve both the generalization and accuracy of our model.

4 Experiments

4.1 Data

For sentiment classification, we train and validate on the Stanford Sentiment Treebank Dataset (SST)
[16], which consists of movie reviews parsed by the Stanford Parser [24] annotated by human judges.
For this paper, we use 8,544 examples to train, 1,101 examples for dev validation and 2,210 examples
for our test set.

For initial training and validation of the sentiment classification task, we train and validate on the
CFIMDB dataset which contains 1,701 test examples, 245 dev examples, and 488 test examples [17].
The CFIMDB dataset consists of binary labels while we want our model to perform well on four
output sentiment classification categories so we only use the CFIMDB dataset for initial validation of
our minBERT implementation.

For paraphrase detection, we train and validate on the Quora Question Pairs Dataset (QQP) [25],
which contains pairs of sentences and a binary label indicating whether or not they are paraphrases.
We train on 141,506 examples from QQP, use 20,215 examples for dev validation, and 40,431
examples for test validation.

For semantic textual similarity, we use the SemEval STS Benchmark Dataset (STS-B) [22]. This
dataset consists of pairs of sentences and a continuous score between 0-5 that represent sentence
similarity. These scores can be interpreted as categories of similarity: Not Equivalent (0), Not
Equivalent but Same Topic (1), Not Equivalent but Share Some Details (2), Roughly Equivalent
but Some Details Differ (3), Mostly Equivalent (4), Completely Equivalent (5). We train on 6,041
examples from STS-B, and use 864 examples for dev validation and 1,726 examples for test validation.

4.2 Evaluation Method

To evaluate our model on sentiment classification, we compute the fraction of correctly classified
examples on our dev and test SST datasets.

To evaluate our model on paraphrase detection, we compute the sigmoid of the outputs of our model
to ensure outputs are between 0 and 1. We then round to the nearest integer, so any outputs less than
0.5 will be categorized as false and any greater than or equal to 0.5 will be categorized as true. We
then take the ratio of correctly predicted labels to incorrectly predicted labels as our accuracy.

To evaluate our model on semantic textual similarity, we use Pearson Correlation between our outputs
and the ground-truth labels. Pearson Correlation measures the strength of a linear relationship
between two variables. This means, if datapoints are scattered around a straight line, they will have a
high correlation. We use this for calculating STS accuracy as we want our outputs to have a linear
relationship with the ground-truth labels, so they do not have to be normalized. This also allows our
outputs and labels to be continuous when compared to the more simple metrics used for classification
accuracy. We calculate the Pearson Correlation using the Numpy library [26].
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Model SST Train SST Dev

Single Layer FFnoFT 0.270 0.350
Single Layer FFFT 0.463 0.510
Multi-Layer FFnoFT 0.279 0.389
Multi-Layer FFFT 0.664 0.530

BiGRUnoFT 0.517 0.476
BiGRUFT 0.796 0.508

Table 1: SST accuracy for various model architectures

Model QQP Train QQP Dev

CE FFnoFT 0.615 0.645
CE FFFT -CE 0.812 0.787
MNR FFnoFT -MNR 0.271 0.624
MNR FFFT -MNR 0.273 0.624
Siamese-FFnoFT 0.593 0.624
Siamese-FFFT -CE 0.629 0.625

Table 2: Paraphrase Detection accuracy for various model architectures

4.3 Experimental Details

For training on SST, we use a learning rate of 2e − 05, a dropout probability of 0.5, and a weight
decay of 0.01. For training on QQP, we use a learning rate of 1e − 05, a dropout probability of
0.5, and a weight decay of 0.01. For training on STS, we use a learning rate of 1e− 05, a dropout
probability of 0.5, and a weight decay of 0.1. We adjust hyper-parameters as necessary to improve
performance on each task, and further optimize through grid-based search.

The architectures of each model used are explained in detail in Section 3. We perform training on an
NVIDIA GTX 1080 video card on a local machine running Windows 11. Training times for SST were
roughly 1 minute/epoch, for QQP 40 minutes/epoch, and for STS 1 minute 45 seconds/epoch. For
every experiment, we train for 10 epochs and store the model that reached the highest dev accuracy
during training.

4.4 Results

We provide the results to our experiments on sentiment classification 1, paraphrase detection s2, and
semantic textual similarity 3. We provide the results of our final models 4 achieved by ensembling
our three task specific models with multiple BERT branches and one BERT branch with averaged
weights.

5 Analysis

We experiment with different model architectures and found that the more complex architectures
(such as multiple linear layers and Bi-Directional GRU) improved accuracy on our training set but
not our dev set predictions, leading to increased overfitting and “memorization" of the training data.

Approaches such as weight decay, using simpler models, and increasing drop out rate reduced
over-fitting but they persisted. These problems likely persist because we fine-tune our model on
each task individually to improve performance. Investigating methods to improve performance when
fine-tuning our model on all tasks at once such as gradient surgery (Yu et al. [27]) or using Mixout
(Lee et al. [28]) may improve generalizability of our model.

We also achieve higher baseline accuracies for paraphrase detection than either classification task as
paraphrase detection produces a binary label with a much higher probability of guessing the answer
at random correctly.
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Model STS-B Train STS-B Dev

FFnoFT 0.126 0.253
FFFT 0.586 0.398
Siamese-FFnoFT 0.206 0.232
Siamese-FFFT 0.813 0.514
Siamese-BiGRUnoFT 0.228 0.218
Siamese-BiGRUFT 0.740 0.369

Table 3: STS Pearson correlation scores for various model architectures

Model SST QQP STS

Ensembled Multi-BERT Stem Dev 0.530 0.787 0.514
Ensembled Multi-BERT Stem Test 0.535 0.789 0.444
Ensembled Avg Weight Single BERT Dev 0.381 0.706 0.357

Table 4: Final Model dev set results for various model architectures using evaluation metrics discussed
in 4.2

6 Conclusion

Our experiments with extending BERT to multiple tasks have shown promising results and directions
for further experimentation. By using various model architectures and hyperparameters, we were
able to achieve better-than-random accuracy on three distinct NLP tasks: SST, Paraphrase, and STS.

Our approach of using feed-forward and recurrent neural networks on BERT outputs allowed us to
leverage the power of pre-trained language models while adapting them to specific downstream tasks.
We found that tuning hyperparameters such as learning rate, dropout probability, and weight decay
was critical in achieving our best performance on each task.

Overall, our experiments demonstrate the effectiveness of fine-tuning BERT for multiple NLP tasks
and the importance of carefully tuning hyperparameters. Our experiments also show the problems with
fine-tuning BERT on individual tasks, such as overfitting. As future work, we hope to experiment with
methods for fine-tuning BERT on multiple tasks simultaneously to acheive greater generalizability.
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