
BERT Fine-Tuning with Contrastive Loss and
Smoothness-Inducing Regularization

Stanford CS224N Default Project

Laura Wu
Department of Computer Science

Stanford University
laurawjr@stanford.edu

Frank Zhao
Department of Computer Science

Stanford University
frankz24@stanford.edu

Abstract

Semantically rich sentence embeddings can prove extremely useful for NLP tasks.
Thus, The goal of this project is to develop a baseline BERT model and fine-
tune it for three downstream tasks simultaneously. We implement three tech-
niques – cosine similarity finetuning, contrastive loss for additional pretraining,
and smoothness-inducing regularization – to improve upon the pre-trained BERT
embeddings. Results have shown that all three techniques boost overall model
performance.

1 Introduction

The classification of sentences is a critical research area in Natural Language Processing (NLP),
and tasks such as sentiment analysis and paraphrase detection are the bedrocks to many practical
applications including social media analysis, question answering, and recommendation systems.
The development of effective approaches for these tasks has the potential to not only contribute to
engines that make our lives more convenient but also enhance our understanding of human language
comprehension and variation.

To convert sentences into machine-recognizable inputs, we typically use vector embeddings in a
high-dimensional space to capture their semantic and syntactic features. The overarching goal of
this project is therefore to develop the architecture to produce robust and generalizable embeddings
for English sentences that can subsequently be used to perform multiple sentence-level NLP tasks.
Specifically, we will first implement the most important components of the original Bidirectional
Encoder Representations from Transformers(BERT) model by Vaswani et al. (2017) and then add
in fine-tuning techniques to better adapt the pre-trained BERT’s contextualized embeddings to 3
sentence-level downstream tasks. These include sentiment analysis, which labels phrases of opinions
as negative, neutral, or positive, paraphrase detection, which checks whether two sentences are
rewordings of each other, and semantic textual similarity, which measures the degree of semantic
equivalence between two sentences. The datasets we will be using come from the Stanford Sentiment
Treebank Dataset by Socher et al. (2013), the Quora Dataset by Sharma et al. (2019), and the
SemEval STS Benchmark Dataset by Agirre et al. (2013).

At a high level, the framework of fine-tuning existing language models for downstream tasks allows
many NLP-related problems to be tackled more efficiently with little extra training and re-designing.
There has been numerous proposals of novel techniques and extensions related to this goal since the
publication of BERT. Some important areas include the incorporation of domain-specific text corpora
into pre-trained language models for fine-tuning and strides in multi-task learning, which involves
fine-tuning a language model on multiple related tasks simultaneously. Our project explores three
such techniques, namely Cosine-Similarity Finetuning, Contrastive Loss, and Smoothness-Inducing
Regularization. More specifically, in fine-tuning our BERT base model, we apply cosine-similarity to
pairs of BERT embeddings before adding them to the output of a linear layer for the final logit. Also,
contrastive loss is implemented for the Quora dataset to achieve additional pre-training. Further, we

Stanford CS224N Natural Language Processing with Deep Learning



implement a smoothness-inducing step in computing loss that introduces slight perturbation into the
inputs with the goal of maintaining consistency in the output of the model.

The performance is evaluated for each of the three techniques as well as for the three approaches
combined. Results show promising advantage of all three techniques on multitask finetuning.

2 Related Work

As mentioned in the introduction, the bulk of our baseline model BERT is derived from its original
paper by Vaswani et al. (2017). Before then, developments in NLP have shown that rich, unsupervised
pre-training is an integral part of many language understanding systems, and BERT goes a step
further to generalize these findings to deep bidirectional architectures, broadening the range and
effectiveness of NLP tasks that pre-trained models can achieve.

While BERT already achieves state-of-the-art performance, there are still limitations to its capabilities.
For one, as it is pre-trained only on masked language modeling and next sentence prediction, fine-
tuning on other datasets is often-needed for other tasks and domain-specific knowledge. Pan et al.
(2019), for example, fine-tuned BERT on the task of open-domain question answering using external
knowledge sources such as Wikipedia, realizing significant gains over previous methods. Ostendorff
et al. (2019) fine-tuned BERT on the task of document classification by incorporating knowledge
graph embeddings, which also achieved state-of-the-art results on several datasets.

Regarding specific techniques involved in fine-tuning, different additional learning objectives have
demonstrated notable improvement in model performance on the corresponding tasks. Multiple
Negatives Ranking Loss Learning is one that aims to minimize the distance between similar pairs of
sentences while simultaneously maximizing the distance between different sentences (Henderson
et al., 2017), which has shown promising results. To ensure that fine-tuning does not compromise
the model’s ability to generalize to unseen data, Jiang et al. (2020) propose a framework to reduce
aggressive fine-tuning involving two components, smoothness-inducing regularization and Bregman
proximal point optimization. When combined and tested on multiple tasks, this framework does
achieve state-of-the-art accomplishments. Additionally, Gao et al. (2021) developed a contrastive
learning framework that works on both supervised and unsupervised tasks, which in effect regularizes
pre-trained embeddings’ anisotropic space to be more uniform and has shown to achieve significant
improvements on pre-trained BERT base.

3 Approach

3.1 Baseline Model

We will start by describing the main architecture of our model below, the backbone of which has
already been provided in the starter code. At a high level, our BERT model takes in sentence inputs
and tokenizes them before feeding them into an embedding layer and then a stack of 12 encoder
transformer layers.

Starting with transforming the input sentences into a desired format, our BERT model utilizes
WordPieceTokenizer that first breaks sentences into individual words and then into word pieces within
its 30,000 token vocabulary, which are lastly converted into input token ids to feed into our model.
Each sequence always starts with a special classification token ([CLS]) and padded to max_length
(512) with the [PAD] token. Unknown word pieces will be automatically set to the [UNK] token.

Then, given a list of input_ids w1, ..., wk ∈ N that corresponds to the rows (or columns) of the embed-
ding matrix (self.word_embedding), the embedding layer converts the indices into token embeddings
v1, ..., vk ∈ RD. We also obtain position indices and position embeddings from self.position_ids
and self.pos_embedding. In addition, we obtain embeddings for sentence segmentations for differ-
entiating amongst different sentences inputs, but for the purpose of this project we are just using
them as placeholders. As any given input is of length 512, these embeddings are learned for each
of the 512 positions. So, we generate input embeddings (E) at each index i that is used later in the
model as Ei = Etoken

i + Esegmentation
i + Eposition

i . This input embedding is then fed into the
encoder transformer layer. Each of the 12 transformer layers consists of multi-headed attention,
an additive and normalization layer with a residual connection, a feed-forward layer, and a final

2



additive and normalization layer with a residual connection. The multi-headed attention is computed
by concatenating h single-headed attentions performed on matrix of queries(dimension dk) Q, matrix
of keys(dimension dk) K, matrix of values(dimension dv) V projected onto different representation
subspaces at different positions. Mathematically, the single-headed attention score and multi-headed
are respectfully calculated as

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V

MultiHead(Q,K, V ) = Concat(h1, ..., hh)W
O,

where hi = Attention(QWQ
i ,KWK

i , V WV
i ),WQ

i ∈ Rdmodel×dk ,WK
i ∈ Rdmodel×dk ,WV

i ∈
Rdmodel×dv , and WO ∈ Rhdv×dmodel . Next up, we have an add_norm layer that takes in the input
and output of the previous layer and produces the following output: Layer_Normalization(input+
Dropout(Dense_Layer(output))). Afterwards, we apply a feed forward layer, which first trans-
forms the input with a linear dense layer, followed by a GELU activation function and another
add_norm layer. The final output consist of last_hidden_state, the contextualized embedding for each
word piece of the sentence and a pooler_output for the embedding of the [CLS] token.

Now that we have a working BERT model, we can load the pretrained model weights and attach
a simple feedforward head to its sentence embedding (pooled output) for a range of downstream
tasks. To train our model, we also develop the code for a more efficient version of Adams Optimizer,
which performs bias correction on the learning rate α and uses two momentum estimates m, v at

each time step t to update the parameter θ according to the following equations: αt = α

√
1−βt

2

1−βt
1
, θt =

θt−1 − αt
mt

vt+ϵ , where mt = β1mt−1 + (1 − β1)gt, vt = β2vt−1 + (1 − β2)g
2
t with gt being the

gradient. Our implementation also uses decoupling L2 regularization at the end.

3.2 Fine-Tuning

To further improve our BERT embeddings for multitask classification, we implement three spe-
cific techniques to finetune our BERT model in the training step – Cosine-Similarity Finetuning,
Contrastive Loss, and Smoothness-Inducing Regularization.

3.2.1 Cosine-Similarity Finetuning

To utilize the BERT sentence embeddings for downstream tasks, we need to design a feedforward
projection head that transforms the BERT output into the desired prediction output. In the context
of sentiment analysis, we can simply attach a dropout layer followed by a linear projection layer to
the BERT architecture. This would allow us to simply output logits in the dimension of the number
of classes / sentiments. In the context of paraphrase detection and semantic textual similarity, the
input consists of two sentences and hence we are dealing with two BERT embeddings. One naive and
straightforward approach is simply to concatenate the two embeddings and add a dropout and linear
projection at the end. However, this linear function applied to the two sentence embeddings may not
be able to extract all the semantic similarities and differences. To improve upon this simple method,
we use cosine similarity finetuning.

Cosine similarity of two vectors X,Y is simply defined as:

CosineSimilarity(X,Y ) =
X · Y
∥X∥∥Y ∥

.

It measures the distance between two vectors in an inner-product space. If two vectors are pointing
roughly at the same direction, their cosine similarity would be close to 1. In the context of paraphrase
detection and semantic textural similarity, we are interested in how similar two sentences are. Thus,
if BERT embeddings are semantically-rich, similar sentences should have similar embeddings.
Then, cosine similarity would have high predictive power for detecting whether two sentences are
paraphrases of each other and whether two sentences have similar meaning. Previous researches like
Reimers and Gurevych (2019) have also confirmed this intuition.

To use cosine similarity of the two embeddings in our framework, there are a few options. We can
replace the linear layer with cosine similarity; or we can concatenate the two embeddings with cosine

3



similarity and feed that into the linear layer; or we can add cosine similarity to the linear layer output
as the final output. Simply testing for all of these options show that adding cosine similarity with the
linear layer output performs best. Thus, we present our final model design as the one below:

Figure 1: Model design for the three downstream tasks.

Note that we add a multiplication factor of 5 to the cosine similarity for semantic similarity prediction
because the specific dataset we use have targets in the range of [0, 5].

3.2.2 Contrastive Loss

To take full advantage of using cosine similarity for our downstream tasks, we want to find a way
to minimize the distance of similar sentences’ embeddings and maximize the distance of different
sentences’ embeddings. We can achieve this with contrastive loss, proposed by Hadsell et al. (2006).

Formally, denote a batch of sentence pair inputs and labels as {(x1i, x2i, yi)}ni=1, where x1i, x2i are
a pair of sentences, yi is 1 if the two sentences have similar meaning and 0 if the two sentences have
different meaning, and n is the batch size. Let e1i and e2i be the BERT embeddings of x1i and x2i.
Let distance di = 1− CosineSimilarity(e1i, e2i). And the contrastive loss is defined as:

li(x1i, x2i, yi) = 0.5 · (yi · d2i + (1− yi) · (max(0,m− di))
2),

L =

∑n
i=1 li(x1i, x2i, yi)

n
.

The margin m is a hyperparameter that is usually set as 0.5. The contrastive loss function encourages
similar sentences’ embeddings to be as close as possible and forces different sentences’ embeddings
to be at least m = 0.5 apart.

We adopt the code from https://github.com/UKPLab/sentence-transformers/blob/
master/sentence_transformers/losses/ContrastiveLoss.py to implement this loss func-
tion. Using the contrastive loss function, we can provide additional pre-training for BERT using the
Quora dataset and further optimize its embedding space.

4

https://github.com/UKPLab/sentence-transformers/blob/master/sentence_transformers/losses/ContrastiveLoss.py
https://github.com/UKPLab/sentence-transformers/blob/master/sentence_transformers/losses/ContrastiveLoss.py


3.2.3 Smoothness-Inducing Regularization

Often when adopting the pre-trained model for additional downstream tasks, the limitation in
data for these tasks might result in overfitting in the fine-tuned models. We therefore introduce
a regularization technique to effectively manage the complexity of our model, derived from Jiang
et al. (2020). Following the original paper, we refer to this technique as SMART as well. At a high
level, the technique relies on Smoothness-inducing Adversarial Regularization, which injects small
perturbations to the input at training while maintaining minimal changes to the output of the model,
thereby ensuring the overall model smoothness. Specifically, given the model f with parameter θ and
n sample data points of the target task {(xi, yi)}ni=1, the objective function to minimize is as follows

minθF(θ) = L(θ) + λR(θ),

where L(θ) = 1
nΣ

n
i=1L1(f(xi, θ), yi), and L1 is the loss function depending on the tar-

get task. λ is the tuning parameter for the smoothness-inducing regularizer, and R(θ) =
1
nΣ

n
i=1Lr(f(x̃i, θ), yi), f(xi, θ), yi)), where Lr is the smoothness-inducing adversarial regularizer,

whose functional form again depends on the finetuning task.

The framework of the code is adopted from https://github.com/archinetai/smart-pytorch,
with significant changes and customized implementations to adapt it for the goals of this project. The
outline of our implementation can be seen in Algorithm 1 below, which walks through the training
step for fine-tuning on the downstream task. Depending on the particular task, each iteration takes in
either one or two input embeddings instead of always one in the provided code, and we simultaneously
update model parameters from the whole batch’s loss using the appropriate loss functions.

Algorithm 1 SMART Loss Calculation
Notation: P : Prediction function for the similarity between 2 sentence embeddings, L1: loss function
depending on the target task, L2: loss function chosen for the smoothness-inducing step, L: the total
loss at each iteration, AdamUpdate: the ADAM update rule for each iteration
Input: T: Number of epochs, I: Number of iterations, χ: training dataset, b_labels: the true label for
input embeddings, σ2: The variance of the random initialization for the perturbations, η: step size for
noise gradient, ϵ: normalization parameter, λ: smoothness-inducing loss step size

1: for t = 1, .., T do
2: for x = 1, ..., I do
3: Sample mini-batch B or mini-batch of input pairs B1,B2 from χ (Assuming 2 in the

following parts)
4: Obtain embeddings e1, e2 for the batch of two inputs
5: L← L1(P(e1,e2),b_labels)

|B|
6: ϵ1, ϵ2 ∼ N(0, σ2I)
7: for i = 1, 2, . . . , num_steps do
8: ẽ1 ← e1 + ϵ1
9: ẽ2 ← e2 + ϵ2

10: l̃← P(ẽ1, ẽ2)
11: g1, g2 ←▽Lr(l̃, b_labels, θi)
12: ϵ1 ← ϵ1+η∗g1

|ϵ1+η∗g1|+ϵ

13: ϵ2 ← ϵ2+η∗g2
|ϵ2+η∗g2|+ϵ

14: if i = num_steps then
15: L← L+ λ ∗ Lr(l̃, b_labels)
16: end if
17: end for
18: θs+1 ← AdamUpdateB1,B2

(θs)
19: end for
20: end for

For our purposes, we have chosen λ = 5, η = 10−3, ϵ = 10−5, andσ = 10−5, following the original
paper by Jiang et al. (2020). For classification tasks, L1 is chosen as cross-entropy loss and Lr is
chosen as the symmetric KL-divergence, and for regression tasks, L1 is chosen as mean-squared error
loss and Lr is chosen as the squared loss.

5

https://github.com/archinetai/smart-pytorch


4 Experiments

4.1 Data

To apply our approach to the overarching task of finetuning BERT embeddings for multiple down-
stream tasks, we mainly utilize three datasets. These data sets correspond to the three tasks described
in the introduction. The first dataset is the Stanford Sentiment Treebank (SST) Dataset by Socher
et al. (2013). It consists of 11,855 single sentences from movie reviews, which were parsed into
215,154 phrases. Each phrase is annotated into 5 categories from most negative to most positive. The
task is to predict which sentiment category each phrase falls into (sentiment analysis). The second
dataset is the Quora Dataset by Sharma et al. (2019). It consists of 400,000 question pairs from
Quora with labels indicating whether sentences are paraphrases of one another. We use roughly 50%
of all instances. The associated task is to binary-classify two questions as re-wording of each other or
not (paraphrase detection). The last dataset is the SemEval STS Benchmark Dataset by Agirre et al.
(2013). It consists of 8,628 sentence pairs of varying similarity on a scale from 0 (unrelated) to 5
(equivalent meaning). The task on this dataset is to predict the similarity score between two sentences
(semantic textual similarity). We use all three data sets for downstream training and evaluation.

4.2 Evaluation method

The SST dataset and quora dataset are both classification problems. Thus, it is most natural to use
accuracy as our evaluation metric. Due to SemEval’s original paper by Agirre et al. (2013), we treat
the third STS dataset as a regression problem and use Pearson correlation of true similarity values
against the predicted similarity values to evaluate model performance.

4.3 Experimental details

We experiment with our three finetuning methods one by one, and each time we evaluate the tweaked
model’s performance on SST, Quora, and STS. We also include the average of the evaluated results
to assess the model’s overall performance and robustness. In addition, for the SST dataset, we use
cross entropy as our loss function because it is a multi-class classification problem. For the Quora
dataset, we use binary cross entropy (BCE) because it is a binary classification problem. And for the
STS dataset, we use mean-squared error (MSE) as it is a regression problem.

For all of our experiments below, we use the ADAM optimizer to train the model. The additional
feedforward head attached to BERT for each dataset is exactly the same as in Figure 1. Whenever we
freeze the BERT parameters and only train the linear layer weights, we use a learning rate of 1e-3.
And whenever we are updating BERT, we use a learning rate of 1e-5 . We use a batch size of 32 due
to GPU memory constraints and run each experiment for 10 epochs, keeping the model that has the
best performance on the dev set.

As a baseline method, we use the pre-trained weights of BERT and freeze BERT parameters during
further training. These pre-trained weights are provided to us in the starter code.

To improve upon the baseline method, we first fine-tune BERT’s parameters on each dataset alone.
For example, we update BERT’s model weights when training on the SST dataset and then freeze
them when subsequently training on the Quora and STS datasets. This finetunes the BERT contextual
embeddings with respect to sentiment analysis. We do the same for the other two datasets. This
process also takes advantage of the cosine similarity component for Quora and STS datasets. Further,
we can also finetune on all three datasets sequentially, without freezing at each stage.

Secondly, we can apply contrastive loss on the Quora dataset, as it consists of both positive and
negative sentence pairs. Specifically, given sentence pair inputs in the Quora dataset, we first calculate
their BERT embeddings, and with the paraphrase-or-not label, we calculate the contrastive loss and
use that to update BERT parameters. This provides additional pre-training for BERT. Following
pretraining with contrastive loss, we can again finetune on all 3 datasets sequentially.

Lastly, we employ the smoothness-inducing regularization technique (SMART) in section 3.2.3 to
make our model more robust and less prone to over-fitting. The hyperparameters for SMART are
already specified in section 3.2.3. We first apply this technique to finetuning each of the three datasets
alone and then sequentially. Note that the SMART framework is only used when updating BERT
weights through BERT sentence embeddings but not used when training the linear layer weights.

6



4.4 Results

The quantitative result from the experiments outlined above is shown in the table below:

Table 1: Experiment results
Experiments SST Acc. Quora Acc. STS Corr. Average
Pretrain (baseline) 0.401 0.679 0.272 0.451
Finetune on SST 0.510 0.681 0.376 0.522
Finetune on Quora 0.398 0.831 0.471 0.567
Finetune on STS 0.427 0.703 0.594 0.575
Finetune on all three 0.471 0.820 0.710 0.667
Pretrain with contrastive loss 0.393 0.851 0.630 0.625
Pretrain with contrastive loss
then finetune on all three 0.463 0.838 0.775 0.692

Finetune on SST + SMART 0.521 0.691 0.456 0.556
Finetune on Quora + SMART 0.415 0.843 0.502 0.587
Finetune on STS + SMART 0.458 0.696 0.681 0.612
Pretrain with contrastive loss
then finetune on all 3 + SMART 0.499 0.830 0.827 0.719

Final result on test set 0.490 0.828 0.814 0.711

By comparing the result from finetuning on one of the datasets with the baseline method, we can
see that finetuning not only increases the performance on the finetuned dataset dramatically but
also boosts the performance on the other two datasets. The large increase in accuracy and Pearson
correlation for the Quora and STS dataset are testimony of the success of using cosine similarity.

By comparing additional pretraining with contrastive loss with naive finetuning on Quora, we can see
that contrastive loss increases the model’s performance on paraphrase detection even more. Further, it
has additional spillover benefits on the STS dataset, as the Pearson correlation also increases by 0.159.
Since Quora and STS are both about sentence similarity, this confirms the usefulness of contrastive
loss in grouping similar sentences’ embeddings and separating different sentences’ embeddings.

Finally, by comparing finetuning with and without smoothness-inducing regularization, we can also
confirm the effectiveness of SMART. Using this regularization technique not only improves the
performance on the finetuned dataset but also generally improves the performance on the other two
datasets. This shows that SMART makes our BERT embeddings more robust and more generalizable.

As expected, the best overall performance comes from using all the techniques together. We first
provide additional pretraining using contrastive loss on the Quora dataset. We then finetune on SST,
Quora, and STS sequentially with smoothness-inducing regularization, and finally train the weights
for SST and Quora’s linear layers. This combined approach achieves 0.499 accuracy on the SST dev
set, 0.830 accuracy on the Quora dev set, and 0.827 Pearson correlation on the STS dev set. The
average score is 0.719. This result is reasonably high and demonstrates the validity of our approaches.
The performance on the test set is also similar, with the average being only 0.008 less than the dev set
average. This shows that our model is not overfitting to any of the datasets significantly. Again, this
may show that SMART is providing robust regularization to our BERT embeddings.

It may be surprising that the accuracy for SST is always somewhat low. But this is due to the
multi-class fine-grained nature of SST dataset. In fact, the state of art performance is still below 0.6.

Overall, the experimental results align with our intuition about the three approaches. They demonstrate
that cosine similarity finetuning, additional pretraing with contrastive loss, and adding smoothness-
inducing regularization are all useful and powerful techniques for improving BERT’s embeddings.

5 Analysis

One concern over simply concatenating the two sentence embeddings together and feeding that
into a linear layer in the case of Quora and STS is that concatenation encodes an order into the

7



sentence inputs, but swapping sentence 1 with sentence 2 should have very little effect on the model
performance. Ideally, the linear layer weights would have learned about this symmetry by itself.
Indeed, if we swap the two sentences, the reduction in model performance is minimal. The accuracy
on Quora only drops by 0.005 and the Pearson correlation on STS stays the same. This shows that
our model has learned the symmetric nature of the two input sentences by itself.

Another concern over the model design is whether the linear layer output is useful for Quora and
STS. It is possible that cosine similarity itself is powerful enough. To test this, if we simply drop the
linear layer output (but keeping the constant term), the accuracy on Quora drops by 0.455 but the
Pearson correlation on STS only drops by 0.007. Thus, the linear layer is almost useless for STS but
still extremely useful for Quora.

Next, we can look at some success cases and failure cases of our model.

Table 2: Success cases and failure cases of final model
Input sentences Label Pred.

SST Success A deep and meaningful film. 4 4
SST Failure If Soderberah’s Solaris is a failure it is a glorious failure. 4 0
Quora Success What are the differences be-

tween metal, ceramic, semi-
conductor, polymers, and
composites?

Is it possible to make
flexible armor plating from
Carbon composites and
lightweight metal polymer?

0 0.0002

Quora Failure What is the difference in
pronunciation between
"role", "roll", "row"?

What is the difference in
pronunciation between
"role", "roll", and "row"?

1 0.002

STS Success A small black dog is in the
grass.

A black dog is running in
the grass.

3.6 3.601

STS Failure Work into it slowly. It seems to work. 0 2.769

The success cases are all examples of very straightforward instances, so it is not surprising that the
model predicts correctly. The failure cases are more interesting. The sentence "If Soderberah’s Solaris
is a failure it is a glorious failure" is very subtle because it uses "failure" to juxtapose the glory of the
film. The "if" indicates a hypothetical situation that is perhaps very difficult for language models to
understand. The model probably simply relied on the strong negative connotation of "failure" and
hence predicted a negative review.

The failure case for Quora is more peculiar. It is not clear why adding an "and" made the model
predict the two sentences are not paraphrases of each other. One possible explanation is that in most
training instances, seeing "and" means that the question is asking about some additional information
that makes the pair not paraphrases. The failure case for STS is more understandable. The two
phrases are relatively short and don’t have much context around them. There is very little information
for the model. And perhaps because of the similar structure and diction, the model concluded that
both sentences have some similarity in meaning. Note that the difference between "work into it
slowly" and "it seems to work" are even subtle for a human to understand at first glance. It is therefore
not surprising the model completely fails.

6 Conclusion

In this project, we implemented cosine similarity finetuning, contrastive loss for additional pretraining,
and smoothness-inducing regularization for improving BERT’s contextualized embeddings. Results
have shown that all three techniques improve model performance on three downstream tasks including
sentiment analysis, paraphrase detection, and semantic textual similarity. Through using all three
approaches together, we were able to increase the overall performance by 60% from our baseline
method. Overall, we learned in depth about the structure of BERT, many techniques for improving
this powerful model, and the wider research context around the pretrain-then-finetune paradigm.
One obvious limitation, however, is that our approach finetunes on the three tasks sequentially. The
performance can depend on the order of finetuning, which is a large issue. Thus, one future research
area is to perform multitask learning on all three tasks simultaneously by adding the losses and
utilizing gradient surgery.

8



References
Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013. *SEM 2013

shared task: Semantic textual similarity. In Second Joint Conference on Lexical and Computational
Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the Shared Task: Semantic
Textual Similarity, pages 32–43, Atlanta, Georgia, USA. Association for Computational Linguistics.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. SimCSE: Simple contrastive learning of
sentence embeddings. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pages 6894–6910, Online and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

R. Hadsell, S. Chopra, and Y. LeCun. 2006. Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’06), volume 2, pages 1735–1742.

Matthew L. Henderson, Rami Al-Rfou, Brian Strope, Yun-Hsuan Sung, László Lukács, Ruiqi Guo,
Sanjiv Kumar, Balint Miklos, and Ray Kurzweil. 2017. Efficient natural language response
suggestion for smart reply. CoRR, abs/1705.00652.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. 2020.
SMART: Robust and efficient fine-tuning for pre-trained natural language models through princi-
pled regularized optimization. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics.

Malte Ostendorff, Peter Bourgonje, Maria Berger, Julian Moreno-Schneider, Georg Rehm, and Bela
Gipp. 2019. Enriching bert with knowledge graph embeddings for document classification.

Xiaoman Pan, Kai Sun, Dian Yu, Jianshu Chen, Heng Ji, Claire Cardie, and Dong Yu. 2019. Improving
question answering with external knowledge. In Proceedings of the 2nd Workshop on Machine
Reading for Question Answering, pages 27–37, Hong Kong, China. Association for Computational
Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 3982–3992, Hong Kong, China. Association for Computational Linguistics.

Lakshay Sharma, Laura Graesser, Nikita Nangia, and Utku Evci. 2019. Natural language understand-
ing with the quora question pairs dataset. CoRR, abs/1907.01041.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1631–1642, Seattle, Washington, USA. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. CoRR, abs/1706.03762.

9

https://aclanthology.org/S13-1004
https://aclanthology.org/S13-1004
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2006.100
http://arxiv.org/abs/1705.00652
http://arxiv.org/abs/1705.00652
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
http://arxiv.org/abs/1909.08402
https://doi.org/10.18653/v1/D19-5804
https://doi.org/10.18653/v1/D19-5804
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
http://arxiv.org/abs/1907.01041
http://arxiv.org/abs/1907.01041
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
http://arxiv.org/abs/1706.03762

	Introduction
	Related Work
	Approach
	Baseline Model
	Fine-Tuning
	Cosine-Similarity Finetuning
	Contrastive Loss
	Smoothness-Inducing Regularization


	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

