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Abstract

The project implemented the backbones of the original Bidirectional Encoder
Representations from Transformers (BERT) model and verified it by performing
sentence classification. Multiple fine-tuning techniques are tried to obtain robust
and generalizable sentence embeddings on three downstream tasks. According to
the experiment, measuring cosine similarity between sentences turns out to be an
effective fine-tuning approach that can significantly improve the BERT model’s
performance on semantic textual similarity analysis. However, similarity-based
triplet networks can not improve the model’s performance as expected.

1 Key Information to include

• Mentor: Christopher Manning

2 Introduction

Bidirectional Encoder Representations from Transformers (BERT) is a transformer-based model that
generates contextual word representations (Devlin et al., 2018). The model has been widely used on
many natural language processing (NLP) tasks (De Vries et al., 2019). The project implemented the
backbone of the original BERT model and verified it by conducting sentiment analysis. fine-tuning
trains a pretrained model on a new dataset without from scratch. The process can produce accurate
models with smaller datasets and less training time. Multiple fine-tuning techniques are tried to
extend the BERT model to create sentence embeddings that can perform well across a wide range of
downstream tasks.

According to the research (Reimers and Gurevych, 2019), the similarity between two embeddings can
be computed using their cosine similarity. Our experiment results also show importing cosine similar-
ity can be an effective way to improve the embeddings. Furthermore, to make full use of the potential
of sentence similarity, inspired by the triple objective function (Reimers and Gurevych, 2019) and mul-
tiple negatives ranking loss (Henderson et al., 2017), we proposed an unsupervised similarity-based
fine-tuning approach to promote sentence embeddings on the basis of cosine similarity. However, the
technique can not boost embeddings as expected from the experiment results.

3 Related Work

The BERT model is frequently used on many NLP tasks, such as sentiment analysis, paraphrase
detection, and semantic textual similarity analysis (STS). Fine-tuning is a critical process for applying
the model to specific downstream tasks. Ample fine-tuning approaches are developed to improve
sentence embeddings. Reimers and Gurevych (2019) presented a modification of the pre-trained
BERT network that uses siamese and triplet network structures to derive semantically meaningful
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sentence embeddings that can be compared using cosine similarity. The network performs well and
efficiently on semantic textual similarity tasks. Based on this, the project uses the cosine-similarity to
improve sentence embeddings in the STS task.

Deep learning via triplet networks was first introduced in Hoffer and Ailon (2018) and has since
become a widespread technique in metric learning (Yao et al., 2016; Zhuang et al., 2016). Ein-Dor
et al. (2018) first used the triplet networks to solve an NLP-related task with weakly-supervised data.
The objective of the triplet networks is to make an anchor closer to its positive sentence than its
negative sentence. Multiple Negative Ranking Losses presented in Henderson et al. (2017) shared a
similar intuition. However, this kind of approach requires particular data preprocessing step. Positive
or negative sentence pairs must be prepared for an anchor sentence before training, which is hard to
achieve when only the similarity scores of sentence pairs are available. To address this limitation, we
proposed an unsupervised similarity-based approach as a variant or extension of the triplet networks.

4 Approach

4.1 minBERT

The transformer-based BERT model used deeply bidirectional word representations and achieved
great success on contextual word representations (Devlin et al., 2018). Some critical aspects of
the original BERT model, including multi-head self-attention as well as a Transformer layer, are
implemented. Multi-head Self-Attention (Vaswani et al., 2017) consists of a scaled-dot product
applied across multiple different heads. The input to each head is to a scaled-dot product that consists
of queries Q and keys K of dimension dk, and values V of dimension dv. The scaled dot-product
attention is computed as:

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V (1)

Multi-head attention allows the model to jointly attend to information from different representation
subspaces at different positions. The Transformer layer of the BERT transformer consists of multi-
head attention, followed by an additive and normalization layer with a residual connection, a feed-
forward layer, and a final additive and normalization layer with a residual connection.

Sentiment analysis on two datasets was performed by utilizing pre-trained model weights and fine-
tuning the outputted embeddings from the model to validate the minBERT model. Adam Optimizer
based on Decoupled Weighted Decay Regularization Loshchilov and Hutter (2017), and Adam
Kingma and Ba (2014) were implemented for training the sentiment classifier.

4.2 Baseline

The BERT embeddings are utilized to perform three downstream tasks: sentiment analysis, paraphrase
detection, and semantic textual similarity. The baseline model is established by making minimal
changes to the minBERT model. The BERT embeddings are normalized by a dropout layer and
then mapped to the corresponding outputs with a linear layer. It is worth noting that for paraphrase
detection and semantic textual similarity analysis, two normalized embeddings (two sentences) in
each sample need to be concatenated together before they are fed into the linear layer and their final
output should be a logit. The architectures of three baseline models are shown in Fig 1.

4.3 Cosine-Similarity

It is obvious that the outputs of the baseline models for paraphrase detection and semantic textual
similarity analysis might be out of range. The paraphrase detection baseline model output can be
normalized with a sigmoid function. The output of the semantic textual analysis should be a number
measuring the similarity between two sentences (or two-sentence embeddings).

Cosine similarity was utilized to measure the similarity between two sentence embeddings. It can be
calculated as follow:

cosine similarity (u⃗, v⃗) =
u⃗ · v⃗

∥u⃗∥2 ∥v⃗∥2
(2)
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Figure 1: The baseline models for three tasks

where u⃗, v⃗ represent two sentence embeddings. The semantic textual similarity analysis model
outputs the cosine similarity and is trained with the mean square error loss function. The original
cosine similarity ranges from -1 to 1. The output was converted to its absolute value and linearly
scaled to the target range to match the range of the similarity used by the dataset. In addition, to
update the model’s parameters when the BERT model’s parameters are frozen, i.e., in the ’pre-train’
option, two linear layers are added before the cosine similarity is calculated (the left figure in Fig 2).

4.4 Similarity-based Triplet Networks

Inspired by "Multiple Negative Ranking Loss" (Henderson et al., 2017) and triplet networks (Ein-Dor
et al., 2018), we propose an unsupervised similarity-based approach to augment data and improve
sentence embeddings. Intuitively, if sentence A is similar to sentence B, given any sentence C,
the similarity between A and C should be close to that between B and C. On the other hand, one
sentence can not be similar to two sentences that are very different from each other.

The approach can be formalized in the following way, as shown in Fig 2: Given a sample
(xa, xb, xc, yab), where xa and xb are a pair of similar sentences whose similarity yab can be found
in the training dataset, xc is another sentence in the dataset, minimize the following loss function:

J(xa, xb, xc, y, θ) = |S(xa, xc)− S(xb, xc)| if yab = S(xa, xb) ≥ s0 (3)

where θ represents the sentence embeddings and neural network parameters and S(·) is the semantic
textual similarity model whose output is cosine similarity between two sentence embeddings. s0 is
the lowest similarity between xa and xb. We set s0 = 5 in this work.

Figure 2: The similarity-based triplet model

It turns out that loss function 3 converges too slowly. The following loss function is used in training
the model to speed it up.

Lcd = ∥S(xc, xd)− ycd∥2
Lab = ∥S(xa, xb)− yab∥2

Labc = ∥S(xa, xc)− S(xb, xc)∥2
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Dataset Name SST CFIMDB Quora STS

Task sentiment classification paraphrase
detection

semantic textual
similarity analysis

Sample’s Input a sentence a sentence a pair of sentences a pair of sentences

Sample’s Output a label of 5 classes binary label binary label a scale from 0 (unrelated)
to 5 (equivalent meaning)

Evaluation Metric accuracy accuracy accuracy Pearson correlation
Train Size 8,544 1,701 141,506 6,041
Dev Size 1,101 245 20,215 864
Test Size 2,210 488 40,431 1,726

Table 1: Dataset Details

learning rate epoch hidden dropout probability embedding size

pretrain: 1e-3
finetune: 1e-5 10 87.0 768

Table 2: Common model and training configurations on three datasets

Labd = ∥S(xa, xd)− S(xb, xd)∥2

Loss = λ1Lcd + λ2Lab + λ3Labc + λ4Labd (4)

where xa, xb and xa, xb are two pairs of sentences whose similarity scores (yab, ycd) are known.
Similarly, yab = S(xa, xb) ≥ s0. λ is used to scale the weights of each loss component. When
λ1 = 1, λ2 = λ3 = λ4 = 0, the similarity-based triplet model degrades to the baseline model.

5 Experiments

5.1 Data

Two datasets are used for sentiment classification analysis: Stanford Sentiment Treebank (SST)
(Socher et al., 2013) and CFIMDB (Maas et al., 2011). Quora dataset (quo) is used for paraphrase
detection. SemEval STS Benchmark dataset (Agirre et al., 2013) is used for semantic textual analysis.
The details about these datasets can be retrieved in Table 1.

5.2 Evaluation method

Accuracy is utilized to evaluate the model’s performance on sentiment classification and paraphrase
detection. The Pearson correlation of the true similarity values against the predicted similarity values
is used to evaluate the model’s performance on semantic textual analysis.

5.3 Experimental details

The model is trained and tested on Google Colab. The GPU model is NVIDIA A100-SXM4-40GB.
The model and training configuration are the same as the default in the handout (as Table 2 shows).
Different batch sizes are selected for three tasks. For sentiment classification, the batch size is set to
16, and it takes about 1 minute to fine-tune the model each epoch. For paraphrase detection, the batch
size is set to 96, and it takes about 10 minutes to fine-tune the model each epoch since the Quora
dataset is much larger than other datasets. For the semantic textual similarity analysis, the batch size
is set to 8. It takes 2 minutes and 10 minutes to fine-tune the baseline model and the similarity-based
triplet model each epoch, respectively.
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Dev Set Test Set Best Model

SST Accuracy 0.520 0.528 Base Model
Paraphrase Accuracy 0.726 0.726 Base Model

STS Correlation 0.713 0.678 Base Model
(cosine similarity)

Average Score 0.653 0.644

Table 3: Results on Three Datasets

5.4 Results

Table 3 shows the best results on validation and testing set for three tasks and their corresponding
models. The BERT model gets a 0.653 average score on the validation set and a 0.644 average
score on the test set. All these results are obtained from fine-tuning the BERT model for three
tasks. The best SST accuracy is achieved by fine-tuning the model on the dataset. However, the best
paraphrase accuracy and STS correlation score are achieved by fine-tuning the model for three tasks
simultaneously. As expected, the cosine similarity works better than the baseline (Fig. 1). However,
the similarity-based triplet model can not improve the model’s performance further.

5.4.1 Cosine Similarity

Figure 3 shows the cosine similarity and baseline model results. The figure shows that outputting the
cosine similarity can significantly improve sentence embeddings for the semantic textual similarity
task. This makes sense because cosine similarity measures the similarity between two vectors. Figure
3 also shows the validation accuracy of the other two tasks. Since we only fine-tuned the BERT
model for the STS task, the model performance on the other two tasks did not improve.

Figure 3: Results of cosine similarity model and baseline model

5.4.2 Similarity-based Triplet Networks

When the similarity-based triplet model was trained, different λ combinations were tried to improve
the sentence embeddings in the STS task. Figure 4 shows the correlation score on the validation set
of these similarity-based triplet models. Surprisingly, none of these triplet networks outperforms the
baseline, which is just outputting the cosine similarity of two sentence embeddings (the left part of
Fig 2). Even an ideal model should minimize each part of the loss function (see equation 4). The
triplet components, such as Labc and Labd, seem to import too much noise for the model. When we
decrease the loss components in equation 4 (by setting the corresponding λ = 0) step by step, the
sentence embeddings will improve accordingly.

We fine-tuned the BERT model on three datasets at the same time, and the results are shown in Figure
4 (right). Model performance on three validation datasets will fluctuate with the model iterating.
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Figure 4: Results of similarity-based triplet model

6 Analysis

According to the research "Multiple Negative Ranking Loss" (Henderson et al., 2017) and triplet
networks (Ein-Dor et al., 2018), the similarity-based triplet networks should work theoretically.
However, importing these triplets during training does not help improve the sentence embeddings in
the semantic textual similarity analysis task. It might result from the following reasons:

1) The number of similar sentence pairs is not larger enough compared to the total number of the STS
dataset. In the training set, there are only 283 pairs of similar sentences whose similarity score is 5.
When training the triplet networks, we randomly selected a batch of similar sentence pairs from the
pool and calculated the corresponding loss function (equation 4) batch by batch. With limited similar
sentence pairs, the effect of the triplet loss can not be presented.

2) The weight configurations of each loss component are not proper. Even though multiple λ
combinations have been tried, many other choices can be explored. The magnitude of the triplet loss
component, such as Labc and Labd, tends to be larger than the baseline loss component, i.e., Lcd. So,
increasing λ1 might work.

7 Conclusion

Importing cosine similarity turns out to be an efficient way to boost sentence embeddings on semantic
textual similarity tasks, compared to the simple concatenation approach. The proposed similarity-
based triplet networks make sense theoretically. However, the approach can not improve the sentence
embeddings as expected due to the number of similar sentence pairs.
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