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Abstract

We have developed an Sentence-BERT (SBERT) transformer model that achieves
performance on sentiment classification, paraphrase detection, and semantic textual
similarity (STS) tasks comparable to BERT. SBERT is a method for generating
high-quality sentence embeddings to provide a way for machines to understand
the meaning of sentences and to compare them with one another. Theoretically,
SBERT should garner higher performance on tasks that require a model to view
multiple sentence embeddings such as in paraphrase detection and STS. In addition
to SBERT, we have implemented various significant changes both to the model and
training algorithms to increase performance and to experiment with more advanced
techniques. Experiments with our implementation of SBERT and subsequent
additions have shown slightly better performance on tasks that can benefit from
sentence embeddings. Other additions to the standard baseline BERT model
include experimenting with L2 regularization, adversarial regularization, additional
datasets, and loss functions for their respective tasks.
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2 Introduction

Pre-trained transformer-based deep language models have revolutionized natural language processing
(NLP) since their introduction in 2018. Among these models, BERT has achieved state-of-the-art
performance on a wide range of NLP benchmarks and tasks. However, while BERT and its variants
have shown impressive results on many tasks, there is still much room for improvement, particularly
on more complex downstream NLP tasks.

In recent years, researchers have focused on optimizing and building on top of BERT to achieve even
better performance. One promising approach is Sentence-BERT (SBERT), a method for generating
high-quality sentence embeddings that can be used to compare and contrast sentences [[1]. SBERT
has become a popular library for NLP practitioners, as it can be applied to a wide range of tasks and
languages. Theoretically, SBERT should garner higher performance on tasks that require a model to
view multiple sentence embeddings such as in paraphrase detection and STS.

In this paper, we present a novel approach that combines state-of-the-art model architecture with
several optimization strategies to achieve better performance on three important NLP tasks: sentiment
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analysis, paraphrase detection, and semantic similarity classification. Our approach includes SBERT,
adversarial regularization, L2 regularization, and the inclusion of an additional dataset to improve
performance. We evaluate our approach using the Stanford Sentiment Treebank [2]], Quora dataset[3],
and SemEval STS Benchmark dataset [4]].

Our work builds upon prior research that has focused on improving BERT-based models for complex
NLP tasks. By combining state-of-the-art model architecture with a range of optimization strategies,
we aim to push the limits of performance even further. Our results demonstrate that our approach
outperforms our baseline miniBERT model on the sentiment analysis, paraphrase detection, and
semantic similarity classification tasks. While our study is not the first to explore optimization
strategies across different fields, our approach contributes to the ongoing effort to improve NLP
models and highlights the potential of combining multiple strategies for better performance. Our
work contributes to ongoing efforts to improve NLP models and demonstrates the potential of
combining optimization strategies for better performance.

3 Related Work

3.1 Sentence-BERT (SBERT)

Recent years have seen significant developments in pre-trained, transformer-based deep language
models for natural language processing (NLP) tasks. Among them, BERT has been particularly
successful, achieving state-of-the-art performance on various NLP benchmarks [5]. However, while
BERT models have shown impressive results, their high computational cost limits their practical use
in real-world applications.

To address this issue, Reimers and Gurevych proposed a method called Sentence-BERT (SBERT)
that uses trained sentence-level embeddings to reduce the computational overhead [1]. The SBERT
model utilizes a siamese architecture, where two parallel BERT models share weights and produce
embeddings for each sentence in a pair. These embeddings are then processed by a pooling layer to
obtain semantically-rich sentence-level embeddings, which can be used for tasks such as classification
or similarity comparison. The downside of this method is that training takes considerably longer due
to the introduction of an additional BERT layer.

Since its introduction, SBERT has gained significant attention in the NLP community and has
been successfully applied to various tasks such as paraphrase detection, information retrieval, and
sentiment analysis. Several studies have investigated the effectiveness of different pooling strategies
and have proposed various modifications to the SBERT model to improve its performance on specific
tasks [6, [7].

Overall, SBERT represents a significant advancement in NLP research and has shown promising
results in various applications, highlighting the importance of using semantically-rich sentence
embeddings for reducing computational overhead while maintaining high performance.

3.2 Adversarial Regularization

Adversarial regularization has been applied to various deep learning models, including BERT and its
variants, to improve their generalization performance on various NLP tasks. One notable application
is the "Adversarial Dropout Regularization" proposed by Li et al., where dropout is replaced by a
stochastic adversarial perturbation of the input during both training and testing [8]]. This method is
shown to be effective in improving the robustness of BERT models against adversarial attacks, while
maintaining or even improving their performance on clean data.

In addition, Xu et al. propose a method called "Adversarial Learning with Semantic Perturbation”
(ALSP) to enhance the semantic robustness of BERT models [9]. The method introduces a semantic



perturbation module that generates adversarial examples by incorporating word-level synonyms and
antonyms, which are designed to preserve the original semantics of the input. The authors demonstrate
that ALSP can significantly improve the robustness of BERT models on various semantic-level attacks.

Furthermore, some recent studies have explored the combination of adversarial regularization with
other techniques, such as learning rate decay and weight decay, to further improve the performance
of BERT models.[10,11] These studies demonstrate the effectiveness of the combined approach in
achieving state-of-the-art performance on various NLP tasks.

4 Approach

4.1 Baseline Model

For our baseline model, we are using a basic minBERT model. Designed to be a simplified
implementation of BERT, it includes a tokenizer and base embedding layer, which includes both
token embeddings and positional embeddings, followed by a stack of 12 BERT transformer layers.
Each BERT layer consists of a multi-headed attention layer followed by an add-norm layer, then a
feed-forward layer followed by a second add-norm layer. The model is trained with an AdamW
optimizer, an extension of Adam that introduces weight decay as a form of regularization. This
allows for more fine-grained control over the amount of weight decay applied to each layer of the
network, which can improve performance on some tasks. More details can be found in the 2023
CS224n default project handout.[[12]]

4.2 TImplemented Model

Starting with the baseline minBERT model as the core of our implementation, we integrated various
additions to the baseline model. The architecture for sentiment analysis has been largely left
untouched from the baseline. This is because the SBERT architecture does not have a great effect on
tasks that only require a single sentence embedding. As such, the sentiment analysis task is simply
composed of a single BERT model, a dropout layer, and 2 dense layers.

SBERT Implementation: We refer directly to the SBERT paper [1] to develop our model.
In SBERT, for tasks that require a model to examine multiple sentence embeddings a separate
BERT model is used for each embedding. For our case, two parallel BERT models share weights
and generate embeddings for each sentence in a pair. This allows the model to learn a more
robust representation of each sentence, as it is forced to encode information from each sentence
independently, while still being able to capture any underlying relationship between the sentences.
The output of these parallel models is then fed into a pooling layer to generate a single, fixed-size
representation for each sentence. We implement this architecture for both paraphrase detection and
semantic textual similarity. For sentiment analysis, a single BERT model is used that is separated
from the other tasks to prevent conflict.

A slightly different architecture is required between paraphrase detection and STS due to paraphrase
detection being a classification task and STS being treated as a regression task. For paraphrase
detection, we concatenate both sentence embeddings and their absolute difference to capture
information relating to each sentence and their relation to each other. Here, we deviate from the
original proposed architecture. Rather than applying the softmax, we use a binary cross entropy loss
instead as there are only two classes. This is a valid approach because the binary cross entropy takes
in the logit output of the model and applies a sigmoid function to map the output to the range [0,1],
which can be interpreted as the probability of the positive class. For STS, we follow the original
SBERT paper for a regression task where the cosine similarity between both pooled outputs is
outputted between the values [-1,1] and then we subsequently apply an MSE loss as our loss function.

Lastly, we tack on some dense layers with a ReLU activation functions and a few dropout layers to
improve the robustness of the model.
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Figure 1: Visualizations of the original SBERT architecture with classification objection function
(left) and regression objective function (right). Note that in our architecture the softmax classifier is
not used. Taken from the SBERT paper [[1].

Adversarial Regularization: To implement adversarial regularization, we added a new function to
create perturbed version of the current batch of data. Adversarial regularization works based on the
following equation:

min F(0) = £(6) + ARy (60) )

Here, £(0) is the loss term for the given task, Rs(6) is the adversarial regularization term, and A is a
scaling factor hyperparameter). The adversarial regularization term is computed by taking the loss
of the model on perturbed data points. Perturbations are generated by adding a uniformly randomly
generated number to existing data points. By forcing our model to handle inputs slightly outside the
training examples, adversarial regularization is achieved.

In addition to adversarial regularization, we also apply a small L2 regularization during training
which has consistently been used to prevent overfitting in models.

Learning Rate Decay: In addition to the learning rate scaling done as part of the AdamW optimizer
(see the AdamW paper [[13] for more details), we implemented our own form of learning rate scaling
and early stopping mechanisms. After the model has failed to improve on the validation set for a few
epochs, learning rate is halved. If the validation set continues to fail, the model is stopped. This
halving of the learning rate is required because if the model continues to train while not improv-
ing on the validation set, it indicates that overfitting is occurring and the model is not generalizing well.

5 Experiments

5.1 Data

The datasets we used are as follows:

Further information about the first 4 datasets can be found in the 2023 CS224n default project
handout.[12]] The SICK dataset consists of labeled sentence pairs where each sentence pair is given
a relatedness score in the range 1-5. This is different from the SemEval STS dataset where each
sentence pair is given a relatedness score in the range 0-5. As such we scaled the STS dataset
to be in a range similar to the SemEval set. Unfortunately, due to the very different distribution
compared to the SemEval dataset, it did not improve results for the STS task. As such, we used it



Data Source Train Dev Test Set Source
Stanford Sentiment Treebank 8,544 1,101 2,210 Default Project

Quora Dataset 141,506 20,215 40,131 Default Project
SemEval STS Dataset 6,041 864 1,726 Default Project
SICK Dataset 4,439 495 4906 Marelli et al., 2014

Table 1: Information on the datasets used in this project.

to supplement training on the semantic similarity task by treating it more as an additional method
to prevent overfitting by scaling its loss down via a scaling hyperparameter. We originally wanted
to integrate this dataset due to the few training examples in the SemEval dataset. This dataset was
obtained from the Hugging Face datasets library.[[14]

5.2 Evaluation method

We evaluated our model quantitatively, using a series of scores across the various datasets. For the
SST, and Quora dataset, our metric was accuracy. The SST task required classification between 5
varying positive/negative ratings, and the accuracy metric determined how many of the predicted
labels matched the actual label. For the semantic similarity task on the STS dataset, performance was
measured based on the Pearson correlation of the predicted labels compared to the true value, ranging
from -1 (total negative correlation) to +1 (total positive correlation). In addition, we computed more
advanced metrics, like precision, recall, and F1 score for sentiment analysis and STS tasks. For
STS F1 score because it is treated as a regression task, we use a threshold of + 0.2 to denote a true
positive. Note that these metrics were imported from sklearn [? ] and integrated into the evaluation
code ourselves so they may not be accurate. For paraphrase detection these metrics failed to appear
properly and as such we will not include them in our results.

The completed model was submitted to the 2023 CS224n Default Project leaderboard, wherein all
default project teams would submit and compare performance across the three tasks.

5.3 Experimental details

In our final implementation of the SBERT model:

the adversarial regularization scaling parameter A 4 = 0.01

the 12 regularization scaling parameter Azs = 0.01,

learning rate I, = 1073, learning rate halving mark = 5 epochs no improvement
batch size = 16

Dropout layer probability = 0.3

Epochs = 10

After obtaining the concatenated pooled outputs for paraphrase detection, the output is fed through
two dense layers of sizes (BERT HIDDEN SIZE*3, 256) and (256, 1). Paraphrase detection took
a very long time to train (1 hour 30 minutes per epoch) and as such we were only able to train on
paraphrase detection for a few epochs. The other tasks were very fast to train, together they took
about 3 minutes per epoch

5.4 Results

There was a significant improvement in the performance of paraphrase detection and STS scores.
Sentiment accuracy remained the same as no modifications were made to target that task. Ideally, we
hoped these results would be higher. We believe that the lack of stronger results is due to the lack of
pretraining of the model and lack of tuning hyperparameters. Validation accuracy for the STS
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Table 2: We compare results on the three tasks with the minBERT baseline and our implemented
multiclassifier model. The SBERT model results are from the test leaderboard.
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Figure 2: SST Training/Validation Accuracy

STS Train Correlation STS Validation Correlation

n ;o @ D

Correlation
oo o 00000

a0 S o oW o o oW W o w
[P R TR

=)

=]

Epoch Epoch

Figure 3: STS Training/Validation Correlation

6 Analysis

Our model significantly improves on the baseline for both paraphrase detection and STS, but does
not provide a significant improvement in sentiment analysis from the baseline despite our numerous
modifications. This has resulted because we did not make any modifications to the sentiment analysis
training or the layers that the sentiment analysis task interfaces other than a few dense layers and a
dropout.

Our training and validation graphs for the STS task are strange. The validation correlation appears to
bounce up and down which could be the result of various factors. Some things to consider are: the
small dataset used for STS, overfitting, training data not being very indicative of the validation data,
or a misconfiguration of hyperparameters. We had not considered it before, but it would have been
pertinent to give each task a different learning rate depending on this issue. The very small dataset
we were given also was likely very damaging to our results. We attempted to integrate more data like
the SICK dataset, but unfortunately, this did not result in a higher correlation.

w
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Precision Recall F1 Score

SBERT noReg Sentiment Analysis 0.512 0.490 0.477
SBERT noReg STS 0.786 0.886 0.833

SBERT AdvReg Sentiment Analysis 0.506 0.502 0.502
SBERT AdvReg STS 0.868 0.932 0.899

Table 3: We examine precision, recall, and F1 score on both sentiment analysis and STS. The STS
evaluation has a threshold=40.2

With a threshold of 0.2 for STS, we received a significant increase to metrics. This indicates that
the actual evaluation code for accuracy has a very strict threshold compared to our chosen value.
Although these metrics are not officially used in this project, we thought it would be interesting to
examine them.

Although SBERT should theoretically greatly improved performance on tasks that require a model to
examine multiple sentence embeddings, our results were not as impressive as we anticipated. We
believe the major key reason as to why our results did not greatly improve on STS and paraphrase
detection was due to not conducting any pretraining on our model. Unfortunately, we ran out of
time to implement a pretraining function with an MLM objective. We additionally did not have time
to introduce a hyperparameter tuning algorithm and from our previous experiments with different
learning rates the values of each hyperparameter has drastic effects on our model implementation.

7 Conclusion

We learned many useful ways to increase performance of a model such as regularization. We also
were able to gain a greater understanding of the various loss functions and the appropriate times to
use each one. Lastly, it was very educational to implement a different form of the BERT architecture
and dive deeper into how it functions and garners higher performance.

Overall, SBERT did have some significant performance increases compared to the baseline BERT
model trained on sentiment analysis; however, there are many improvements that could have been
made to increase the performance of our model. Additional pretraining, ensembling, potentially
trying out different loss functions, and hyperparameter tuning were all significant ways to increase
robustness of the model.

Our primary limitation for this project was the time it took to train on the paraphrase dataset. In
future projects, we would recommend trying out a slightly smaller version of this model to make
training faster.
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