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Abstract

Transformer-based Large Language Models (LLMs) have revolutionized Natural
Language Processing (NLP). By analyzing large amounts of text data, LLMs
are capable of identifying relationships between words and phrases, as well as
their context, resulting in a more nuanced language understanding. LLMs are
transferable, allowing them to be pre-trained on large data sets and later fine-
tuned on smaller downstream-specific tasks. However, fine-tuning can lead to
catastrophic forgetting, where previously learned information is lost. In this work
we propose a BERT-based architecture that promotes representation generalization
by training on multiple tasks: Sentiment Analysis (SA), Paraphrase Detection (PD),
and Semantic Textual Similarity (STS). Our experiments suggest that even when
accounting for task interference, a Multi-task Learning (MTL) framework is only
effective when it can leverage related tasks.

1 Key Information to include
• Mentor: Hans Hanley

2 Introduction

In recent years, Natural Language Processing (NLP) has been revolutionized by transformer-based
Large Language Models (LLMs) [1]. By analyzing vast amounts of text data, LLMs can identify
subtle relationships between words and phrases, as well as the context in which they are used,
enabling them to better capture the nuances of human language, compared to previous approaches.
Additionally, LLMs are transferable, meaning that they can be pre-trained on large amounts of data
and then fine-tuned on smaller task-specific datasets. Thus enabling the development of more efficient
and effective models for specific NLP tasks, without the need for extensive training data. For instance,
BERT [2] (one of the first LLMs) led to state-of-the-art performance in multiple downstream tasks,
out-competing specialized systems at the time [3].

However, the fine-tuning process can often lead to catastrophic forgetting, that is, when a neural
network forgets previously learned information when trained on new and unrelated data. Thus,
leading to a loss of generalizability in the learned representations [4]. This phenomenon has motivated
research avenues that improve the robustness of learned representations for downstream tasks. One
such approach is Multi-task learning (MTL) which promotes representation generalization by training
on multiple related tasks simultaneously. In MTL, models learn to share information across tasks
via a common feature extraction backbone, while capturing relevant features for each task with
task-specific components [5].

Nevertheless, the nature of MTL involves facing challenges that remain open-ended research ques-
tions, for example task interference, which occurs when tasks negatively impact each other’s perfor-
mance [6]. This problem is particularly relevant when tasks have different requirements or are not
well-aligned. In this work, we study the problem of developing robust embeddings with LLMs for
NLP downstream tasks by proposing a MTL BERT-based architecture and involving strategies to
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handle task interference. In particular, we apply our approach to the tasks of Sentiment Analysis
(SA), Paraphrase Detection (PD) and Semantic Textual Similarity (STS). We validate our approach
across all tasks by comparing it to the single-task fine-tuned paradigm and find that only when the
tasks are "related" the MTL approach provides a significant boost in performance (e.g. increased
accuracy).

3 Related Work

3.1 Transformer-based Models for Natural Language Understanding

Since the introduction of BERT [2], Transformer based pre-trained language models have dominated
the field of Natural Language Understanding. Such architectures have provided unprecedented
improvement of accuracy on various tasks compared to traditional models (e.g LSTM) at the cost of
increasing the number of parameters, making them computationally expensive and unreliable due to
memory limitations of available hardware [7]. The latter hinders their adoption for applications such
as sentence-pair regression tasks e.g. large-scale semantic textual similarity, clustering, paraphrasing
detection, and information retrieval via semantic search. Hence, several works have addressed this
issue with architectonic solutions. Poly-encoders proposed by Humeau et al. [8] addresses the
run-time overhead from BERT by computing candidate embeddings using attention. However, the
score function used by this approach is not symmetric and the computational overhead is still large
for some applications (e.g clustering). In [9] a Siamese triplet network architecture (Sentence-BERT)
was proposed as a computationally efficient replacement for BERT. As an example, on a modern
V100 GPU, hierarchical clustering of 10,000 sentences on standard BERT requires 65 hours (since
50 Million sentence combinations must be compared), while it only takes 5 seconds with Sentence-
BERT. Another successful approach was ALBERT [10], where two parameter reduction techniques
to lower memory consumption and increase the training speed of BERT were introduced, showing
comprehensive empirical evidence that such methods lead to models that scale much better compared
to the original BERT.

3.2 General Robust Embeddings

Since Contextualized representations retrieved from pre-trained LLM’s are central to achieve high
performance on downstream NLP tasks, the search for an optimal sentence embedding scheme
remains an active research area in computational linguistics [11]. Although BERT-based models
employ the [CLS] token vector as a "reasonable" sentence embedding (common starting point in
several works), it has been proven that such embeddings yield worse results than GloVe embeddings
[12] for several applications such as sarcasm detection [13], semantic co-occurrence [14], and STS
[9]. Thus exhaustive analysis comparing different strategies to retrieve embeddings from BERT (and
other Encoders such as ALBERT [10]) have been explored. For example, it has been observed that
averaging the BERT tokens (a type token pooling strategy along max pooling) for every word in
a sentence provides a better result than the [CLS] token [9]. Furthermore applying a CNN after
the pooling operation might slightly boost performance for some tasks, but it also has a negative
impact for other tasks [11]. Lastly Merchant et al. [15] suggest that the linguistic features are not
always incorporated into the final prediction layer (nor in earlier layers) showing that the layers closer
to the final BERT embedding (such as the second to last) might provide a boost in performance
for downstream task. A possible reason for this observation might be that the last layer provides
embeddings that capture features necessary for BERT’s pre-training pretext task (MASK LM and
Next Sentence Prediction)

3.3 Multi-task-based Robust Embeddings

In contrast to the selection of a pooling strategy or layer representation selection, other works
have focused on training strategies to obtain robust embeddings. Hence Representation Learning,
Meta-learning, and Multi-Task Learning frameworks have been exhaustively studied as plausible
solutions [16, 17, 18]. Under the MTL paradigm, models are jointly trained from multiple related
tasks, using shared representations to learn generalized features from a collection of tasks, integrating
knowledge across domains [19, 20]. At its most general form, the MTL paradigm only requires
tailored architecture design [21, 22]. Most common approaches are parallel, hierarchical, modular,
and generative adversarial architectures. In the parallel architecture, a model is shared among
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multiple tasks while each task has its own output layer. Hierarchical architectures explicitly model
the interaction between tasks, while modular architectures decompose a given model into shared
components and task-specific (learning task-invariant and task-specific features respectively) [23, 24].
As a common extension, several MTL workflows aim to improve the robustness among tasks via
custom optimization processes such as dynamically tuning gradient magnitudes [25], employing meta
objectives[26], and hybrid balance methods [27]. However, these types of approaches simply neglect
the possibility of getting feedback from conflicting gradients, which might improve performance, but
waste the potential conjoined learning space of an MTL setting. Thus Yu et al. proposed Gradient
Surgery [28], an algorithm to project a conflicting tasks’s gradient onto the normal planes, which has
shown state-of-the-art performance in several applications [29, 30, 31, 32].

Theoretically, shared embedding increases data efficiency while making a representation more robust
for related downstream tasks (providing attention to relevant features), but in practice, it may lead
to degraded performance (this is especially true when tasks compete for model capacity) [22, 33].
Hence, recent observations on MTL have questioned the utility of gradiant surgery, meta objectives,
and dynamic gradient tuning paradigms. Xin et al.[34] suggest that such MTL strategies might not
provide better performance than simply optimizing a weighted average of the task losses (obtained
via hyper-parameter search). Other studies have showed that a possible reason for such observation
may not be a combination of several factors since, unlike transfer task affinities, multi-task affinities
are highly sensitive to a number of components external to conjoined loss functions such as dataset
size and network capacity [35].

4 Approach

Figure 1: Final architecture for Multi-Task Learning approach. All tasks share the BERT-Based
Encoding Module for embedding the input sentence.

To (theoretically) improve the robustness of the learned embeddings we experimented with the MLT
paradigm. Figure 1 depicts our proposed final architecture (after exploring different combinations).
We then compare the performance of MTL against single-task training using the same model (this
serves as our baseline).

Shared BERT Backbone. To promote shared learning all tasks share a BERT-Based Encoding
Module h, which takes a sentence s as input and outputs an encoded representation e = h(s) which
is then used for the task-specific heads. We process the sentence by first tokenizing the words, adding
positional embeddings, and encoding them with the BERT model.

Task-specific heads. For SA we use a straightforward head composed by a MLP and Softmax
function to predict the degree of similarity ŷSA ∈ [0, 1, 2, 3, 5]. For PD and STS, as they are based
on comparing two sentences our design is inspired by the work from Reimers et al. [36]. We employ
a siamese network approach to process two input sentences A and B and obtain their representations
Xa and Xb. The final output (for our best performing model) is predicted by using a weighted
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average between cosine similarity and a mapping function f over these representations to predict
ŷSTS ∈ R ∈ [0, 5] and ŷPD ∈ [0, 1]. In particular

ŷtask = αf(concat(Xa, Xb, |Xa −Xb|)) + (α− 1)cosine− similarity(Xa, Xb) (1)

Note that for STS the cosine-similarity function is multiplied by 5 to get ŷSTS ∈ R ∈ [0, 5]

Task-specific head selection We proposed four different architectures and compared their perfor-
mance in every task (decoupled). For every architecture version, the most significant variations are
applied to the Siamese neural network used for STS and PD (As the exploration for an SA architecture
was done in the first part of the project).

1. Architecture V1 (shown in figure Figure 2 located on the Appendix) is a simplified version
of V3 (depicted in Figure 1 ). Every sentence is encoded into the CLS token and then fed
directly into an MLP (different for every task), then the resulting embeddings are fed to a
cosine similarity function for PD and STS and soft-max for SA .

2. For V2 we introduced the BERT-Base Encoding Module of architecture V3 and left everything
else equal to V 1

3. Architecture V3a and V3b (shown in Figure 1) essentially the same, but with different values
of αtask (shown in equation 1), which reflects a trade-off between an MLP and cosine-
similarity function. Hence the two difference between this and the previous architectures is
the addition of a weighted average between an MLP and Cosine− similarity function as
a final layer and the fact that the MLP applied after to the BERT-Based Encoding Modules
is shared among all tasks.

(a) For V3a we selected the αPD = 0.99 (adding more weight to the MLP layer), αSTS =
0.01 (adding more weight to the Cosine-similarity layer)

(b) for V3b αPD = 0.01 (adding more weight to the Cosine-similarity layer) and αSTS =
0.99(adding more weight to the MLP layer)

BERT Embeddings. We note that as the sentence representation four our final model V3, instead of
using the hidden state of the < CLS > token of the last BERT Layer, we use a mean pooling across
all tokens of a given word from the second to last BERT Layer and multiplied this representation
by its respective attention weight, as shown in Figure 1. Following [11] we added an optional
1D-convolutional layer on top of these embeddings (The selection of the best performing BERT
Embedding is explained in the next section).

Loss functions. For joint training we define a MTL loss function Loverall composed by adding
the individual task loss functions Ltask. LSA is defined by a standard cross-entropy loss. PD is
formulated as a binary classification problem, thus we used a binary-cross entropy, cosine embedding
loss, and triplet loss to define LPD inorder to ensure that the embeddings are expressive, meaning
that the model does not trivially learn to increment the norm of some word embeddings to capture
similarity as denoted in Bordes et al. [37]. Finally, STS is a regression problem, therefore we define
its loss (LSTS) as the weighted average between the mean-square-error and Lasso losses.

Loverall = c1LSA + c2LPD + c3LSTS

LSA = Lce

LPD = Lbce + Lcosine−sim−emb + Ltripplet−margin−loss

LSTS = (γ)Lmse + (γ − 1)Llasso

where the ci are the scaling constants to project all Ltask to the same magnitude.

Time-efficient cosine triplet loss functions for Paraphrase Detection The triplet margin loss
function requires an anchor, positive, and negative examples respectively. We compute the cosine
triplet loss functions when the label is equal to one, setting the two encoded sentences as an anchor
and positive example and a randomly sampled sentence as the negative example. A naive approach to
obtain such negative representations would be to create a second data loader (shuffled differently)
and sample from two loaders at the same time in order to calculate the BERT embeddings for
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positive negative, and anchor examples. To avoid this implementation (which could potentially add
more hardware constraints), we proposed a time-efficient implementation where we store the BERT
representations of a given batch to be used as the negative samples for the next batch. Though
this idea was implemented from scratch, it is a popular approach in Computer Vision (Contrastive
Learning) [38, 39] and Knowledge Graph embedding algorithms [40].

Multi-task training strategy. We handle task interference by following the work from Yu et al. [28],
which identified conflicting gradients (gradients for different tasks pointing away from one another )
as the primary optimization issue in MTL. Though averaging over the task gradients could provide
(under specific assumptions) a correct solution, there are key scenarios in which this may lead to
degraded performance. Hence, we implement Gradient Surgery (GS) [28], a method for handling
conflicting gradients across tasks, to jointly train our MTL model. Formally, given a collection of
tasks Ti ∈ T for i = {1, 2, ..n}. The gradient for task Tj is denoted as gj , while the gradient for
task Ti i ̸= j is given by gi. If a gradient conflict is encountered (a negative cosine similarity )
between gi and gj , gi is replaced by its projection onto the normal plane of gj : gi = gi− gi·gj

||gj ||2 gj .
Otherwise, when the cosine similarity is non-negative (non-conflict gradients), the original gradient
gi is unaltered. This process is repeated across all of the other tasks, sampled randomly.

5 Experiments

5.1 Data

For each task we use the datasets from the project instructions including the proposed data splits.
For SA: Stanford Sentiment Treebank [41]. For PD: Quora question pairs dataset [42], and for STS:
SemEval STS Benchmark dataset [43].

5.2 Evaluation method

We use accuracy and F1 to evaluate the performance for the SA and PD tasks as they are formulated
as classification tasks. For the STS task we calculate the Pearson correlation and EM between the
predicted and true similarity values.

5.3 Experimental details

For all experiments, we use an NVIDIA A10 GPU. We perform our experiments from a pre-trained
checkpoint (provided for the project), thus every subsequent experiment starts (fine-tunes) from this
model. In some experiments, we freeze a previously fine-tuned model to further fine-tuned for a
single task (fine-tune of the fine-tune), we will refer to this as fine-tuning (and use the word training
when we fine-tune the original checkpoint)

Single Task fine-tuning We perform this experiment twice, with two different gaols

1. Architecture Selection . To select the best architecture we train every model for 3 epochs
with learning rate 1 × 10e−5 batch size 16 and dropout probability rate of 0.7 (This was
done due to resource constraints).

2. Base line. To compare The performance against MTL we train the best performing model
(from the previous experiment) on a single task using the following parameters: epochs 15
(with early stopping), learning rate 5× 10e−6 batch size 32, dropout probability 0.7.

Embedding Selection After selecting the best architecture, we explore three BERT embeddings
strategies (CLS token, mean pooling, mean pooling + 1D-CNN), due to resource constraints we only
train the models for 3 epochs with a dropout probability of 0.7, batch size of 8, a learning rate of
5× 10e−6, and a gradient surgery workflow,

MTL GS training For MTL we train our best-performing architecture from table 2 (V3) using a
dropout probability of 0.65, batch size of 8 with 4 gradient accumulation steps, a learning rate of
8 × 10e−6, 15 epochs (01:23 hours per epoch), a gradient surgery workflow, and average pooling
BERT embeddings.
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Table 1: Test Set Results for all tasks

(a) Sentiment Analysis

Model F1
Final 52.35

(b) Paraphrase Detection

Model F1
Final 76.37

(c) Semantic Textual Similarity

Model EM
Final 61.08

MTL to Single Task fine-tuning After training the model with a MTL paradigm we fine-tuned the
resulting checkpoint for every task using the following parameters: epochs 10, batch size 32, dropout
probability 0.7, learning rate 6× 10e−7

Ablation studies

1. We train MTL-GS with "similar" tasks (removing SA and leaving PD and STS) with the
following parameters. Epochs 10, batch size 16, hidden dropout probability 0.7, learning
rate 2× 10e−6 with equal weight for both loss functions (unscaled) c2 = c3 = 1 and scaled
loss functions c2 = 1c3 = 4. For both scenarios, every epoch took 00:37:15 minutes on
average.

2. To see the impact of the loss we remove Lcosine−sim−emb and Ltripplet−loss from LPD,
this experiemnt is denoted as PDce (since it only uses cross-entropy) . We also train this
experiment with equal weight for both loss functions (unscaled) c2 = c3 = 1 and scaled
loss functions c2 = 1c3 = 4. All the other parameters are left equal to the first ablation
study (described above). For both scenarios, every epoch took 00:30:23 minutes on average.

5.4 Results and Analysis

Test set results. Table 1 shows the results of our MTL approach on the test set (obtained fom the lead
board). As expected, the results are lower than those in the Dev set. We also note that the relative
performance ordering of the tasks is maintained. We obtain position 87 on the lead-board with a
global score of 63.27.

Dev Set Results: Architecture Selection. Table 2 shows the results of experimenting with variations
of our proposed MTL architecture V3(final) (see Figure1). Note that these results were obtained by
training the model for every single task for 3 epochs. From this, we can derive four conclusions.

1. Adding a layer on top of the BERT embeddings (Before feeding them to task-specific MLPs)
further increases the performance of architecture. The latter can be seen by comparing V1

against V2. Our hypothesis is that this approach works since we are adding an extra layer to
learn semantic features important for a downstream task, which helps the model "diverge"
from the feature learned for BERT’s pre-train strategy.

2. Comparing the different variations of V3a we can conclude that Mean-Pooling tokens
provide more expressive embeddings than CLS tokens. This result aligns with Wang et al.
[44] and Reimers et al. [9] (an example of initial comparison between Mean-Pooling and
CLS token is provided in the Appendix)

3. Seemingly similar tasks require different architecture designs. As shown V3a vs V3b, PD
greatly benefitted from having an MLP as a final layer while STS performed the best when
a scaled cosine-similarity layer was used. This aligns with previous observations from
Reimers et al. [9] and Viji et al. [45] that using cosine similarity for STS yields the best
results compared to other methods such as imputing two sentences to BERT (separated with
the [SEP] token) and applying an MLP head on top.

4. Sharing an MLP among across tasks benefits* the performance of a model. This observation
can be seen by comparing V2 vs V3a and V3b (only using the results of the cosine embedding
to set all things equal). However, it is important to clarify (as pointed out in the next
subsection) that this only benefits tasks if they are similar in nature (e.g. PD and STS). This
insight is supported by recent progress in MTL, where researchers are trying to exploit the
complex relationships across different tasks by sharing layers across different task heads
[46, 47, 48].
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Dev Set Results: MTL-GS Does it really work? able 3 shows the comparison of our final method
(V3 architecture with MTL and GS) with the baselines of training a single task by decoupling
our proposed architecture’s task-specific heads. For clarity Table 3 also notes how the model was
fine-tuned. we hilight the following:

1. Version V3b shows how the BERT-Based Encoding Module improves the results for STS, but
does not perform better than V1 for SA and PD (which uses CLS tokens). We hypothesize
that for our proposed sentence representation to be effective, it needs to be paired with an
effective architecture design (especially at the final layer)in order to benefit all tasks.

2. As it has been reported previously, jointly training all tasks with (GS-MTL) provided robust
embeddings (best average overall tasks), but it leads to degraded performance [22, 33],
meaning that jointly training all tasks does not yield the best result possible since single-task
training for SA and PD outperforms MTL-GS (only STS benefits).

3. However, from previous experiments we observed an improvement when including GS
to MTL optimization. Thus, we hypothesize that there was task interference (even after
projecting the gradients) which could be caused by dissimilar tasks interacting. It is possible
that by using all tasks, the additional examples lead to the creation of an even sparser
embedding space to the detriment of the representation of individual tasks. Following
this idea, we perform an ablation study to see if training "similar" tasks would increase
performance. As shown by all the variations of GS-MTL (only PD + STS) and GS-MTL,
our hypothesis is correct, since this lead to the best-performing models for both PD and
STS.

4. For PD and STS, the Best Performing model we obtained was obtained via scaled weights
shown by MTL-GS (only PD +STS). This means that GS benefits greatly when the loss
functions of different tasks have similar magnitudes.

5. Comparing our loss function ablation study we conclude that adding a triplet loss func-
tion benefited the overall performance of MTL-GS for PD and STS. Furthermore, our
implementation only adds 7 extra minutes per epoch

6. As a final highlight, we also notice that even when not directly training with MTL tasks
some tasks can benefit from the other tasks in a low data regime. For example, there is a
marked improvement for SA considering that the model has never been trained for SA (see
rows 2 and 3).

Table 2: Results of Architecture Variations with Multi-task Learning on the Dev Set.
Architecture Embedding Type SA Acc PD Acc STS PC
V1 CLS Token 45.4 45.6 9.9
V2 Mean-Pooling - 66.6 13.6
V3a(Final) Mean-Pooling 46.2 70.1 40.2
V3a Mean-Pooling + CNN - 67.9 36.9
V3a CLS Token - 66.8 38.9
V3b Mean-Pooling - 37.5 12.3

6 Conclusion

Our analysis shows that multitask learning with gradient surgery using all tasks provides the most
robust embeddings based on the average performance. However, it does not provide the best results
possible for all individual tasks (compared to single-task fine-tuning) unless the tasks are similar
in nature (e.g PD and STS). This finding partially aligns with current views on MTL published by
Standly et al. [35]. Furthermore, MTL-GS significantly boosts performance when conflicting tasks
are excluded and the losses are scaled to a similar magnitude. This shows that even after using
MTL-GS it is necessary to use a workflow to regularize the loss functions of all tasks in an MTL
paradigm. This opens up future work on how to systematically define similar tasks and how to scale
them jointly.

Additionally, fine-tuning on top of MTL-GS with conflicting tasks does not provide a substantial
benefit. Contrary to what we expected, it yields lower performance than fine-tuning a single task at a
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Table 3: Results of Training Strategies for Multi-task Learning on the Dev Set. GS: Gradient Surgery;
MTL: Multi-Task Learning. Ft: Fine tuning.

Model Training Strategy SA Ft PD Ft STS Ft SA Acc PD Acc STS PC Average
V3a Single task ✓ 51.9 37.5 43.3 44.23
V3a Single task ✓ 20.8 71.7 30.7 41.1
V3a Single task ✓ 37.6 25.5 43.9 35.67
V3a MTL 32.6 58.7 52.7 48.0
V3b GS-MTL 34.8 37.5 10.2 27.5
V3a GS-MTL 46.3 60.1 63.0 56.47
V3a GS-MTL ✓ 49.9 37.8 45.7 44.47
V3a GS-MTL ✓ 46.3 65.6 58.9 56.93
V3a GS-MTL ✓ 45.5 50.7 60.1 52.12
V3a GS-MTL (only PD + STS unscaled) 22.3 69.6 65.2 52.36
V3a GS-MTL (only PD + STS scaled) 23.8 76.3 63.4 54.50
V3a GS-MTL (only PDce + STS unscaled) 21.4 75.3 39.6 45.43
V3a GS-MTL (only PDce+ STS scaled) 21.0 76.6 43.3 46.96

time. From our architecture experiments, we found that for a PD task, a final MLP layer performed
better than cosine similarity. On the other hand for STS a cosine similarity layer performed better than
an MLP. This behavior highlights that fairly similar tasks can have drastic performance differences
with the same architecture.

Limitations In our work we aimed to make a fair comparison against MT, MT-GS, and single-task
training, meaning that even though we first tried to obtain the best-performing architecture, no
hyper-parameter search was done for every training strategy (which typically yields better results).
Furthermore, we only compared two MTL, MTL-GS learning strategies, with three tasks, thus we
cannot make a generalized statement regarding the performance of modern MTL paradigms against
single-task training. However, we highlight recent criticisms of GS, specifically those claiming
that a hyper-parameter search to scaled loss functions to a similar magnitude might provide better
performance [34]. This claim could be considered unfair since our results show that GS also benefits
from scaled loss functions, hence it should not be used as replacement for hyper-parameter search,
but in conjunction.

Another limitation of our work is that we lack a metric to define "similar" tasks which is important
to ensure that the subdivision of tasks (into similar tasks) is well fundamented . In future work,
we propose to explore a pre-evaluation worflow before training, one in which we keep track of the
conflict gradients among all tasks and used this metric to asses and select tasks to jointly train together
with gradient surgery.
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A Appendix

Figure 2: Architecture V1 for Multi-Task Learning approach.

A.0.1 BERT <CLS> vs BERT average pooling embedding

We performed a toy test with the given sentence:

1. "The dog is dancing on the stage“
2. "The dog is barking on the stage“
3. "The flying car is about to land in Nevada“

Our hypothesis is that even though sentences 1 and 2 are not exactly the same, their embeddings
should be closer if compared against sentence 3. For this experiment, we use a pre-trained model of
BERT, computed both the <CLS> and mean-attention embeddings, and performed a Singular Value
Decomposition (SVD) to visualize them. As seen in figure 3 (a) The mean attention embeddings
are able to capture that sentence 1 and 2 are closer than sentence 3. This is not true the <CLS>
embeddings as shown in 3 (b)
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Figure 3: BERT <CLS> (b) vs BERT mean-attention (a) Embeddings: SVD decomposition of BERT
embeddings for sentence 1,2, and 3,
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