
BERT and MNRLLie: Extending minBERT with Deep
Metric Learning and Gradient Surgery

Stanford CS224N Default Project

Ben Auslin
Department of Computer Science

Stanford University
bauslin@stanford.edu

Jorge Martinez-Alba
Department of Computer Science

Stanford University
jorgema@stanford.edu

Henry Bradley
Department of Computer Science

Stanford University
henryab@stanford.edu

Abstract

In this project, we implemented key aspects of the original BERT model, such
as multi-head self-attention and a Transformer layer, to create a functional BERT
model from scratch. We utilized this model to perform sentiment analysis on two
different datasets: the Stanford Sentiment Treebank dataset and a dataset of movie
reviews. In the latter half of the project, we fine-tuned and extended the BERT
model to create sentence embeddings that can perform well across a wide range of
downstream tasks. Overall, our project provides a comprehensive understanding
of the BERT model and its capabilities in NLP tasks. Our implementation and
fine-tuning of the BERT model provide insights into the effectiveness of the model
in various downstream tasks.

1 Key Information to include

• Mentor: Cathy Yang

• External Collaborators (if you have any): N/A

• Sharing project: N/A

2 Introduction

Finetuning pretrained language models for multiple tasks presents an especially diffcult problem of
representation. The usual questions surrounding network architecture, loss functions, and evaluation
metrics become compounded by interactions between different tasks and the objective of holistically
evaluating performance. Our project explores these issues through extensions of the MinBERT
architecture for three sentence-oriented tasks: a discrete five-point scale sentiment classification on
the Stanford Sentiment Treebank (SST) dataset, a binary classification for sentence pairs in the Quora
paraphrase detection dataset, and a five-point scale similarity classification on the SemEval Semantic
Textual Similarity (STS) dataset.

Our experiments were focused on investigating the impact of different finetuning strategies, network
architectures, and multi-task learning approaches on the performance of the extended MinBERT
model. We evaluated several loss functions and their combinations to optimize the performance on
each task while also considering the trade-offs between task-specific and multi-task learning.

Stanford CS224N Natural Language Processing with Deep Learning



3 Related Work

The main goal of finetuning for the tasks in this project was to induce embeddings from BERT
specifically to capture the meaning of whole input sentences. Our earlier experiments implemented
ideas from Reimers and Gurevych (2019) who demonstrate finetuning BERT as a siamese network
produce semantically rich full-sentence embeddings. A siamese network is an application of the same
model to two inputs, yielding two embeddings which are then measured for similarity. The similarity
measurement is combined with a true label for the pair in an objective function specific to the type of
training task.

The paper also presents cosine-similarity, defined as

Similarity(wi, wj) =
wi · wj

∥wi∥2∥wj∥2
combined with mean-square error loss as a regression objective function. Although the paper also
presents a classification objective function, we opted for a different loss framework for both the
single-sentence sentiment and paired-sentence paraphrase classification tasks.

To explore beyond the approaches of Reimers and Gurevych (2019), we looked at deep metric
learning, which is an approach that aims to represent similarity and dissimilarity between using
space as defined by a learned distance function (Kaya and Bilge, 2019). In deep metric learning,
the distance function optimal for the given data and task is learned by a neural network. In our case,
taking inspiration from earlier work with LSTMs by Mueller and Thyagarajan (2016), we attempted
a simple ℓ1 loss applied to a per-task final linear projection layer on the pooled transformer output.

One of the primary challenges with multitask learning is that the parameter updates for different tasks
may conflict. Yu et al. (2020) address this by adjusting the gradient of each task k with respect to
some parameter θ as

g′
k,t =


Lk(θ) t = 0

g′
k,t−1 − dt t /∈ {0, k}

g′
k,t−1 t = k

, dt =

{
∇θLk(θ)·∇θLt(θ)

∥∇θLt(θ)∥2
2

∇θLk(θ) · ∇θLt(θ) < 0

0 ∇θLk(θ) · ∇θLt(θ) ≥ 0
,

where t ∈ {1, . . . , T} enumerates the tasks in random order, Li(θ) is the loss function of task i and
g′
k,t is the adjusted gradient for task k at step t. The iterative procedure described in the formula

adjusts conflicting gradients, which are those that share a negative inner product, by orthogonalizing
them against each other. The g′

i,T for all i are then summed together to obtain the modified update
for θ from all tasks.

4 Approach

Over the course of this project, we used two networks with a similar architecture operated in different
modes. The base architecture is the twelve layers of the BERT transformer layer followed by a final
linear layer for each of the three tasks. The final linear layer takes the pooled representation from the
last transformer layer and outputs logits for each task. In the case of SST, the output is a softmax over
the logits for the five sentiment classes. In the case of paraphrase detection, the output is a single
logit. STS classification is treated as a regression task because the training data contains non-integral
labels, and the output is also a single logit.

Our initial experiments followed Reimers and Gurevych (2019) by running the base architecture as
a siamese network. Logically, a siamese architecture contains two identical networks which each
process one of the two inputs and whose weights are always the same. In terms of implementation,
this is accomplished by sending the two sentences through the forward pass, and accumulating
gradients over the two sentences. The two outputs are combined by a function specific to the task and
a loss is calculated over the combined result. We found limited success with this mode of operation.
A selection of results using our siamese network on a subset of the training data can be found in the
ablation study below.

Following the siamese network, we encoded sentence pairs using the separator token as originally
described in Devlin et al. (2018). We refer to this below as the segments network because of the
learned segment embedding also described in the same paper. The segments are the spans of the input

2



Figure 1: Final network architecture using input segments

sequence corresponding to the two sentences and are represented as a binary mask when provided
as input to the embedding layer. Sending a pair of sentences encoded together through the network
together increased performance by a large margin. Our final network and leaderboard scores use
input segments. Further analysis is provided in later sections.

Our training loop trains on one batch from each task in each iteration. To deal with the length of
the Quora dataset, both shorter training sets were repeatedly sampled, restarting the epoch when
necessary, until the entire Quora training set was consumed. The intent of this strategy was to avoid
overweighting the paraphrase detection training in each epoch. To mitigate conflicting parameter
updates when training multiple tasks, our final network was trained using gradient surgery as detailed
in the previous section. An AdamW update step was calculated from the result of gradient surgery.

5 Experiments

5.1 Data

We used the given datasets for the default final project, being Stanford Sentiment Treebank (SST),
which contains 11,585 sentences from movie reviews and CFIDMB, which contains 2,434 movie
reviews. These datasets are pre-split into training, dev, and test sets and were used for our initial
sentiment classification task.

For the extensions, we used the given Quora and SemEval STS Benchmark datasets, for sentiment
analysis, paraphrase detection, and semantic textual similarity, respectively. The Quora dataset has
400,000 question pairs, while SemEval has 8,628 sentence pairs. These datasets are also pre-split
into training, dev, and test sets.

3



5.2 Evaluation method

We evaluated against the baseline BERT scores shown in the handout:

1. Pretraining for SST: Dev Accuracy: 0.390 (0.007)

2. Pretraining for CFIMDB: Dev Accuracy: 0.780 (0.002)

3. Finetuning for SST: Dev Accuracy: 0.515 (0.004)

4. Finetuning for CFIMDB: Dev Accuracy: 0.966 (0.007)

For our midpoint model, we did not do exceptionally well relative to the leaderboard, achieving the
following scores:

1. Pretrain SST Dev Accuracy: 0.378

2. Pretrain CFIMDB Dev Accuracy: 0.731

3. Finetuning SST Dev Accuracy: 0.516

4. Finetuning for CFIMDB Dev Accuracy: 0.967

For the multitask model, performance on the SST sentiment analysis and Quora paraphrase detection
tasks are evaluated in terms of accuracy. Pearson’s correlation coefficient is used to measure regression
performance on the STS dataset. These measurements are reported in the tables of the results section
below.

5.3 Experimental details

In our ablation study, we used the first 2048 examples in each training set, the full development set
for evaluation, a batch size of 32 in each task, 6 epochs, and an initial learning rate of 3 × 10−5.
The initial learning rate is of less importance because all experiments optimized with momentum
using AdamW. For the submitted scores, the same setup was used with the change that 4 epochs, as
described in section 4, over the entire training set were completed.

Further details on the ablation study are as follows. The siamese and segments networks both
computed the softmax over the five classes of the SST and used cross-entropy loss. The siamese
network output d = ∥u − v∥2, where u and v are the two mean-pooled network outputs, for both
Quora paraphrase detection and STS regression. On the Quora dataset, the siamese network applied
contrastive learning loss, defined as

1

2
(1− y)d2 +

1

2
y(max(0,m− d))2

in Kaya and Bilge (2019), and mean squared error (MSE) loss for STS. The margin m was set to 0.5.
The segments network output the sigmoid activation of its final linear layer on the Quora dataset and
also applied contrastive loss. For the STS dataset, the segments network produced a plain logit and
computed MSE loss.

In an additional experiment, we wanted to see the effectiveness of Multiple Negatives Ranking Loss,
given by

J (x, y, θ) = − 1

K

K∑
i=1

[
S(xi, yi)− log

K∑
j=1

eS(xi,yi)

]
Henderson et al. (2017) For our implementation, we used Cosine Similarity for our scoring function.

Unfortunately, due to our time constraints and limited computing capacity by the end of the project,
we were unable to get results in conjunction with the rest of our experimental parts. In isolated testing,
we were able to use our Multiple Ranking Loss on our Quora and STS datasets where we compared
the results of paraphrasing and similarity.

The submitted scores use the segments network with the final sigmoid activation removed for
paraphrase detection. As part of training, the sigmoid is applied to the logit before computing MSE
loss.

4



5.4 Results

Leaderboard test scores:

• SST test Accuracy: 0.500

• Paraphrase test Accuracy: 0.720

• STS test Correlation: 0.725

• Overall test score: 0.649

Ablation study: The following table reports results for the full development set. “GS” indicates
that the gradients due to each task were computed separately and cached, then gradient surgery
was applied to all cached gradients before passing to AdamW and applying the update. “no GS”
indicates an AdamW update step was applied after each batch of each task on unaltered gradients.
All configurations use mean pooling on the final hidden states, except for one experiment that tested
downstream tasks on the final CLS token state. One experiment tested ℓ1 loss instead of MSE for
both paraphrase detection and semantic textual similarity. Two additional experiments randomized
the order in which batches from each task were sent through the network in each iteration.

Configuration SST Quora STS
siamese, no GS 0.254 0.375 0.021

siamese, GS 0.253 0.375 -0.105
segments, no GS 0.278 0.375 0.743

segments, GS, mean pooling 0.282 0.375 0.765
segments, GS, CLS pooling 0.274 0.375 0.726

segments, GS, ℓ1 loss 0.280 0.375 0.760
segments, no GS, rand task order 0.278 0.375 0.728

segments, GS, rand task order 0.268 0.375 0.751

Earlier in our project, while developing our multitask pipeline, we trained the siamese network for
four epochs over the full training set using cosine similarity and MSE loss as originally described in
Reimers and Gurevych (2019) for paraphrase detection and semantic similarity. After switching to
contrastive loss, the performance on the two sentence pair tasks decreased when the siamese network
was trained on the same data again for four epochs. The following table also reports results for the
full development set.

Configuration SST Quora STS
siamese, GS, cosine sim, MSE loss 0.470 0.471 0.042

siamese, GS, cosine sim, contrastive loss 0.470 0.375 0.014

We note that using contrastive loss appears to limit accuracy on the paraphrase detection task at 0.375
as shown in the ablation study above. Taking this into account, we trained our final model using MSE
loss on both sentence pair tasks.

In our isolated experiment with Multiple Negatives Ranking Loss, we found that our loss function
had comparable accuracy to our segments, GS, and mean pooling configuration for our STS dataset.
Given more time, if we had factored in Multiple Negatives Ranking Loss into our other configurations
there may have been an increase in our STS results. Multiple Negatives Ranking Loss didn’t really
have noticeable increase from MSE loss in our Quora dataset.

6 Analysis

As demonstrated by the ablation study, the siamese network architecture did not work at all for
semantic textual similarity. The paired-sentence encoding with segment embeddings from the original
BERT paper resulted in a dramatic improvement in correlation. We hypothesize this is because the
original BERT-base network has been trained on pairs of sentences using segment embeddings, so
finetuning with the same encoding utilizes language knowledge stored in the pretrained weights. In
contrast, finetuning the model as a siamese network introduces a mode of operation that the model
initially has no knowledge of. Given our limited training time and data, it is reasonable that instead

5



of trying to retrain all the layers underneath to work with two forward passes, continuing to use the
input structure of the pretrained model worked best.

Although Mueller and Thyagarajan (2016) report that an ℓ1 distance measurement on siamese network
outputs outperformed competing models even on benchmarks calibrated for MSE, our network
experienced reduced performance when using both ℓ1 loss. We have two possible explanations for the
discrepancy. First, our ℓ1 experiment was done with input segments to encode sentence pairs, so there
was no representation space for individual sentences in which an ℓ1 could be computed. We instead
used an ℓ1 measurement between the labels and logits. The output of the siamese network in Mueller
and Thyagarajan (2016), however, provides a decoupled representation for both input sentences. A
second explanation is that our underlying network architecture uses contextual representations that
are learned during training. This differs significantly from the pretrained word2vec embeddings
employed by Mueller and Thyagarajan (2016).

Surprisingly, gradient surgery had less impact than expected. In the case of the segments network,
the impact of gradient surgery was less than changing the pooled output representation. We suspect
this is because there only three tasks. In particular, it is possible that the tasks required similar
information from the network and so had limited gradient conflicts. As evidence of this, we note that
in both the ablation study and submitted results, the segments network had far better performance
on the two paired-sentence tasks than the single sentence classification. The paired-sentence tasks
are similar in nature, comparing two sentences for meaning, and so those tasks seem to have
experienced constructive interference in their training signals. The unrelated single-sentence sentiment
classification seems to have experienced a diminished training signal, which would happen if its
gradient were to lose magnitude when subtracting out components antiparallel to the other two tasks
during gradient surgery.

We found that our Multiple Negatives Ranking Loss performed well with the STS dataset. This is due
to how Multiple Negatives Ranking Loss handles similarity. We bring the similar sentences closer
to one another, while we create distance between all of the sentences that are not marked as similar.
This strategy resulted in good similarity classification.

We also attempted to implement a named entity recognition task, but there was not sufficient time
to complete a version that worked with the rest of the model. Given more time, we believe that the
model would have performed at a level comparable to similar models.

7 Conclusion

Our main finding is that using paired sentences with segment embeddings far outperformed finetuning
with two forward passes. Phrasing the lesson from our analysis above more concisely, the power
of finetuning lies in its use of the general aptitude for language imparted on the network during
pretraining. Changes to the input or operation of the network operates can lead to the loss of language
ability.

Regarding prior work with deep metric learning, we found that ℓ1 distance learning led to less
performance than comparable methods when applied in our multitasked finetuning setting. We
hypothesized that this was due to the lack of a representation space for individual sentences when
sending pairs of sentences through the network together. We suspect that other techniques from the
literature, particularly those developed using traditional RNN architectures, would also experience
discrepancies in effectiveness when ported to the transformer architecture.

For ℓ1 distance learning and our other negative results, multitask training was likely a confounding
factor since we were unable to isolate one task to analyze performance discrepancies. Further study
of these negative results and their failure modes can be attempted by isolating individual tasks. A
similar remark can be made of gradient surgery. In our setting with limited multitasking, gradient
surgery did not have too noticeable of an effect. A more extensive selection of tasks, especially those
known to produce conflicting updates, would provide better data on the impact of gradient surgery.
Finally, keeping other parts of the system such as input encoding, output values, and loss functions
constant would allow a better study of how techniques may differ in effectiveness across network
architectures.

6



References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of

deep bidirectional transformers for language understanding.

Matthew L. Henderson, Rami Al-Rfou, Brian Strope, Yun-Hsuan Sung, László Lukács, Ruiqi Guo,
Sanjiv Kumar, Balint Miklos, and Ray Kurzweil. 2017. Efficient natural language response
suggestion for smart reply. CoRR, abs/1705.00652.

Mahmut Kaya and H. Bilge. 2019. Deep metric learning: A survey. Symmetry, 11:1066.

Jonas Mueller and Aditya Thyagarajan. 2016. Siamese recurrent architectures for learning sentence
similarity. Proceedings of the AAAI Conference on Artificial Intelligence, 30(1).

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 3982–3992, Hong Kong, China. Association for Computational Linguistics.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
2020. Gradient surgery for multi-task learning. In Advances in Neural Information Processing
Systems, volume 33, pages 5824–5836. Curran Associates, Inc.

7

https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
http://arxiv.org/abs/1705.00652
http://arxiv.org/abs/1705.00652
https://doi.org/10.3390/sym11091066
https://doi.org/10.1609/aaai.v30i1.10350
https://doi.org/10.1609/aaai.v30i1.10350
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://proceedings.neurips.cc/paper/2020/file/3fe78a8acf5fda99de95303940a2420c-Paper.pdf

	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

