RDF Triple-Text-Story: A Integrated Workflow for
Controllable Short Story Generation

Stanford CS224N {Custom} Project

Yifu Han Yuer Zhou
Department of Energy Science and Engineering Department of Civil Engineering
Stanford University Stanford University
yifu@stanford.edu zye98@stanford.edu
Abstract

We develop an integrated RDF triple-text-story workflow to generate coherent
and imaginative short stories based on given triples or prompts. It combines
RDF triple-to-text close-ended generation and open-ended story generation, which
allows for the incorporation of structured information about characters, settings,
and events while maintaining the flexibility of free-form storytelling. To implement
this approach, we fine-tune a TS5 model on RDF triples-to-texts generation (using
WebNLG 2020 dataset) and then a GPT-2 model on open-ended text generation
(using the ROCStories and WritingPrompt datasets). We evaluate the model
performance by using BLEU score and also human evaluation.

The use of two fine-tuned models, T5 and GPT-2, in an integrated workflow can
help to combine the strengths of these two models. TS5 is known for its ability
to summarize and generate text from structured data, while GPT-2 is renowned
for its ability to generate engaging and creative narratives. The results show that
the triple-text-story workflow could potentially produce high-quality short stories
that are both structured and engaging by leveraging the strengths of both models.
Finally, we further fine-tuning GPT-2 model on the Writing Prompts dataset using
various prompt engineering strategies improved the coherence, imagination, and
readability of generated short stories.

1 Key Information to include

* Mentor: Siyan Li

2 Introduction

Generating coherent and imaginative short stories from given prompts is a complex task in natural
language processing. While recent advancements in deep learning models and techniques have
allowed for impressive progress in text generation, creating a controllable text generation model for
short stories still remains a challenge. One of the primary difficulties in generating short stories is the
need for a model to understand both the nuances of language and storytelling. A good short story
needs to have a compelling plot, well-developed characters, and a satisfying conclusion, all of which
require a deep understanding of language and narrative structure and coherence.

In this work, we present an integrated triple-to-story generation framework to produce structured
and imaginative short stories based on input triples, which combines triples-to-text generation and
text-to-story generation. More specifically, we propose a workflow that leverages two fine-tuned
models, TS and GPT-2, to generate coherent short stories. TS is known for its ability to generate
high-quality text from structured input (which are triples in this work), while GPT-2 is renowned
for its ability to generate coherent and engaging narratives. Combining the strengths of these two

Stanford CS224N Natural Language Processing with Deep Learning

models in our proposed workflow has the potential to create a highly effective and efficient model for
generating short stories. By using fine-tuned TS5 to generate the structured components of the story,
such as character names and settings, and then using fine-tuned GPT-2 to generate the narrative itself,
we can take advantage of the strengths of both models and produce stories that are both structured
and engaging. The input triples are first processed by the fine-tuned TS5 model, which serves as a
paraphrase, generating concise sentences containing structured information about story elements.
The fine-tuned TS5 model (on the WebNLG dataset) benefits from its text-to-text capabilities and
proficiency in various NLP tasks, such as paraphrasing and summarizing. Subsequently, the output
sentences are passed to the fine-tuned GPT-2 model, which generates coherent and engaging stories
using the input prompts and contextual information provided by the T5 model.

3 Related Work

See et al. [1] investigated whether the use of large, pre-trained language models such as GPT-2 and
GPT-3 improves the quality of generated stories. They conducted experiments using both objective
and subjective evaluation metrics, comparing the performance of pre-trained models to models trained
from scratch. They found that the pre-trained models produce stories that are more coherent and
better structured than the models trained from scratch, and that they are also more preferred by human
evaluators. However, they also note that the pre-trained models tend to generate stories that are more
stereotypical and less diverse than those generated by the models trained from scratch.

Yao et al. [2]] proposed a new approach to automatic storytelling called "Plan-and-Write," which aims
to improve the coherence and consistency of generated stories by explicitly modeling a story plan.
The proposed approach consists of two stages: (1) planning, where the model generates a high-level
story plan, and (2) writing, where the model generates the text for the story by conditioning on the
plan. Fang et al. [3] proposed a new method for generating coherent and diverse stories using a
hierarchical neural network model. The model generates stories in a two-step process, first generating
a high-level story outline and then using it to generate the details of the story. These ideas are similar
to our proposed two-stages story generation. Mao et al. [4] proposed a method to improve the quality
of story generation by incorporating common sense grounding. They developed a dataset of story
prompts paired with common sense statements and use it to train a language model to generate stories
that are grounded in common sense knowledge. They evaluate the model using human evaluation
and show that incorporating common sense grounding improves the quality and coherence of the
generated stories. Similarly, in our work, we investigate whether the use of prompts improves the
quality of generated stories.

4 Approach

The TS5 model is fine-tuned on a well-organized and public dataset consisting of a set of resource
description framework (RDF) triples (already well-extracted) representing facts about an entity or
event, along with target sentences that describe the entity or event. To fine-tune T5 model on this
dataset, triples are treated as input to the model, while the target sentences are treated as the output.

The GPT-2-medium model is first fine-tuned on the ROCStories dataset and then further fine-tuned
on WritingPrompts datasets. The fine-tuning on the ROCStories dataset is a good way to improve
the model’s ability to reason about the logical structure of stories, while the WritingPrompts dataset
provides a diverse range of prompts for the model to generate creative and engaging narratives.
Ensembling can help improve the performance of the model and make it more robust.

The overall triples to story generation workflow is as follows:

* Fine-tuned on * First fine-tuned on ROCStories dataset
WebNLG dataset * Then fine-tuned on WritingPrompts dataset
Fine-tuned Context or Fine-tuned A complete

Y 15 model setting of a story GPT-2 model short story

Figure 1: The proposed triples-to-story workflow.

5 Experiments

5.1 RDF Triples to Texts
5.1.1 Data

WebNLG 2020 is a dataset for Natural Language Generation (NLG) tasks, which was released in
2020 as part of the WebNLG challenge. The dataset consists of a collection of triples of structured
data in RDF format, which can be converted into natural language text using various NLG techniques.
The triples in the dataset are organized into 15 different categories, which cover a range of topics
such as music, sports, geography, and politics. The triples are diverse and cover a wide range of
relationships between entities, including properties, types, and binary relations.

5.1.2 Evaluation method

Various method can be used to evaluate the performance of generated text on training and testing
dataset. We use the widely used BLEU metric given by

N
BLEU = BP - exp (Z wy 1ogpn> @

n=1

where BP is the brevity penalty, which is calculated as:

1 ifc>r
exp(l —r/c) otherwise

where c is the length of the candidate translation and r is the length of the reference translation that is
closest to c in length, N is the maximum n-gram order to consider, w,, is the weight for the n-gram
precision score, which is usually set to %, P, 1s the n-gram precision score.

5.1.3 Experimental Details

As the first stage of the proposed pipeline to generate texts or prompts, we first fine-tune a T5
model on a task of RDF triple to text generation on WebNLG 2020 dataset. We reference the code
(https://github.com/MathewAlexander/T5_nlg) to pre-process the XML data and keep the
normal triples as it is and join multiple triples. We load the pre-processed data and randomly shuffle
the rows to have triplets with different lengths in the training dataset. We initialize the AdamW
optimizer and tune some hyper-parameters. The learning rate is set to 5 x 1075, and it takes 1 hours
to fine-tuning the model using 35,000 training samples and 4 epochs.

5.1.4 Results

We obtain an average BLEU score of 0.64, which shows the effectiveness of the fine-tuned T5 model
to reconstruct the text based on triples. In comparison, the BLEU score for the T5-base model without
fine-tuning (or the baseline model) was of 0.185 (Table. [T). The fine-tuning process gives significant
performance improvements. One example for the original triple in the dataset, true text, and generated
text is shown below. The generated text has similar wording and meaning as the true text.

Triple: Andrews County Airport, location, Texas Texas, language, Spanish language Texas, capital,
Austin Texas

Generated: Andrews County Airport is located in Texas, where Austin is the capital and Spanish is
spoken.

True: Andrews County Airport is located in Texas state, whose capital city is Austin and Spanish is
one of the spoken language there.

https://github.com/MathewAlexander/T5_nlg

Table 1: BLEU score on WebNLG Challenge 2020 dataset.
Fine-tuned T5 Baseline (T5-base)
0.64 0.185

5.2 Generated Texts to Story
5.2.1 Data

This experiment uses a subset of 5,000 samples from the ROCStories dataset [3]] for training and 200
samples for testing. The objective of the experiment is to predict the ending of a short story based
on the preceding four sentences. The ROCStories dataset consists of short stories that contain five
sentences each, and the task is quite challenging and open-ended.

5.2.2 Experimental Details

As the second stage of the proposed pipeline to generate story. We fine-tune a GPT-2 model for story
completion by dividing each sample in the training dataset into two parts. The first four sentences
are treated as the input prompt, and the last sentence is treated as the target output. The model is
trained using the AdamW optimizer with a learning rate of 5 x 1073, a batch size of 64, and for 50
epochs. The AdamW optimizer is a variant of the Adam optimizer that incorporates weight decay
regularization. The linear scheduler is used to gradually increase the learning rate from O to the initial
value of 5 x 1075 over a warm-up period of several epochs, after which the learning rate was kept
constant at the initial value for the remaining epochs. This technique is commonly used to improve
the stability and convergence of deep learning models during training. In addition, the accumulating
batch size approach was used to manage the large size of the GPT-2 model by dividing the training
data into smaller batches and accumulating gradients across several batches before performing a
parameter update. This approach can help to reduce the memory requirements of training deep
learning models with large numbers of parameters.

We also compare the performance of different fine-tuning techniques. Specifically, this experiment
tests the performance of fine-tuning the entire model, the last 6 layers, or the last 2 layers of GPT-2-
small. In addition, we compares the performance of different GPT-2 model architectures, including
GPT-2-small with 12 layers, GPT-2-medium with 24 layer, and GPT-2-large with 36 layer, to gain
insights into the trade-offs between model complexity and performance on our task.

5.2.3 Results

The performance of the model is evaluated by generating endings for the test samples, which are then
assessed for quality using both BLEU score and human evaluation. The results of the experiment
suggest that fine-tuning the GPT-2 model leads to a significant increase in BLEU score compared to
the baseline pre-trained GPT-2-medium model. This suggests that the fine-tuning step is effective
in improving the quality of the generated text. Interestingly, the results in Table [2]indicate that the
fine-tuning techniques, including fine-tuning the entire model, the last 6 layers, or the last 2 layers of
GPT-2-small, have relatively small impact on the BLEU score on the testing dataset. In addition, the
results in Table [3|suggest that increasing model complexity can lead to a slight improvement in the
BLEU score on the testing dataset. However, it is important to note that increasing model complexity
comes at a cost, both in terms of computational resources required for training (e.g., it only takes
1 hour to fine-tune a GPT-2-medium model on a NVIDIA A100 GPU in our task) and in terms of
model size. We have decided to use the GPT-2-medium model as it strikes a good balance between
model complexity and performance on the testing dataset, as measured by the BLEU score.

While the step of the generated texts or prompts to a story using GPT-2-medium has a relatively low
BLEU score of 0.15 (Table [3), it is important to note that this task is more open-ended compared
to the previous step of converting RDF triples to texts or prompts, which had a higher BLEU score
of 0.64. Most importantly, the generated endings are rated as coherent and plausible by human
evaluators in most cases, as illustrated in Table 4] These results suggest that while our model may
not generate the exact same true endings, it is still capable of producing contextually relevant and
coherent text that conveys same sentiment. We can generate following story based on given context.

Table 2: BLUE score on ROCStories dataset.

Model Description BULE score
GPT-2-medium | Baseline without fine-tuning 0.029
GPT-2-small Fine-tune entire model 0.124
GPT-2-small Fine-tune last 6 layers 0.114
GPT-2-small Fine-tune last 2 layers 0.106

Table 3: BULE score on ROCStories dataset.

Model Description BULE score
GPT-2-medium Baseline without fine-tuning 0.029
GPT-2-medium Fine-tune entire model, batch size of 16 0.115
GPT-2-medium Fine-tune entire model, batch size of 64 0.155
GPT-2-medium | Fine-tune entire model, 100 epoch, batch size of 128 0.156

GPT-2-large Fine-tune entire model, batch size of 64 0.183

5.3 Further Investigations on Fine-tuning GPT-2 Model (based on model in 5.2)

5.3.1 Data

We use the Writing Prompt dataset (Fan et al., 2018)[3] to further fine-tune our story generation model
(based on already fine-tuned model in 5.2), focusing on hierarchical story generation. The dataset is
composed of over 300,000 human-written stories, each accompanied by a prompt (sourced from an
online forum). This dataset is diverse in terms of topics, lengths, and details, with prompts inspiring
multiple story responses. We use part of the overall dataset, and partition it into 80,000 training
samples, 2,000 validation samples, and 1,000 test samples for story model fine-tuning. In order to
improve model performance, we pre-process the dataset using the Hugging Face’s Transformers
library’s summarizing pipeline. This pipeline helps us to condense the original stories while retaining
their core ideas and essential details, which makes them more suitable for training our model.

5.3.2 Experimental details

Prompt Engineering

To further improve the coherence and readability of the generated short stories (before the actual
fine-tuning), we first conduct experiments using various prompt engineering strategies and assess
their impact on model performance with identical configurations. The prompt engineering strategy
(selection) experiments involve a relatively small dataset consisting of 2,000 training, 300 validation,
and 300 test samples (not the entire training dataset due to computational resources limitation). The
strategies we investigate include: (1) providing instructions and separators to guide the model’s focus;
(2) summarizing input prompts to emphasize key aspects; (3) incorporating sub-prompts to direct
model structure and style; (4) implementing an iterative refinement technique that generates the story
in smaller chunks, then using the output of each chunk as input for the next chunk; and (5) extracting
the most important keywords from the prompt using nltk library and incorporating them into input.

This experiment employs the already fine-tuned GPT-2-medium model (in section 5.2) with a learning
rate of 5 x 1075, 100 warm-up steps, a batch size of 16, and 5 epochs, and we further fine-tune it
on the Writing Prompt dataset. The training time varies for different prompt engineering strategies,
with the iterative refinement strategy taking longer due to its iterative nature (approximately 2
hours). The other strategies take similar training time (approximately half an hour). The training and
validation losses of different prompt strategies are shown in Fig. [2] Additionally, we also compare
their performance using human evaluation and BLUE scores, as shown in Tables. [9]and Table. [T0]

The experimental results demonstrate that the "Context and Clarity Sub-prompts" strategy generate
the most coherent, imaginative, and readable stories in relation to the given prompt, achieving the
highest BLUE score and the most stable validation loss. The "Instructions and Separators" method
generated more imaginative stories than the base model (the fine-tuned GPT2-medium model in
section 5.2 without any prompt engineering) and achieved the second-highest BLUE score. The base
model generated stories that are more straightforward and directly connected to the prompt without

Table 4: Examples of story generation on ROCStories dataset.

Given texts True endings Predicted endings

A boy was looking through the window of a | The boy picked the | The boy decided to
pet store. He couldn’t decide between a cat | dog in the end. pick a dog and bought
or dog. Suddenly, a dog licked the window. it.

The cat lounged around and was lazy.
Lorraine hasn’t seen her brother in two | When the visit is over, | Lorraine feels better
Year’s. She decides it is finally time for a | Lorraine feels happy | that she can spend
visit. Lorraine takes the long drive to Idaho | to be home. time with her brother.
where her brother lives.

Training Losses with Epochs 1025 Validation Losses with Epochs
o emctionsand Separacrs ' 2 muctons ang separaars
\ Db 1.000 O R
w 1.2 o Keyword u o Keyword
3 S 0975
= =
o =}
c 5 0.950
10 T
‘T =
= s 0.925
0.8 0.900
—
1 2 3 4 5 1 2 3 4 5
Epochs Epochs

Figure 2: Training and Validation losses of different prompt strategies on WritingPrompts dataset.

emotion and sense of adventure present in some of the other stories. However, the "Summarization",
"Iterative Refinement" and "Keyword Extraction" methods resulted in poor performance, with the
generated stories being less coherent and having no clear connection to the given prompt.

Overall, our experiments show that prompt engineering strategies, especially the Sub-prompts and
Instructions and separator methods, can improve the coherence, imagination, and readability of
the generated short stories. It is worth noting that due to the length of the generated stories, we
only provide the performance of the best prompt engineering method in Table 5, and a complete
comparison of the performance of different prompt engineering strategies is provided in the Appendix.

Training Process

Table 5: Performance of prompt engineering (Context and Clarity Sub-prompts).
Contextand | A magical book transports | For the past two years, every night she | 0.175
Clarity Sub- | a child to a different world. | had prayed. The day she took this book
prompts [Write a story that is engag- | with her out of the box she ’d cried.
ing, imaginative, and easy to | She would have cried again if she didn’t
follow. Use clear and con- | read, but she hadn’t. It wasn’t just the
cise language.][Focus on vivid | book, it was the promise. There were no
descriptions, well-developed | more excuses.
characters, and a strong plot.] | She was reading the next page, the next
word, when the boy in the book asked
her a question. Her eyes widened. The
boy was five-years old.

“Can we go back home?”

I want you to read the book,” she whis-
pered, almost inaudibly, I want you to
know what’s really happening, I want
you to know that everything in this world
is fake.”

I don’t understand.” he said, How can
you possibly know? I want to go home!”

Training Loss Validation Loss

1.3
0.93
12 0.92
11 0.91
2 2 0.90
S10 S
0.89
0.9 0.88
0.8 0.87
0.86
2 4 6 8 10 2 4 6 8 10
Epochs Epochs

Figure 3: Training and validation losses with epochs on WritingPrompts dataset.

In our training experiment, we fine-tune the final model with above chosen prompt strategy using
various hyper-parameters to find the optimal combination. We test multiple combinations of hyper-
parameters, including batch sizes (16, 32, 64, 128), learning rates (5 x 1072, 1 x 1074, 5 x 1074, 1
x 10~3), and warm-up steps (200, 500, and 1000).

During the training process, we observe that the model is prone to overfitting. While the training
losses decrease continuously, the validation loss increase easily. To tackle this issue, we monitor
the validation loss and stop training if the validation loss does not improve for a specified number
of consecutive epochs (patience parameter is set to 3 in our case). To prevent exploding gradients,
we clip the gradients of the model parameters using a maximum gradient norm of 1.0. We also
introduce weight decay of 0.01 in the AdamW optimizer to add an Lo regularization term to the
model parameters. Moreover, We use a linear learning rate scheduler with warm-up steps to gradually
increase the learning rate during the initial phase of training and then decrease it over time. Addi-
tionally, we concatenate the tensors while considering the maximum sequence length constraint to
accommodate the large size of the GPT-2 model, allowing us to effectively process the input data.
After iterating through various hyper-parameter combinations, we select the best model based on the
lowest validation loss, the final model configuration use a batch size of 64, 10 epochs, a learning rate
of 1 x 1074, 200 warm-up steps, 4 gradient accumulation steps, a weight decay of 0.02, an Adam
epsilon of 1 x 1078, and a max gradient norm of 1.0. The training takes approximately 2 hours.

5.3.3 Results

The quantitative results obtained from the further fine-tuned model are presented in the form of
training losses, validation losses, and BLUE score. A comparison with the base model indicates
improvements in story generation quality, and the results are shown in Fig. [3|and Table. [6]

Table 6: BLEU scores on WritingPrompts dataset.
Further fine-tuned GPT-2 model Fine-tuned GPT-2 model in section 5.2
0.188 0.127

6 Analysis

6.1 Two-stage: RDF Triples to Story

Once the two separate models have been fine-tuned, then they can be incorporated into a two-stage
story generation workflow. The performance of the developed workflow (for the case of GPT-2-
medium model fine-tuned on ROCStories dataset) is illustrated through three random examples of
input RDF triples, generated text, and the resulting story, which are shown in Table[7} The generated
stories are contextually relevant and coherent to the texts and original triples. More importantly, we
can achieve even better story generation performance after we further fine-tune the trained model (in
section 5.2) using Writing Prompt dataset. The generated example story is shown in Table|8] which

is a high-quality short story that is both structured and engaging. The coherence, imagination, and
readability of generated short stories are further improved.

Table 7: Example 1, 2 and 3: RDF triples to text and then a story in two-stages (T5 model and
GPT-2-medium model in section 5.2)
Example 1 triples: Vermont | largestCity | Burlington,_Vermont
Alvah_Sabin | state | Vermont.
Text: Alvah Sabin was from Vermont, whose largest city is Burlington.
Story: Alvah Sabin was from Vermont, whose largest city is Burlington. After many years,
Vermont became very expensive. Avah could no longer afford to live there. He and his
wife moved to Florida. Avah has lived there for 20 years now.
Example 2 triples: Buzz_Aldrin | birthPlace | Glen_Ridge, New_Jersey
Buzz_Aldrin | mission | Apollo_11
Buzz_Aldrin | status | "Retired"
Apollo_11 | operator | NASA
Text: Buzz Aldrin, who was born in Glen Ridge, New Jersey, was part of Apollo 11 as
chosen by NASA, and is now retired.
Story: Buzz Aldrin, who was born in Glen Ridge, New Jersey, was part of Apollo 11 as
chosen by NASA, and is now retired. He has visited the moon with Neil Armstrong. Aldrin
still loves to go to the moon, and wants to see it restored. He has spoken with President
Bush about returning to the moon. Aldrin recently wrote a book about his adventures on
the moon.
Example 3 triples: Ace_Wilder | background | "solo_singer"”
Ace_Wilder | occupation | Songwriter
Ace_Wilder | birthPlace | Sweden
Text: Sweden is the birthplace of Ace Wilder, who has a background as a solo singer.
Story: Sweden is the birthplace of Ace Wilder, who has a background as a solo singer.
Wilder’s first big break came when he was fourteen. He had a hit in the country song
contest. He became very rich performing there.

Table 8: Example: RDF triples to text and then a story in two-stages (T5 model and further fine-tuned
GPT-2-medium model in section 5.3)
Example triples: Ace_Wilder | background | "solo_singer"
Ace_Wilder | occupation | Songwriter
Ace_Wilder | birthPlace | Sweden
Text: Sweden is the birthplace of Ace Wilder, who has a background as a solo singer.
Story: Sweden is the birthplace of Ace Wilder, who has a background as a solo singer.
One day, he went into the recording studios and found the most talented voice he had ever
heard. He then hired the best guitarists he could find. After three years, he was able to
record and release his first solo album "The Man of a Thousand Pounds". He then sold
his second album and is now in the process of doing a live album entitled "Ace’s Next
Concert" with his orchestra. He now has a full orchestra that plays every song on record.

7 Conclusion

This project focuses on generating short stories from RDF triples integrating both T5 and GPT-2
language model. Fine-tuning the GPT-2 model leads to significant improvements in the quality of
generated text, as measured by BLEU score and human evaluation. Further fine-tuning on the Writing
Prompts dataset using various prompt engineering strategies improved the coherence, imagination,
and readability of generated short stories. Our two-stage workflow of RDF triples to text and then a
story, using fine-tuned T5 model and GPT-2 models, produces contextually relevant and coherent
stories. The primary limitation is the quality of input RDF triples and prompts, which may affect the
quality of the generated stories. Future work could focus on improving the quality of input data and
exploring other language models to generate longer and more complex stories.

References

[1] Abigail See, Aneesh Pappu, Rohun Saxena, Akhila Yerukola, and Christopher D Manning. Do
massively pretrained language models make better storytellers? arXiv preprint arXiv:1909.10705,
2019.

[2] Lili Yao, Nanyun Peng, Ralph Weischedel, Kevin Knight, Dongyan Zhao, and Rui Yan. Plan-
and-write: Towards better automatic storytelling. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 7378-7385, 2019.

[3] Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. arXiv preprint
arXiv:1805.04833, 2018.

[4] Huanru Henry Mao, Bodhisattwa Prasad Majumder, Julian McAuley, and Garrison W Cot-
trell. Improving neural story generation by targeted common sense grounding. arXiv preprint
arXiv:1908.09451, 2019.

[5] Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy
Vanderwende, Pushmeet Kohli, and James Allen. A corpus and cloze evaluation for deeper under-
standing of commonsense stories. In Proceedings of the 2016 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies, pages
839-849, 2016.

A Appendix (optional)

Table 9: Performance of prompt engineering strategies.

Strategies

Input prompt

Generated stories

BLUE
scores

Base

A magical book transports a
child to a different world.

A child stood in a dimly lit room, cur-
tains drawn, with a book in front of
him. He examined the drawings, glanc-
ing around the room until his gaze set-
tled on the book’s dark wooden cover.
He reached out and touched it.

A voice emerged from behind the cover.
"Good morning, child."

The child looked at the book. "What
kind of book is this?"

"This is a magical book," the voice
replied.

The child’s eyes widened. "Really?"
"Yes, this magical book contains the
story of your world."

0.129

Instructions
and Separa-
tors

[Please generate a story that
revolves around:] A magical
book transports a child to a
different world. [separator]
[Here is the generated story:]
... [END]

All the children’s eyes were glued to the
book, awestruck. The title seemed to
speak to them, as if revealing a secret.
"There are worlds," said one child, pick-
ing up the book, his face pressed against
it. "There are other worlds."

The book flipped open, words appearing
as if carved into the pages. "Wherever
you go, there you go," it read.

The boy gazed at the sky, as if looking
into a mirror. "Wherever you go, there
you go," he repeated.

"No more. You will know," the book
whispered, now glowing on its surface.
One by one, the other children stood up
and left.

"Ahh, here we go," said the boy.

0.157

10

Table 10: Performance of prompt engineering strategies.

Subprompts

A magical book transports
a child to a different world.
[Write a story that is engag-
ing, imaginative, and easy to
follow. Use clear and con-
cise language.][Focus on vivid
descriptions, well-developed
characters, and a strong plot.]

For the past two years, every night she
had prayed. The day she took this book
with her out of the box she ’d cried.
She would have cried again if she didn’t
read, but she hadn’t. It wasn’t just the
book, it was the promise. There were no
more excuses.

She was reading the next page, the next
word, when the boy in the book asked
her a question. Her eyes widened. The
boy was five-years old.

“Can we go back home?”

I want you to read the book,” she whis-
pered, almost inaudibly, I want you to
know what’s really happening, I want
you to know that everything in this world
is fake.”

I don’t understand.” he said, How can
you possibly know? I want to go home!”

0.172

Keyword
Extraction

[magical book transports child
different] A magical book
transports a child to a differ-
ent world.

“Hey Mike!” A voice came from behind
me, startling me for a second. My head
snapped up at the sound of it, startling
me even more so.

“Hello, how’s it going?” I asked, trying
to keep calm. It’s always the same...
“Okay... so you said you couldn’t handle
this anymore.”

“I am no longer able to control my pow-
ers anymore.”

I quickly turned my head around to see
what the commotion was about. The
children in the room were sitting down
to talk, and the one in the front of the
room had his phone out and was playing
some video game.

0.125

11

	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	RDF Triples to Texts
	Data
	Evaluation method
	Experimental Details
	Results

	Generated Texts to Story
	Data
	Experimental Details
	Results

	Further Investigations on Fine-tuning GPT-2 Model (based on model in 5.2)
	Data
	Experimental details
	Results

	Analysis
	Two-stage: RDF Triples to Story

	Conclusion
	Appendix (optional)

