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Abstract

Identifying metaphors has long been a key interest in the natural language process-
ing (NLP) community. However, most prior research on metaphor detection has fo-
cused on token-level binary classification without specifying the metaphor’s source
and target domains, which makes the results less interpretable. Our project aims to
address this limitation by employing a dual-branch model based on the cutting-edge
MelBERT transformer architecture. We adapted MelBERT’s transformer-based,
token-level classification framework to a unique domain annotation dataset. Our
findings reveal that while the token-level approach is effective in determining the
target domain of a metaphor, it struggles to identify the source domain. These
results provide fresh insights into the limitations of current metaphor detection
techniques and suggest possible avenues for enhancement in the field of metaphor
detection research.
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2 Introduction

The NLP community has long been intrigued by the detection of metaphors. Metaphors play a crucial
role in human cognition by helping us organize information and engage in creative thinking. They
are powerful because they often connect two distinct and seemingly unrelated domains of meaning,
enabling the transfer of knowledge and experience between them (Lakoff and Johnson, 2008). For
instance, in the metaphor "You are wasting my time," the target domain is time, and the source domain
is money or resources, essentially conveying the idea that "time is money." Moreover, the family of
concepts developed around money, triggered by this metaphor, could now be used to describe time.
This function of metaphors is commonly referred to as "conceptual metaphor theory."

Until now, most metaphor detection research has focused on identifying metaphorical expressions
within a text. Consequently, the majority of metaphor detection studies (Leong et al., 2020; Shutova
et al., 2017; Chakrabarty et al., 2021)only label individual words as metaphorical or literal without
specifying the source and target domains of the metaphor. Likewise, most annotation datasets and
benchmarks are developed solely for token classification accuracy. As a result, when given the
sentence "You are wasting my time," current models would recognize "wasting" as metaphorical.
However, it is often uncertain whether this correct result is due to the model successfully capturing
the domain mapping relationship represented by the metaphor, or if the model, despite its relatively
good precision in detecting metaphors, still lacks a clear understanding of the underlying domains.
Furthermore, having only token label results makes interpretation more difficult, which further
restricts the applicability of metaphor detection algorithms in real-world applications.
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In this study, we developed a novel metaphor detection approach using a dual-branch model based on
the advanced MelBERT (Choi et al., 2021) transformer architecture. While MelBERT is known for
its effectiveness in metaphorical token detection tasks, we applied it to a unique domain annotation
dataset (Gordon et al., 2015). Our objectives are twofold: (1) to propose a new metaphor detection
method that not only performs token-level metaphor classification but also extracts target and
source domains of the detected metaphor, and (2) to explore the potential of token-level metaphor
classification architecture in identifying latent metaphorical domains. Consequently, our work
connects the previously separate fields of token-level metaphor classification and metaphor domain
extraction through a single unified model. Furthermore, our model’s performance helps assess
whether current metaphor detection techniques genuinely understand the function of metaphor in
human cognition.

We discovered that although the MelBERT architecture appears to take into account the target
and source domains of metaphors, its performance in domain extraction is imbalanced. While the
MelBERT architecture can effectively detect the target domain of metaphors, its capability to identify
corresponding source domains is weak. Overall, our findings indicate that current metaphor detection
algorithms still struggle to understand the underlying domain mappings. It is possible that addressing
the domain understanding issue more effectively could lead to significant improvements in metaphor
detection performance.

3 Related Work

Metaphor detection has long been an area of interest within the NLP community. The evolution of
metaphor detection has paralleled the development of major NLP tools. Initially, metaphor detection
relied on feature and rule-based methods, typically created manually by linguists (Dodge et al.,
2015; Shutova et al., 2016). These methods heavily depended on lexical, syntactic, and semantic
cues to differentiate between literal and metaphorical language. However, feature and rule-based
methods often struggled to detect novel and uncommon metaphors that were not covered by the
predefined features and rules. With the advent of deep learning, neural network-based approaches,
ranging from word embedding(Shutova et al., 2017), to CNN and LSTM(Wu et al., 2018), to
transformer(Aghazadeh et al., 2022), have been employed for metaphor detection tasks. As with
other NLP tasks, it has been observed that CNN and LSTM outperform simple word2vec embedding-
based methods, while transformer-based approaches outshine the previous shallow neural network
architectures.

Language models featuring a transformer architecture, such as BERT, RoBERTa, and GPT, are
considered particularly well-suited for metaphor detection tasks. These pre-trained models can
capture rich semantic and contextual information, making them ideal for detecting metaphors through
fine-tuning. DeepMet (Su et al., 2020) detects metaphors using RoBERTa alongside various linguistic
features, including global and local text context and part-of-speech features. Chen et al. propose a
multi-task learning framework for metaphor detection. Choi et al. (2021) developed a novel metaphor
detection structure by matching contextual and literal meaning generated via the BERT model. These
models are all designed to classify tokens in a given input sentence as either metaphorical or literal.

Compared to the token classification task, domain extraction tasks have received less attention. This
is partly because there is no shared, relatively large-scale benchmark dataset of metaphorical domains.
Until recently, most domain classification tasks were conducted either heuristically(Chmielecki, 2013;
Card et al., 2022) or using linguistic features (Ge et al., 2022). Sengupta et al. (2022) utilized BERT
to identify the source domain of metaphors, but they focused only on detecting domains given the
ground truth metaphor labels. Moreover, their architecture for domain extraction differs from most
token-level metaphor classification tasks, making it difficult to unify the two tasks.

4 Approach

Our proposed model architecture is depicted in Figure 1. The architecture is similar to that of
MelBERT. Given an input sentence, the model will first generate its embedding and frame information
using transformer encoders. The embeddings and frame information are then concatenated to form
MIP and SPV, which are used for both token classification and domain classification tasks.
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Figure 1: Model Architecture

We utilize a dual-branch architecture where each branch consists of a separately pre-trained MelBERT
model on the VUA 20 dataset. One branch is designed specifically for metaphor detection, while
the other branch is responsible for detecting the source and target domains of the metaphor. When
applied for different tasks, the corresponding branch will then be fine-tuned with the given dataset.

4.1 Encoder

An input sentence is processed by two transformer encoders, one surface (sentence) encoder and one
background (frame) encoder. The surface encoder transforms each word in a sentence into a set of
contextualized embedding vectors, also known as hidden states. The CLS token is a special token
that indicates the beginning of a sentence, and its hidden state represents the embedding of the entire
sentence.

Similar to the surface encoder, the frame encoder also generates hidden states of the input sentences,
but these hidden states are used to train and identify the FrameNet(Baker et al., 1998) labels of the
input sentences. For example, in Figure 1, the frame of the word "born" in the sentence "while new
departments are born" is "establishing." Although the original MelBERT paper does not include a
FrameNet component, it has been added to the current model to make the contrast between the target
and source domains more prominent, consistent to some prior practices (Stowe et al., 2020).

4.2 MIP and SPV

The underlying logic of MIP is that a metaphorical word is identified by the gap between the contextual
and literal meaning of a word. MIP is implemented by concatenating the contextual embedding of
the target token VS,t, the isolated embedding Vt, and their corresponding frame information hS,t and
ht. The underlying logic of MIP is that a metaphorical word is identified by its semantic difference
from its surrounding words. SPV is implemented by concatenating the contextual embedding of the
target token VS,t, its sentence embedding VS , and their corresponding frame information hS,t and hS .
The concatenation of MIP and SPV can be expressed as:

hMIP = Vt ⊕ VS,t ⊕ ht⊕ hS, t

hSPV = VS ⊕ VS,t ⊕ hS ⊕ hS, t
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4.3 Finetuning Process and Loss Function

In the process of finetuning our model on the domain specific dataset created by Gordon et al.
(2015), we utilize the binary cross entropy loss to train the metaphor classification branch, and cross
entropy loss to train the domain detection branch. Specifically, in each batch, we define the metaphor
classification loss to be:

LMeta = BCE(yMeta, ŷMeta)

Where yMeta and ŷMeta are ground truth and predictions of metaphor classification labels. For the
domain detection loss, it is masked with the ground truth of the true metaphor tokens since the target
and source domain are all related to the specific metaphor token.

LTarget = maskMeta(CE(yTarget, ŷTarget))

LSource = maskMeta(CE(ySource, ŷSource))

Where yTarget and ŷTarget, ySource and ŷSource are ground truth and predictions of target and source
domains respectively, and the mask is based on the ground truth of metaphor classification. The
overall loss of our framework is defined as:

L = λ1LMeta + λ2LTarget + λ3LSource

5 Experiments

5.1 Data

We employ the FrameNet dataset(Baker et al., 1998) to train frame embeddings. FrameNet is founded
on the principles of Frame Semantics, which suggests that the meanings of words can be best
comprehended in relation to the conceptual structures, or "frames," they invoke. FrameNet has been
extensively used in natural language processing (NLP) and computational linguistics research for
tasks such as semantic role labeling and information extraction.

For the metaphor token classification task, we utilize the VU Amsterdam Metaphor Corpus
(VUA)(Steen, 2010). The VUA dataset has two versions, VUA 18 and VUA 20. Both serve
as benchmark datasets for metaphor detection and have been used in shared metaphor detection
competitions(Leong et al., 2020). The VUA dataset comprises about 16,000 annotated sentences,
each with binary labels (metaphorical vs. literal) for each token in the sentence. We primarily use the
VUA dataset to evaluate our model’s performance on stand-alone metaphor token classification tasks.

For the metaphor domain classification task, we use the annotation dataset created by Gordon et al.
(2015). While this dataset is relatively small, containing only around 1,700 annotated sentences, it is
highly valuable due to its inclusion of both metaphorical tokens and their corresponding target and
source domains. In total, there are 67 source domains and 14 target domains within the dataset. Our
model was designed to predict the categories of the corresponding source and target domains for a
given input sentence and metaphorical token. To prepare the data for our model, we preprocessed
it to match the format of the VUA20 dataset. This involved augmenting the data to create separate
data points for each token in each sentence. By taking this approach, we were able to maximize the
amount of data available for training and achieve a more accurate and robust model.

5.2 Experimental details

Pre-training Process. The first step of our experiments is pre-train a standard MelBERT on
the VUA20 dataset. We built our model upon the codebase of MelBERT using PyTorch and
implemented our model following the architecture and training procedure described in the original
paper. Specifically, we used a pre-trained RoBERTa3 with 12 layers, 12 attention heads in each layer,
and 768 dimensions of the hidden state. We set the same hyperparameters with MelBERT, which
were tuned on VUA-18dev based on F1-score. The max sequence length was set as 150. The batch
size was set to 16 instead of 32 in the original paper due to GPU memory limitation. We train the
model for 3 epochs with Adam optimizer. We first increased the learning rate from 0 to 3e-5 during
the first two epochs and then linearly decreased it during the last epoch. We set the dropout ratio as
0.2. The training takes roughly 5 hours on one GPU with 16 GB memory.
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Dual-branch Model Finetuneing Process. Our approach utilizes a dual-branch architecture where
each branch consists of a separately encoder based on pre-trained MelBERT model in the previous
step. Here each model is finetuned on the annotation dataset created by Gordon et al. (2015). We
set the hyperparameters aligned with MelBERT. We finetune the model for 3 epochs with Adam
optimizer. We set the learning rate to be 3e-5. The finetuning process takes roughly 3 hours on one
GPU with 16 GB memory.

5.3 Evaluation and Results

For the metaphor token classification task, we compared our model with two baseline models:
RoBERTa_BASE and RoBERTa_SEQ. These two are basic adoptions of the RoBERTa model for
metaphor detection without the MelBERT infrastructure. As shown in Table 1, the performance is
comparable.

Table 1: Metaphor Token Classification Results

Dataset Model Metrics

Prec Rec F1

VUA 18

RoBERTa_BASE 79.2 73.2 75.9
RoBERTa_SEQ 80.2 73.8 77.0
Our Model 81.4 73.6 77.3
MelBERT 81.4 74.2 77.2

VUA 20

RoBERTa_BASE 73.8 67.7 71.1
RoBERTa_SEQ 75.2 66.7 70.8
Our Model 76.7 66.7 71.4
MelBERT 75.8 68.0 71.8

For the domain classification task, we compared our model to the majority baseline, which represents
the performance the model would achieve if it always predicts the majority source and target domain
from the training dataset. We use this baseline partly because we couldn’t find other works that detect
both source and target domains based on the Gordon et al. (2015) dataset. Additionally, the dataset is
relatively skewed, with many examples concentrated in a few target and source domains. In this case,
the majority baseline can provide a useful insight into the label distribution. As shown in Table 2, our
model performs well on token classification and target domain classification tasks but struggles with
source domain classification tasks. Nonetheless, our model outperforms the majority baseline.

We also created a Hugging Face interface using Gradio, as illustrated in Figure 2. The interface
returns both metaphorical tokens and the target and source domains they belong to. In the provided
example, the word "flow" is labeled as metaphorical. Moreover, the target domain of this metaphor is
"wealth," and the source domain is "body of water."

6 Analysis

For the metaphor token classification task, the main difference between our model and the baseline
models is the incorporation of FrameNet information. Initially, we believed that including FrameNet
would provide more concrete information about the target and source domains of detected metaphors.

Table 2: Metaphor Domain Classification Performance

Metrics

Acc Prec Rec F1

Our Model
Token Classification 99.1 93.0 83.4 87.9
Source Domain Classification 18.4 0.8 3.8 1.3
Target Domain Classification 93.4 71.5 70.4 70.8

Majority Baseline Source Domain Classification 12.5 0.2 2.0 0.4
Target Domain Classification 18.7 1.4 7.7 2.4
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Figure 2: Hugging face Interface. The user input their sentence, and our model will output the token-level
predicted metaphor detection results along with target and source domains. Our model takes roughly 5 seconds
to run the metaphor detection and 5 seconds to run the domain detection on CPU.

Unfortunately, we discovered that many detected metaphors lack frame information due to the sparse
nature of the original FrameNet annotation. As a result, adding a FrameNet component does not
significantly improve the performance of metaphor token classification. Our model’s performance
is quite comparable to the original MelBERT model. Generally, frame information, despite its
theoretical relevance to metaphor detection, does not offer additional assistance from an engineering
standpoint.

For the domain classification task, our model achieves relatively good performance on the target
domain but struggles with the source domain. It is important to note that we achieved around 99%
accuracy in detecting metaphorical tokens using the same dataset. This means that even though
the model successfully identifies the metaphor, it cannot determine the reason behind it. We have
considered several potential reasons for the performance discrepancy between target and source
domain detection. First, there may not be enough data, as detecting conceptual domains is inherently
more latent than surface-level token classification and requires more data for training. Furthermore,
the data provided for target domain classification is more abundant than that for source domain
prediction. While the model can infer the former based on both sentence embedding and token
contextual embedding, it can only estimate the latter based on the isolated embedding of a single
token. Lastly, domain classifications are multiclass classification tasks. While there are only around
10 classes in the target domain, the source domain is about seven times more sparse. Combined with
the relatively limited data, this also makes source domain classification more challenging. If this is
the case, a larger and more balanced dataset should lead to a significant performance improvement.

7 Conclusion

In this study, we developed a novel approach for detecting metaphors in natural language text using a
dual-branch model based on the state-of-the-art MelBERT transformer architecture. In addition to
MelBERT, we’ve incorporated a FrameNet component to better support metaphor detection tasks.
We discovered that despite FrameNet’s theoretical relevance to metaphor detection, it does not offer
additional benefits in terms of detection accuracy. Moreover, while the MelBERT architecture can
successfully identify metaphorical tokens and their corresponding target domains, it struggles to
detect source domains. We believe this could be because domain classification is inherently more
latent and challenging than surface-level token classification. Furthermore, our findings reveal that
current metaphor detection methods, despite achieving relatively good performance in locating
metaphorical tokens, do not possess a solid understanding of why these tokens are metaphorical. We
think this could partly explain the existing performance bottleneck in metaphor detection. If NLP
researchers want to enhance metaphor detection performance further, they need to develop better
solutions for the domain classification problem. While token label classification offers a useful tool,
detecting metaphor domains will contribute to a deeper understanding of the cognitive processes and
cultural factors that shape the use of metaphorical language.
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