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Abstract

The interpretability of Large Language Models (LLMS) like BERT (Devlin et al.,
2018) remains limited. Particularly, questions remain regarding how they generate
predictions for a masked word when given a syntactically ambiguous sentence.
Different replacements for the masked word can alter the sentence’s meaning,
thereby making BERT’s predictions diverse. Previous research in Hewitt and
Manning (2019) indicates LLMs can encode dependency parse tree information of
a sentence within the hidden vector representations of each word. Hewitt’s research
focused on the development of a structural probe matrix, which performs a linear
transformation from the squared L2 distances of the hidden vector representations to
the distance between words in the parse tree. Our research extends this to determine
whether BERT can use dependency parse tree information in its predictions. This
would indicate BERT can leverage syntactical rules for its outputs, yielding insights
for its predictions. To answer this, we perform an ‘injection’ on BERT by using the
structural probe matrix from Hewitt and Manning (2019) to apply a transformation
on BERT’s hidden vectors, allowing us to ‘push’ them towards towards a ‘gold’
dependency parse tree. After this ‘injection’, we pass the transformed hidden
vectors through the remaining layers of BERT and analyze the output probability
distribution for the masked word. We conducted a qualitative analysis, doing a
subjective review of the types of words the different injected models predicted
for the mask, as well as a quantitative analysis, via objective, proportion-based
metrics we devised using specific types of sentences. Our research supports the
hypothesis that BERT can use information encoded in dependency parse trees to
generate predictions that align with the added information.
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2 Introduction

Improving the explainability of LLMs is important not only for increased transparency and trust, but
to also gain a better understanding on the downstream tasks they can be used for. A responsible use of
BERT necessitates a base understanding of how and why its predictions are generated. Our research
therefore falls under the broader scope of improving model interpretability, as we seek to answer
whether syntactical information affects the decisions and output predictions that BERT makes.

Our work is fundamental to NLP research, particularly in identifying how computers model and
represent language. If we are able to gain insight regarding whether BERT utilizes dependency parse
trees in its predictions, then our work sets up future research on how to explicitly incorporate different
syntactical rules in LLMs.

Additional motivation for this work can be seen via vanilla BERT’s predictions for a masked word in
a syntactically ambiguous sentence such as the following:

They finally decided to read the books on the _____ so that they would not fail their history test.

Table 1: vanilla-BERT masked predictions & probability distribution

Predicted Words subject island books children wall walls battlefield topic planet school
Probabilities 0.054 0.039 0.026 0.021 0.016 0.013 0.013 0.013 0.013 0.012

The predicted words from vanilla BERT fall under multiple contexts. ‘subject’, ‘battlefield’, ‘topic’,
and ‘planet’ refer to content of the books while ‘wall’, ‘walls’, and ‘school’ refer to physical location.
If providing linguistic information via dependency parse trees to BERT influences the types of words
that are predicted for the masked word, we can clearly evaluate our hypothesis that BERT is able to
use linguistic information to form its predictions.

Below are two potential dependency trees for the sentence mentioned above to show examples of
syntactical information that we can insert in the injected model. The circles in red highlight the
difference in dependency relationships between the words, which alters the context of the sentence.

Figure 1: Parse tree for physical location syntactical representation of ambiguous sentence

Figure 2: Parse tree for subject matter syntactical representation of ambiguous sentence

3 Related Work

Hewitt and Manning (2019): Structural Probe Previous work has been done in Hewitt and
Manning (2019) to identify if BERT, which was not explicitly trained with linguistic rules, can encode
linguistic information within its hidden vector representations. The premise is as follows: for a
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given sentence and its corresponding parse tree, we can compute the pairwise path distance between
all words, and we can also compute pairwise distance between all word vectors in the sentence.
Identifying some way to relate these two distance metrics would indicate BERT could implicitly
encode parse tree information within its hidden vectors.

Hewitt and Manning proposed a structural probe, a tool that transforms word vectors to another
vector space. Under this new vector space, the distance between the transformed vectors encodes
parse tree distances. This indicates that there is some linear transformation that can be done on the
word vectors generated by BERT such that the distance between the updated vectors resembles the
distances between the words in a parse tree. The probe, designated as B, was found by minimizing
the distance, via gradient-descent, between true parse tree distances from a parsed corpus and the
B-transformed distances between pairs of words in all sentences of the corpus. Specifically, B was
found via the following equation:
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represents the true, human-parsed parse tree distances between pairs of words. We describe these
methods in detail as our research leverages the same structural probe in our methods.

Hewitt and Manning’s research finds that LLMs are able to encode linguistic tree structures within
their vector representations. LLMs thus can somewhat replicate linguistic rules — the question of
whether they directly utilize those rules is now prime for exploration.

Wahab and Sifa (2021): DiBERT This work by Wahab and Sifa attempts to train a variation
of BERT, DiBERT, with dependency related information about a sentence. By training a model
that correctly links each word in a sentence with it’s parent, according to the spaCy Honnibal and
Montani (2017) dependency tree, they show DiBERT can perform better in downstream tasks such
as Natural Language Inference and Sentiment Analysis. This relates to our work as it discusses a
method that uses dependency parse trees to embed information into BERT to improve its performance
and awareness for this information. Our work builds on this by using the specific distances between
all pairs of words in the dependency parse tree to encode syntactical information, rather than injecting
a model to predict only the parent word of each word during pre-training. In addition, we work with
a structural probe to move between BERT hidden vector space and syntactical spaces to improve the
injection.

4 Approach

Overview The overarching task for BERT is to predict a masked word in an input sentence. The
nature of how BERT functions (whether as a baseline or with different injection-modifications) as
well as what the input sentence looks like varies throughout our experiments.

To see if BERT uses syntactical information about the sentence in its word predictions, we choose
sentences that are syntactically ambiguous such that the content of the masked word depends on the
syntactical relationship it has with the rest of the sentence. The sentences we choose offer at least two
different syntactical relationships for the masked word, similar to the example in the introduction.

We then encode syntactical information for both possible dependency parse trees in the corresponding
iterations of our injected model. By doing this for both possible dependency parse trees, we can see
if the respective word-probability distributions are less diverse and more aligned with the specific
linguistic context we provide.

Injected Model Architecture Our injection is defined as the modification and transformation of
BERT’s hidden vectors in accordance with the syntactical information from the dependency parse tree.

3



The structural probe from Hewitt and Manning (2019) was trained on the hidden vectors
yielded after seven layers of BERT. For consistency, we pause the forward pass after the first seven
layers after feeding an input sentence into BERT, perform the injected model to modify the hidden
vectors, and resume training for the final five layers.

The input to the model is a sentence of length k. This sentence consists of the words {w0, ...wk},
which thereby correspond to the tokens {i0, ...ik} once tokenized. Let H be a matrix of the hidden
vectors of BERT at the seventh layer, before the injection modification, where hi represents the
hidden vector of token i. hi ∈ R1x768 in accordance with BERT’s specifications.

Syntactical information is represented by the distances between the tokens {i0, ...ik} in the
dependency parse tree for a given sentence. Refer to Figure 1 and 2 for an example. This follows
from the research in Hewitt and Manning (2019) where the distance between words in the parse
tree defines the syntactical structure of the sentence. From the dependency parse trees, we construct
D ∈ Rixi to represent the distance between each pair of words according to the dependency parse
tree (the path distance between each word on the tree). This matrix is denoted as the ‘gold’ distance
matrix; further information on construction can be found in the Data section. We construct two parse
trees for each representation of the sentence and calculate their associated distance matrices D1,D2.

Next, we utilize the structural probe B to transform the hidden vectors into vectors in the
syntactical space. Once transformed, the hidden vectors now exist in a similar "syntactical" vector
space as the distance matrix. We contend that modifying the hidden vectors in this new space would
make changes more specific and direct, as opposed to modifying the raw H matrix directly. Let H′ be
the hidden vectors transformed into the syntactical space, formally defined as follows:

H′ = H ∗B (2)

After the transformation, we need to inject the syntactical information from the ‘gold’ distance
matrices D1,D2. We do this by first calculating the squared L2 norm of the differences between all
pairs of vectors in H′. This represents the current distance between the words in the syntactical space.
This matrix is denoted as C.

Ci,j = ||h′
i − h′

j ||22 (3)

Now we "push" C to a selected distance matrix Dx so that we inject all of the syntactical information
from the dependency parse into the hidden vectors. We do this using gradient updates. At each
iteration, each hidden vector in H′ is updated as follows where α is the learning rate:

L(loss) = 1

i

∑
i,j

|Ci,j − Di,j |2 , h′
i = h′

i − α∇hiL (4)

Then, we take the partial gradient with respect to each h′
i in order to update the transformed hidden

vectors. This loss function minimizes the difference between the squared L2 norms of the pairwise
differences (C) and the ‘gold’ matrix (D). After completing the training, we need to untransform H′

from the syntactical space back to the hidden vector space. Since B is non-invertible, we resort to
using the Moore–Penrose inverse (B†). We do this via the following:

H′ = H′ ∗B† (5)

From here, we feed the vectors of H′ into the remaining five layers of BERT. Then we evaluate the
output word-probability distributions as a result of this injection.

Baselines We leveraged different baselines to test the validity of our research method.

First, we use a pre-trained BERT model to give us its top ten predictions and probabilities for a
masked word in a sentence — denoted as vanilla-BERT. We compare the vanilla word-probability
distributions with the results of our injected variations to determine if our injections influenced
BERT’s predictions to align with different syntactical information we inject. vanilla-BERT lets
us verify sentence ambiguity by observing if it predicts words that satisfy multiple syntactical
relationships of the sentence.

Second, to determine the usefulness of B, we use an injected model that does not multiply the hidden
vectors of BERT at the seventh layer (split layer) by B. Instead, the injected model still performs

4



gradient updates to minimize the distance between the squared L2 norm of the pairwise differences
of the hidden vectors and the dependency parse tree distances (‘gold’ matrix). This baseline tests the
theory that there exists a syntactical space under which the distance between the hidden vectors now
aligns with parse tree distances.

5 Experiments

5.1 Data

Dataset Overview For our experiment, the input was syntactically ambiguous sentences, with one
masked word, and two distance matrices associated with the different syntactical interpretations
of the ambiguous sentence. Dataset 1 consists of six sentences sourced from Marvin and Linzen
(2018), which focuses on syntactical evaluation. Dataset 2 consists of seven sentences, both manu-
ally constructed and sourced from Taraban and McClelland (1988), which focuses on comprehen-
sion/processing.

In Dataset 1, there were to different forms of each sentence tested - one with the correct form of
plurality, and one with the incorrect form of plurality. For example, for the sentence “The author next
to the security guards [MASK] when it is sunny,” the correct plurality of the mask is singular since
"author" is singular. Due to the clear distinction that plurality provides, we used Dataset 1 sentences
to obtain quantitative results for our method.

Dataset 2 contained sentences with examples of noun/verb phrase attachment ambiguity and preposi-
tional phrase attachment ambiguity. For example, in the sentence "The thieves stole all the paintings
in the [MASK] while the guard slept," the masked word can attach to the noun "paintings" or the
verb "stole." We used these sentences to obtain qualitative results for our method.

The output data for our experiment were the top 10 word-probability distributions of the BERT model,
from the baseline BERT models and the injected BERT model.

Table 2: Dataset 1, adapted from Marvin and Linzen (2018)

The author next to the security guards [MASK] when it is sunny.
The authors that like the security guard [MASK] when it is sunny.

The mechanics said the author hurt [MASK] while working on something.
The mechanic said the authors hurt [MASK] while working on something.

The author that the security guards like injured [MASK] while working on something.
The authors that the security guard likes injured [MASK] while working on something.

Table 3: Dataset 2, adapted from Taraban and McClelland (1988) + our own sentences

The man drove the car with a broken [MASK] to the mechanic
The landlord painted all the walls with [MASK] before anyone saw

The doctor examined the patient with a [MASK] but could not determine the problem
They finally decided to read the books on the [MASK] so that they would not fail their history test

The cops scared the public with [MASK] during the parade
The band played music for animals on the [MASK] last week

The athlete trained before the dinner [MASK] so he can feel good

Data Preprocessing For every sentence, we first used spaCy to create dependency trees, which were
manually adjusted using the UD Annotatrix Tyers et al. (2018) annotation tool. The CoreNLP.run
tool Manning et al. (2014) was used during this process to verify manual changes to the dependency
trees. After the dependency parse trees were created, they were converted to an undirected graph via
NetworkX Hagberg et al. (2008), and a distance matrix was created using Floyd’s algorithm to find
the shortest path lengths for each pair of nodes/words in the graph.

5.2 Evaluation method

Our task was to evaluate if injecting syntactical information via the distances matrices will clarify
ambiguity in BERT’s predictions. We compare the output word-probability distributions between each
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dependency tree under the injected model with the distribution under vanilla-BERT. Measurables for
our qualitative analysis include noticing probability distributions shift for the output words between
contexts and occurrence of new words native to each context.

For quantitative evaluation, we leveraged the results from Dataset 1 by calculating the frequency of
‘correct’ to ‘incorrect’ words outputted in the word-probability distributions. The ‘correct’ masked
word for each context is based on its plurality so this heuristic allowed us to strictly define a ‘correct’
word. We compared the results of these metrics for each dependence parse tree during injection as
well as comparing the probability distributions against vanilla-BERT.

5.3 Experimental details

Model Configurations For our vanilla-BERT baseline model, non-syntactical-probe-transformation
baseline model, and injected model we used the pretrained BertForMaskedLM from HuggingFace
with the ‘bert-base-cased’ modifier. Both baseline models used the BertTokenizer and the injected
model used BertTokenizerFast.

For vanilla-BERT, we allowed the input to pass through all twelve layers with no modification. For
the non-syntactical-probe-transformation baseline model, we created one sub-model of vanilla-BERT
by only using the first seven layers. Then we performed gradient updates directly on the hidden
vectors, and ran the vectors through the rest of vanilla-BERT.

Our injected model follows a similar approach, but transforms the hidden vectors prior to the
gradient updates. We ran gradient updates until loss reached a convergence value, which was set
at 0.03 · initialLoss where initialLoss is the loss prior to performing gradient updates. Before
settling on Mean Square Error as our loss, we experimented with custom loss functions based on the
raw sum of differences between the two matrices, Mean Absolute Error, etc.

For the learning rate during the gradient updates, we experimented with: 0.1, 0.01, 0.001, and 0.0001.
The final learn rate we chose is 0.001 as it ensures that our loss continues to decrease and we converge
to an appropriate minimum. Prior to this, we experimented with using a scheduled learn rate, which
adjusts the learn rate dynamically. We also experimented with setting convergence to be based on the
norm of the gradient, loss to be a fixed value (i.e. 0.009), etc. These methods proved to be ineffective
as they either caused the training time to be too long or weren’t applicable for all kinds of sentences.

Since all the sentences differ in construction, loss, and distance matrices, we settled on a more
consistent method of loss convergence. A visual representation of the effects of the model injection
on the hidden vectors can be found in the appendix in the form of heatmaps.

5.4 Results

For the Marvin/Linzen dataset, the results of our experiment are summarized in the following table.
The counts are sourced from the top ten predictions of the injected model. As seen in the last few
rows of Table 4, we see similar results in terms of counts. However, a clear distinction can be seen
when we examine the prediction probabilities of the model, as shown in Table 5. A value of "N/A" is
given to words not found in the top ten predictions.

Table 4: Counts of Plural Words vs Singular Words

Correct Tree Incorrect Tree
Sentence # Correct # Incorrect # Correct # Incorrect
The author next to the security guards [MASK] when it is sunny. 3 0 1 0
The authors that like the security guard [MASK] when it is sunny. 2 1 0 8
The mechanics said the author hurt [MASK] while working on some-
thing.

2 1 2 1

The mechanic said the authors hurt [MASK] while working on some-
thing.

1 1 1 1

The author that the security guards like injured [MASK] while working
on something.

1 1 1 1

When compared to the baseline probabilities, the injected plural tree model led to an average 0.012
increase in probabilities for “themselves”. Similarly, the injected singular tree model to an average
0.39 increase in probabilities for “himself.” We also see the adverse relationship represented in the
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Table 5: Probabilities of Plural vs Singular Words

Plural Tree Probabilities Singular Tree Probabilities Vanilla BERT Probabilities
Sentence "themselves" "himself" "themselves" "himself" "themselves" "himself"
The mechanics said the author
hurt [MASK] while working on
something.

0.048 0.806 0.018 0.864 0.011 0.858

The mechanic said the authors
hurt [MASK] while working on
something.

0.447 0.073 0.0812 0.108 0.584 0.106

The author that the security
guards like injured [MASK]
while working on something.

0.143 0.024 N/A 0.080 0.00088235 0.00044496

The authors that the security
guard likes injured [MASK]
while working on something.

N/A 0.012 N/A 0.069 0.00034945 0.00056551

data. The injected plural tree model led to an average 0.012 decrease in probabilities for “himself,”
while the injected singular tree model led to an average .12 decrease in probabilities for “themselves.”

For Dataset 2, we evaluate the sentences across both baselines and the injected model by comparing
the top 10 word-probability distributions.

Table 6: vanilla-BERT Baseline Predictions, View full table in Appendix

The man drove the car with a broken [MASK] to the mechanic

leg 0.200, arm 0.134
windshield 0.083, wheel 0.077

nose 0.074, tire 0.045
window 0.033, neck 0.033
engine 0.027, head 0.015

They finally decided to read the books on the [MASK] so that they would not
fail their history test

subject 0.0543, island 0.039
books 0.026, children 0.021

wall 0.016, walls 0.013
battlefield 0.013, topic 0.013
planet 0.013, school 0.012

The doctor examined the patient with a _____ but could not determine the
problem

mirror 0.123, needle 0.102
doctor 0.065, physician 0.058
flashlight 0.054, knife 0.034

telescope 0.033, bandage 0.016
blanket 0.016, lens 0.0145

Across all sentences, we notice that the no-transformation baseline has an almost identical collection
of words and order between the two dependency parse trees, in some cases the probability distributions
for a specific word vary only by 0.001-0.002. Compared to the vanilla-BERT baseline, we still see a
high collection of words that are ambiguous to both contexts of the sentence in no-transformation.
For the injected model, at the minimum, we see clear re-orderings of word-probability distributions
and for select sentences, we see new words in the distribution that fit with the inputted dependency
parse tree. See Table 6 and 7.

6 Analysis

In order to examine the effects of the injected model on the outputs of BERT, we employed two
different methods of evaluation - quantitative evaluation for Dataset 1, and qualitative evaluation for
Dataset 2. Quantitative evaluation of Dataset 1 included raw counts of different word plurality as
well as analysis of the prediction probabilities themselves.

We realized that the results of our injected model were dependent on the outcomes of the vanilla-BERT
baseline model. In some cases, the vanilla-BERT model provided predictions for both interpretations
of a sentence. For example, for the sentence "The man drove the car with a broken [MASK] to the
mechanic," vanilla-BERT provides results such as {leg, arm, nose} but also provides results such as
{tire, window, engine}. When the different parse trees were provided to the injected model, we are
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Table 7: no-syntactical-transformation BERT Baseline and injected BERT Predictions.D1 represents
the dependency tree encoded with the first context, same for D2. View full table in Appendix.

Sentence no-transformation D1 no-transformation D2 injected D1 injected D2
The man drove the
car with a bro-
ken [MASK] to
the mechanic

[MASK] -> man
wheel 0.148, leg 0.096
head 0.074, arm 0.057
car 0.037, window 0.030
chair 0.029, neck 0.022
body 0.022, man 0.019

[MASK] -> car
wheel 0.143, leg 0.109
head 0.075, arm 0.063
car 0.033, window 0.030
chair 0.026, neck 0.024
body 0.022, nose 0.018

[MASK] -> man
arm 0.272, leg 0.123
hand 0.071, stick 0.039
stone 0.029, bone 0.021
finger 0.010, glass 0.010
chain 0.010, hammer 0.010

[MASK] -> car
note 0.062, hand 0.058
arm 0.054, word 0.049
light 0.048, metal 0.028
silver 0.019, glass 0.014
broken 0.012, gold 0.011

They finally
decided to read
the books on the
[MASK] so that
they would not
fail their history
test

[MASK] -> books
books 0.040, children 0.017
book 0.016, Bible 0.0124
island 0.011, subject 0.010
map 0.010, truth 0.009
wall 0.008, table 0.007

[MASK] -> read
books 0.038, children 0.016
book 0.015, Bible 0.013
subject 0.0125, island 0.011
map 0.010, truth 0.009
wall 0.009, table 0.007

[MASK] -> read
ground 0.043, wall 0.041
floor 0.030, table 0.026
back 0.019, top 0.017
river 0.015, side 0.013
throne 0.013, scroll 0.012

[MASK] -> read
wall 0.045, ground 0.039
children 0.034, place 0.032
back 0.023, top 0.015
throne 0.014, city 0.014
library 0.013, street 0.013

The doctor exam-
ined the patient
with a _____ but
could not deter-
mine the problem

[MASK] -> patient
physician 0.057, doctor 0.049
patient 0.038, mirror 0.031
doubt 0.025, diagnosis 0.020
skull 0.013, psychiatrist 0.012
needle 0.011, surgeon 0.011

[MASK] -> doctor
physician 0.059, doctor 0.050
patient 0.036, mirror 0.034
doubt 0.025, diagnosis 0.020
psychiatrist 0.013, skull 0.012
needle 0.012, surgeon 0.011

[MASK] -> patient
cross 0.076, torch 0.032
stone 0.029, stick 0.025
certainty 0.024, hammer 0.016
knife 0.014, horse 0.012
curse 0.012, headache 0.011

[MASK] -> doctor
cross 0.057, torch 0.030
stone 0.026, hammer 0.021
certainty 0.018, curse 0.018
stick 0.017, headache 0.016
horse 0.016, spear 0.015

able to push the model’s predictions in both directions, providing {arm, leg, hand, body, bone, foot}
for the context where broken is attached to "man," and providing {gold, light, glass, metal, silver}
for the context where broken is attached to "car." Since the initial vanilla-BERT model was able to
recognize both interpretations initially, we were able to widen the distinction via the injected model.
In cases where vanilla-BERT only recognized one interpretation, we often had unrelated words or
punctuation provided as predictions for the unrecognized dependency parse.

In other words, we see that BERT is able to recognize some syntactical information via the dependency
trees, but not all. When BERT is unable to initially recognize the syntactical information, it does not
use it while predicting, and attempts to push BERT in this direction do not lead to promising results.

Between vanilla-BERT and no-syntactical-transformation, since we do not use B, the loss between
the squared L2 norms of the difference of the hidden vectors and ‘gold’ matrix is incredibly high
(ex: 317529.9256). Despite the gradient updates, since the vectors are not in the syntactical space,
the outputs of no-syntactical-transformation remain ambiguous and similar to vanilla-BERT. The
occurrence of new words such as {light, chain, gold} in sentence 1 and {library, street} in sentence 2
in the injected model shows promise of our method as these words are native to the injected context
and could indicate that the syntax was clarified to BERT.

The question of whether or not BERT utilizes linguistic context when making predictions was partially
answered by the Marvin and Linzen dataset. As seen in Table 5, the plural and singular dependency
trees push the probabilities of vanilla-BERT in the proper direction as initially hypothesized. As
mentioned above, this distinction was clear due to the fact that vanilla-BERT provided both versions
as possible predictions prior to any injections.

7 Conclusion

Main Findings From the results of the Marvin dataset, we learned that BERT does indeed use
the injected syntactical information in its predictions. By using the input dependency tree, our
injection allowed BERT to predict words that matched the plurality of its dependent word. Through a
comparison of our vanilla-BERT baseline and no-syntactical-transformation baseline, we concluded
that the probe B is necessary and contributes significantly to the injection. Though with slightly
different probability distributions, words in the no-syntactical-transformation baseline were nearly
identical to the vanilla-BERT baseline, which supports the idea that gradient updates without B are
insignificant. Dataset 2 also revealed that the success of the injected model is dependent on the
initial outputs of vanilla-BERT. In some sentences, we noticed the introduction of new words that
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fit the corresponding context of the dependency tree, not found in vanilla-BERT or no-syntactical-
transformation, occur in our injected model. This observation, coupled with the shifts in word-
probability distributions between the dependency trees in our injected model, support our hypothesis
that this injection has clarified ambiguity. However, we noticed marginal changes from our injection
between different dependency trees for some sentences. These takeaways indicate sizeable potential
for improvement on our method to apply to more types of sentences. Given that sentences are highly
diverse in structure, length, and dependencies, it was difficult to develop a method that delivered
consistent results across all sentences. We tested multiple model configurations and found that a
learning rate of 0.001 and defining convergence as reaching 0.03 · initialLoss provided the best
results. This model configuration can also be applied to different use cases, such as debiasing. Overall,
with reasonable room for improvement, we added to BERT’s interpretability and understanding of
functionality by showing changes in results due to our injection.

Limitations Since the structural probe matrix B provided in Hewitt and Manning (2019) was trained
on layer seven of BERT, we were limited to performing our injection at layer seven as well. In
the future, we would like to train B at each layer of BERT-base to investigate how performing the
injection at a different layer can contribute to BERT’s ability to use syntactical information in its
predictions. As our task involves ambiguous sentences for the input and distinct dependency parse
trees for each sentence, our dataset was constrained in size. There was no publicly available dataset
for this purpose, so more time was devoted to developing a data pipeline and gathering sentences that
could be potentially used.

Future Work We would like to expand the dataset to contain more sentences where vanilla-BERT can
recognize both interpretations of the sentence. In addition, we are interested in seeing the impacts of
such an injection on other LLMs. As we mentioned the increased usage of LLMs in downstream tasks,
we would like to evaluate how well our method works for tasks other than masked word prediction,
such as sentiment analysis and debiasing.
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A Appendix (optional)

In this Appendix, we have included the full, expanded versions of some of the tables we truncated in
the earlier parts of this paper. We also included some extra visualizations and figures here.

Table 6: Full Table vanilla-BERT Baseline Predictions

Sentence word-probability distributions

They finally decided to read the books on the [MASK] so that they would
not fail their history test

subject 0.0543, island 0.039
books 0.026, children 0.021

wall 0.016, walls 0.013
battlefield 0.013, topic 0.013
planet 0.013, school 0.012

The man drove the car with a broken [MASK] to the mechanic

leg 0.200, arm 0.134
windshield 0.083, wheel 0.077

nose 0.074, tire 0.045
window 0.033, neck 0.033
engine 0.027, head 0.015

The band played music for animals on the [MASK] last week

road 0.074, show 0.053
radio 0.050, beach 0.044
streets 0.044, farm 0.033
tour 0.026, street 0.0216
train 0.019, stage 0.018

The athlete trained before the dinner in the [MASK] so he can feel good

gym 0.163, restaurant 0.068
kitchen 0.057, cafeteria 0.046
park 0.039, courtyard 0.021
morning 0.020, lobby 0.020
hotel 0.020, bathroom 0.018

The cops scared the public with [MASK] during the parade

guns 0.108, fear 0.078
them 0.068, bullets 0.060

gunfire 0.042, violence 0.035
it 0.034, questions 0.027

threats 0.026, terror 0.024

The doctor examined the patient with a _____ but could not determine
the problem

mirror 0.123, needle 0.102
doctor 0.065, physician 0.058
flashlight 0.054, knife 0.034

telescope 0.033, bandage 0.016
blanket 0.016, lens 0.0145

The landlord painted all the walls with _____ before anyone saw

graffiti 0.164, flowers 0.134
paint 0.101, blood 0.043

it 0.035, roses 0.033
them 0.023, murals 0.020

red 0.020, gold 0.018
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Table 7: Full Table no-transformation BERT and injected BERT Predictions

Sentence no-transformation D1 no-transformation D2 injected D1 injected D2

They finally
decided to read
the books on the
[MASK] so that
they would not
fail their history
test

[MASK] -> books
books 0.040, children 0.017
book 0.016, Bible 0.0124

island 0.011, subject 0.010
map 0.010, truth 0.009
wall 0.008, table 0.007

[MASK] -> read
books 0.038, children 0.016

book 0.015, Bible 0.013
subject 0.0125, island 0.011

map 0.010, truth 0.009
wall 0.009, table 0.007

[MASK] -> books
ground 0.043, wall 0.041
floor 0.030, table 0.026
back 0.019, top 0.017
river 0.015, side 0.013
throne 0.013, scroll 0.012

[MASK] -> read
wall 0.045, ground 0.039
children 0.034, place 0.032
back 0.023, top 0.015
throne 0.014, city 0.014
library 0.013, street 0.013

The man drove
the car with a bro-
ken [MASK] to
the mechanic

[MASK] -> man
wheel 0.148, leg 0.096
head 0.074, arm 0.057

car 0.037, window 0.030
chair 0.029, neck 0.022
body 0.022, man 0.019

[MASK] -> car
wheel 0.143, leg 0.109
head 0.075, arm 0.063

car 0.033, window 0.030
chair 0.026, neck 0.024
body 0.022, nose 0.018

[MASK] -> man
arm 0.272, leg 0.123
hand 0.071, stick 0.039
stone 0.029, bone 0.021
finger 0.010, glass 0.010
chain 0.010, hammer 0.010

[MASK] -> car
note 0.062, hand 0.058
arm 0.054, word 0.049
light 0.048, metal 0.028
silver 0.019, glass 0.014
broken 0.012, gold 0.011

The band played
music for animals
on the [MASK]
last week

[MASK] -> band
show 0.168, festival 0.046
album 0.025, tour 0.021

night 0.020, program 0.019
bill 0.0159, concert 0.014
stage 0.013, song 0.013

[MASK] -> animals
show 0.167, festival 0.045
album 0.025, tour 0.022

program 0.019, night 0.019
bill 0.016, concert 0.014
stage 0.013, song 0.012

[MASK] -> band
streets 0.505, street 0.094
road 0.026, earth 0.015

ground 0.014, internet 0.013
Internet 0.013, planet 0.012

roads 0.012, beach 0.012

[MASK] -> animals
streets 0.353, street 0.096
road 0.040, ground 0.020

playground 0.017, beach 0.016
roads 0.013, grid 0.013

roof 0.013, pavement 0.013

The athlete
trained before
the dinner in the
[MASK] so he
can feel good

[MASK] -> dinner
gym 0.116, morning 0.055

restaurant 0.040, kitchen 0.030
evening 0.022 park 0.021

stadium 0.020, cafeteria 0.019
house 0.018, hospital 0.018

[MASK] -> athlete
gym 0.114, morning 0.056

restaurant 0.041, kitchen 0.030
park 0.022, evening 0.022

stadium 0.020, cafeteria 0.020
house 0.018, hospital 0.018

[MASK] -> dinner
world 0.020, morning 0.020

field 0.019, sky 0.016
room 0.015, park 0.013
ring 0.011, yard 0.011

west 0.011, street 0.010

[MASK] -> athlete
morning 0.032, world 0.020

sky 0.018, day 0.013
field 0.012, ring 0.011

room 0.011, arena 0.010
end 0.009, west 0.009

The cops scared
the public with
[MASK] during
the parade

[MASK] -> public
it 0.128, them 0.090

violence 0.067, fireworks 0.054
police 0.021, him 0.015

cars 0.015, riot 0.013
riots 0.012, protests 0.012

[MASK] -> cops
it 0.131, them 0.089

violence 0.069, fireworks 0.058
police 0.020, cars 0.016
him 0.0144, riot 0.013
fear 0.012, riots 0.012

[MASK] -> public
joy 0.284, laughter 0.032
fear 0.03, fireworks 0.021

excitement 0.018, words 0.014
hope 0.013, support 0.011
Twitter 0.01, money 0.008

[MASK] -> cops
fear 0.117, them 0.047

joy 0.025, excitement 0.017
dust 0.016, concern 0.016

help 0.013, hope 0.012
alarm 0.012, laughter 0.010

The doctor exam-
ined the patient
with a _____ but
could not deter-
mine the problem

[MASK] -> patient
physician 0.057, doctor 0.049

patient 0.038, mirror 0.031
doubt 0.025, diagnosis 0.020
skull 0.013, psychiatrist 0.012
needle 0.011, surgeon 0.011

[MASK] -> doctor
physician 0.059, doctor 0.050

patient 0.036, mirror 0.034
doubt 0.025, diagnosis 0.020
psychiatrist 0.013, skull 0.012
needle 0.012, surgeon 0.011

[MASK] -> patient
cross 0.076, torch 0.032
stone 0.029, stick 0.025

certainty 0.024, hammer 0.016
knife 0.014, horse 0.012

curse 0.012, headache 0.011

[MASK] -> doctor
cross 0.057, torch 0.030

stone 0.026, hammer 0.021
certainty 0.018, curse 0.018
stick 0.017, headache 0.016

horse 0.016, spear 0.015

The landlord
painted all the
walls with _____
before anyone
saw

[MASK] -> paint
them 0.151, it 0.109

graffiti 0.066, paint 0.042
pictures 0.034, him 0.028
flowers 0.022, blood 0.014

her 0.011, water 0.011

[MASK] -> walls
them 0.145, it 0.104

graffiti 0.072, paint 0.045
pictures 0.035, him 0.027
flowers 0.024, blood 0.015

her 0.011, water 0.011

[MASK] -> paint
graffiti 0.066, mud 0.046
paint 0.044, him 0.033
dust 0.032, gold 0.031
red 0.026, blood 0.025

it 0.022, dirt 0.019

[MASK] -> walls
dust 0.066, red 0.048

paint 0.041, graffiti 0.041
mud 0.040, gold 0.036
dirt 0.031, blood 0.025

yellow 0.023, stones 0.020

11



[Before injection D1] [Before injection D2]

[After injection D1] [After injection D2]

Figure 3: Ratio between hidden vector distances and gold distance matrix

Figure 4: Example of loss declining to convergence for both dependency trees of a sentence
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