Rewriting Stack Overflow Questions to Improve
Writing Quality

Stanford CS224N Custom Project

Allison Casasola Maximilien Cura
Department of Mathematics Stanford University
Stanford University mcura@stanford.edu

allyc@stanford.edu

Abstract

Stack Overflow (SO) is a popular question-and-answer website for programmers:
users seeking help with technical problems submit questions, and other users on
the site answer questions according to their interest and technical proficiencies. If
a particular question is perceived as high-quality, community members be likely
to upvote and/or respond to the question. However, if the question is perceived
as low-quality, then community members will be likely to downvote, flag, or edit
the question; the absence of positive response leads to lower visibility, and the
perception of being low-quality may make members less interested in offering
help; thus the question is less likely to be answered. The community perception
of question quality may be dependent on many factors, but it is doubtless that
the clarity of writing in the question will have an effect on comprehension and
perception. Thus, our project wishes to explore how poorly-written SO questions
can be rewritten using NLP techniques to improve question quality. We fine-tune
multiple instances of the TS5 text-to-text model with data from SO questions in
several ways, and find that, in addition to certain Grammatical Error Correction
(GEC) capabilities, it displays behaviours suitable for the particular domain of SO
questions and overall performs better on test data drawn from SO questions than a
T5 model fine-tuned on only GEC data.

1 Key Information to include

* Mentor: Heidi Zhang
» External Collaborators (if you have any): None

* Sharing project: No

2 Introduction

Stack Overflow serves as a platform for programmers to ask technical questions as well as respond to
others’ questions. Since its launch, Stack Overflow has become a ubiquitous feature of programmers’
lives, currently hosting over 23.5 million questions[] that cover an enormous variety of topics.

The questions are often complex in form—many questions include technical jargon recognizable
to only a small community of programmers, links to websites or images, snippets of code, etc.
Furthermore, the questions span a very broad range of computer science topics. For example, some
questions are theoretical/generally applicable while others are much more specific to particular
difficulties or problems an individual has run into while programming.

If members of the Stack Overflow community have a positive perception of a question (i.e. they
perceive it as high-quality), they may decide to upvote it, having the effect of increasing its visibility

"https://stackoverflow.com/questions ?tab=Newest

Stanford CS224N Natural Language Processing with Deep Learning

and making it more likely to be answered. If, on the other hand, members of the community perceive
a question as low-quality, they may decide to downvote it, edit it, or in severe cases, flag it for review,
having the effect of lowering its visibility; additionally, a potential answerer may be less likely to
respond to a question they perceive as low-quality, overall having the effect of making the question
less likely to be answered. The situation of unanswered questions is fairly common on the platform,
with 3.4 million out of || of the total 23.5 million questions on the platform having no answers.
Perhaps, if some of these questions were revised to improve the writing quality, more of them would
have been answered.

Thus motivated, we seek to explore how NLP techniques can be utilized to rewrite poorly-written
Stack Overflow questions. Our research questions is thus: "To what extent can natural language
models be used to rewrite poorly written Stack Overflow questions and improve their quality of
writing?"

3 Related Work

There is a significant body of research on various topics related to Stack Overflow datasets, among
them various research related to question quality. For example, Téth et al.| (2019) present results about
the usability of NLP methods for classifying question quality; our work, though, is quite different
from theirs, since we are rewriting questions to improve quality, not simply classifying questions by
quality. [Toth et al.| (2019)) also notes various other similar research directions, though they make no
mention of question-rewriting, the areas they mention being distant from question-rewriting.

Chu et al.Chu et al.|(2019) did similar work with 303 other Stack Exchange sites (Stack Overflow is
one of the Stack Exchange sites), where they constructed a dataset from large numbers of questions
from Stack Exchange sites, and explored various approaches to the question-rewriting problem.
Their approach is aimed at rewriting general single-sentence questions from ill-formed to better-
formed, whereas, in this project, we attempt to rewrite the entire text of question posts. Additionally,
their dataset does not use any Stack Overflow data since "it is too specific to programming related
questions," whereas our dataset is entirely from Stack Overflow (Chu et al.,[2019)). In their paper,
they mention query and question rewriting, paraphrase generation, and text normalization as related
areas, and why each of these areas is different from question rewriting to improve clarity, helpfulness,
and utility.

4 Approach

In this project, we fine-tuned four instances of the TS5 model |Raffel et al.|(2019) with approximately
220 million parameters (the t5-base model) and evaluated/compared their success at rewriting Stack
Overflow questions.

e ¢T5: TS model fine-tuned on GEC data. To create a model with standard GEC capability
not specific to SO (as a basis for comparison to our models trained on SO data), we fine-
tuned a T5-base model on 400k pairs of English learners’ texts submitted to lang-8.com,
a language learning platform, and the corrected versions of the texts. This serves as our
baseline model. For the sake of simplicity, we call our baseline model cT5.

* sTS: TS model fine-tuned on Stack Overflow data. We also fine-tuned an off-the-shelf TS
model on 214k Stack Overflow questions that received edits from the community so as to
improve the question quality (see Data section for more information on this dataset). For the
sake of simplicity, we call this model sT5.

* csTS: TS model fine-tuned on GEC and Stack Overflow data. We took the baseline
model ¢TS5 and fine-tuned it again on the same Stack Overflow data used to fine-tune sT5.
We call this model csTS5.

* hT5: TS5 model fine-tuned on a dataset combining GEC and Stack Overflow data. We
generated a dataset that combined GEC and SO data (see Data section for more information)
and fine-tuned an off-the-shelf TS5 model on this. We call this model hT5, where the *h’
stands for "hybrid’.

"https://data.stackexchange.com/stackoverflow/query/1722774/
number-of-questions-with-no-answer

https://data.stackexchange.com/stackoverflow/query/1722774/number-of-questions-with-no-answer
https://data.stackexchange.com/stackoverflow/query/1722774/number-of-questions-with-no-answer

For sT5, c¢sTS, and hTS, we aimed to see an improvement in rewriting SO questions from cT5 since
these models are fine-tuned on in-domain SO data.

S Experiments

5.1 Data

cLang-8. In order to fine-tune a model with GEC capability, we followed the work completed in the
paper, "A Simple Recipe for Multilingual Grammatical Error Correction," which demonstrated that
fine-tuning a TS model on the cLang-8 dataset achieves state-of-the-art performance on Grammar
Error Correction for English [Rothe| (2022). The cLang-8 ("cleaned Lang-8") dataset was created by
cleaning the popular Lang-8 dataset used for GEC tasks in NLP. The Lang-8 dataset extracted data
from Lang-8.com, a language learning platform where native speakers correct others’ writing. In the
Lang-8 dataset, inputs are English learners’ text submitted to lang-8.com, and outputs are versions
of the text corrected by other users on lang-8.com. Despite the popularity of Lang-8, it must be
noted that "corrected texts frequently contain unnecessary paraphrasing and erroneous or incomplete
corrections — phenomena that hurt the performance of a GEC model trained on this data" Rothe
(2022)). A cleaner version, cLang-8, of this dataset was produced using a state-of-the-art gT5 GEC
model, retaining the original outputs and cleaning the outputs.

cLang-8 Stack Overflow Hybrid

Training set size 400k 214k 90k
Dev set size 50k 26k 9k
Test set size - 26k -

Table 1: Specifications used when fine-tuning with datasets.

Stack Overflow. Stack Exchange (the network that operates Stack Overflow) periodically uploads
a data dum[ﬂ which includes all publicly available content, including data about its questions, users,
and comments, as well as various associated metadata. All questions that we use are under either
CCBY-SA 2.5, CCBY-SA 3.0, or CC BY-SA 4.0 (this was checked programmatically during data
processing). We used the Posts.xml and PostHistory.xml from the Stack Overflow data dump.
We first used Posts.xml to obtain a list of all question posts in the data, as well as the user IDs
of the original authors of the questions. Further, whenever a post is created or edited, a record is
created in PostHistory.xml; we thus use these edits to create pairs of original and edited questions.
Since community edits to questions are likely to improve the qualityﬂ we treat original versions and
their later edited versions as low-quality to higher-quality pairs. We then performed the following
processing steps:

1. We, upon inspection, found that edits to many questions involve the original author adding
information that they previously had not included. Such edits are clearly not possible for the
model to make, since the added information cannot be inferred from the original text. Thus,
we filtered the data to only include questions with edits not performed by the original author.
To simplify affairs, we kept only questions that had exactly one editor, where said editor
was not the original author of the post.

2. An additional challenge is that questions often include code. Since code is effectively a
separate ’language’ (in fact, languages, multiple, due to the multiplicity of languages that
are asked about in StackOverflow) from English, we decided to remove all questions that
had blocks of code or inline code; it must, however, be noted that authors do not always
use the formatting markup that indicates particular text to be code. Thus, questions in our
dataset may still have varying amounts of short, inline code.

*https://archive.org/download/stackexchange
*https://stackoverflow.com/help/editing

https://archive.org/download/stackexchange
https://stackoverflow.com/help/editing

3. Because TS5 performs poorly with longer text, and due to the limits of our own computational
resources, we performed a processing step eliminating question pairs that, when tokenized
by TS, were likely to exceed 512 tokens.

This generated a set of approximately 268k source-target pairs. We then split the data into a training
set of 214k pairs, a dev set of 26k pairs, and a test set of 26k pairs.

Hybrid. We also created a hybrid data set with the following composition where the training set

cLang-8 examples Stack Overflow examples Total
Training set size 50k 40k 90k
Dev set size 5k 4k 9k

Table 2: Composition of the hybrid dataset

consisted of 50k examples from training set of the cLang-8 dataset, and 40k examples from the
training set of the Stack Overflow data, and the dev set consisted of 5k and 4k examples from the two
datasets’ respective dev sets.

5.2 Evaluation method

To evaluate the success of cT5, sT5, csT5, and hT5 we used SacreBLEUPost (2018)), a metric that
computes BLEU scores. We performed these evaluations using a dataset of approximately 26k
source-target pairs from the Stack Overflow dataset.

5.3 Experimental details

The parameters listed in Table 3 were used when fine-tuning cT5, sTS5, csT5, and hT5, and each
model achieved the dev set loss when fine-tuned on their respective datasets indicated in Table 5.

Max epochs 10
Optimizer AdamW
Learning rate 3x 1074
Max length 512 tokens
Training batch size 8

Dev set evaluation interval 400 steps

Table 3: Specifications used during fine-tuning.

We additionally performed early stopping based on the loss values from the dev set.

The code used for training the models can be found at https://github.com/max-cura/
cs224n-final-project; it uses Hugging Face’s Transformers library |Wolf et al.| (2020) and
the SacreBLEU metric. To write the code, we used tutorials found in the Hugging Face platfornﬂ as
well as one found here.

5.4 Results

The following SacreBLEU scores were computed when evaluating the three models on the 26k SO
source-target pairs in the SO test set.

https://huggingface.co/

https://github.com/max-cura/cs224n-final-project
https://github.com/max-cura/cs224n-final-project
https://colab.research.google.com/drive/1RFBIkTZEqbRt0jxpTHgRudYJBZTD3Szn?usp=sharing
https://huggingface.co/

cT5 sT5S csTS hT5
Devsetloss 0.151 0.2469 0.2499 0.2217

Table 4: Dev set loss after fine-tuning each model on their respective datasets. Note that the loss
indicated for csT5 is the loss from its second round of fine-tuning, since csT5 is the product of
fine-tuning ¢TS5 again on SO data.

cT5 sT5 csT5 hTS
SacreBLEU Score 6598 84.59 84.72 82.69

Table 5: SacreBLEU scores computed on SO data.

Clearly, sTS5, c¢sT5, and hT5 perform better on the task of rewriting Stack Overflow questions than
¢TS5, with little to no difference in score between sT5 and csTS, and hTS5 performing slightly worse
(possibly due to the smaller size of the dataset used in training hT5). The data demonstrates a
difference in score of 19.74 between csTS and ¢T3, with c¢sTS having a score 29.9% greater than that
of cT5. Thus we find that our models learned various features of well-written questions between
simple grammaticality.

6 Analysis

We find that sTS, csTS, and hT5 perform the task of accurately rewriting SO questions better than
cT5 (with ¢sTS performing the best). While all four models share similar capacities in correcting
spelling mistakes and capitalization of common words, there are several reasons why sT5, csT5, and
hTS5 outperform cT5. In this section, we motivate these reasons with examples.

Removing unnecessary text. We discover that csTS, sT5, and hT5 cut out text that is considered
irrelevant to the actual question and hence is often edited out by community members. Consider the
following exampleﬂ

Source Inpu{ﬂ Hello developers out there, I wanted to know how I can get the Fragment which
is onloaded on my Acticvity. The background behind this is, that I want to change the onBack-
Pressed method that it’s switching to the right fragments. At the moment when I press "Back'
the app closes, because I work alot with fragments. Thanks for the help.

Tbrget (7uQ9ut: I wanted to know how I can get the Fragment which is onloaded on my Acticvity.
The background behind this is, that I want to change the onBackPressed method that it’s switch-
ing to the right fragments. At the moment when I press "Backé" the app closes,
because I work alot with fragments.

¢TS5 Prediction: sello developers out there, I wanted to know how I can get the fragment which
is onloaded on my computer. The background behind this is that I want to change the onBack-—
Pressed method so that it’s switching to the right fragments. At the moment when I press
"Back" the app closes, because I work a lot with fragments. Thanks for the help.

csTS Prediction: 1 wanted to know how I can get the Fragment which is onloaded on my Activity.
The background behind this is, that I want to change the onBackPressed method that it’s switch-
ing to the right fragments. At the moment when I press "Back" the app closes, because I work

alot with fragments.

%To reduce redundancy, we did not include sT5 and hT5 predictions in our examples. These predictions are
close enough to our csT5 model’s that including them would be redundant.

"https://stackoverflow.com/questions/47982647 /how-do-i-get-the-onloaded-fragment!
Asked by Pumpanickel. Edited by |Phantomaxx.

https://stackoverflow.com/questions/47982647/how-do-i-get-the-onloaded-fragment
https://stackoverflow.com/users/8088909/pumpanickel
https://stackoverflow.com/users/2649012/phant%c3%b4maxx

In this and many other examples, csT5, sT5, and hT5 remove unnecessary greetings at the beginning
of the question and unnecessary "thank you"s at the end of the question while cT5 does not. This
makes sense as such edits are often made in Stack Overflow for the sake of brevity.

Recognizing technical jargon. csT5, sTS5, and hT5 also perform well at recognizing and
preserving technical terms while cT5 often does not. In the cases where cT5 does not recognize
a technical term, it either changes the word to something more familiar, changes the sentence,
or removes the sentence with the word entirely. In the following example, ¢TS5 auto-corrects
"oauth2" (for open authorization) as "orath 2" while c¢sTS5, sT5, and hT5 preserve "oauth2" as "oauth2."

SOMIC@ 17U9MtE& I need some help regarding google ouath2. I want to implement google login in
my hybrid application but facing some problems . If anyone has demo solution please help, that
would be great help for me.; Please Thanks

Tbrget ()MQUMIZ I need some help regarding Google OAuth2. I want to implement Google login in
my hybrid application but am facing some problems. If anyone has a demo application/solution
please help, that would be great help for me. Please Thanks

¢TS5 Prediction: 1 need some help regarding google orath 2. I want to implement google login in
my hybrid application but am facing some problems. If anyone has a demo solution please help.
That would be a great help for me. Please Thanks

CSIStPr?dhﬂiOﬂII need some help regarding google ouath2. I want to implement google login in
my hybrid application but facing some problems. If anyone has demo solution please help, that

would be great help for me.

Preserving links and special text. While csT5 and sT5 preserve links and images, cTS often splits
up the text for links/images into parts. Consider the following example:

Source Iﬂp”{ﬂ I am unable to select birthday date in calender picker in appium IOS, can
anyone please suggest me on this issue. In appium inspector elements are not recognized.
https://i.stack.imgur.com/Swqgl0.png

Target ()uﬁout: I am unable to select birthday date in calender picker in appium IOS. In appium
inspector elements are not recognized. https://i.stack.imgur.com/SwglO.png

cT5 Prediction: I am unable to select a birthday date in the calendar in i0S. Can
anyone please suggest this issue. 1In the i0S inspector elements are not recognized.
https://i.stack.imgur.com / SwglO. png

csTS Prediction: I am unable to select birthday date in calender picker in appium IOS, can
anyone please suggest me on this issue. In appium inspector elements are not recognized.

https://i.stack.imgur.com/Swgl0.png

It is clear to see here that the text for the link to the image is split up in the cT5 prediction while the
¢sTS prediction preserves the original link.

Preserving conversational text. While cT5 does a good job of grammatical error correction, it is
found that such corrections are not always necessary to rewrite a "better" Stack Overflow question.
Many well-written SO questions take on short form or do not adhere perfectly to the rules of grammar.
This may be because perfect grammar is not necessary for clarity. Consider the following example:

Source Inpuigﬂ I am tried to load a page with django formset, I clearly see in the logs that
the backend logic is executed well within 1 second, I have a logger printing right before re-
turn render() and it is very clear that the backend process is almost done. The point here

is, it is taking way too much time to render the template and nginx throwing bad gateway at me.

$https://stackoverflow.com/questions/47989078/how-to- implement-google-login-in-cordova-phonegap,
Asked by Beginner. Edited by MozenRath.
‘https://stackoverflow.com/questions/48006211/unable-to-select-date-in-calender-picker-in-appium-ios,
Asked by Sudarshan K. Edited by James Z.

Yhttps://stackoverflow.com/users/6613831/kireeti-k. Asked by Kireeti K. Edited by Mahi
Parmar,

https://stackoverflow.com/questions/47989078/how-to-implement-google-login-in-cordova-phonegap
https://stackoverflow.com/users/7925066/beginner
https://stackoverflow.com/users/896663/mozenrath?tab=profile
https://stackoverflow.com/questions/48006211/unable-to-select-date-in-calender-picker-in-appium-ios
https://stackoverflow.com/users/9148921/sudarshan-k
https://stackoverflow.com/users/4420967/james-z
https://stackoverflow.com/users/6613831/kireeti-k
https://stackoverflow.com/users/9148921/sudarshan-k
https://stackoverflow.com/users/9070920/mahi-parmar
https://stackoverflow.com/users/9070920/mahi-parmar

What should I do?

Ybrget ()uﬂvut: I am trying to load a page with django formset, I can clearly see in the logs
that the backend logic is executed well within 1 second, I have a logger printing right before
return render () and it is very clear that the backend process is almost done. The point is
that, it is taking way too much time to render the template and nginx throwing bad gateway at
me. What should I do?

cTS5 Prediction: I am trying to load a page with a django formset. I clearly see in the logs
that the backend logic is executed well within 1 second. I have a logger printing right be-
fore returning rendering() and it is very clear that the backend process is almost done. The
point here is, it is taking way too much time to render the template and nginx throwing bad
gateway at me. What should I do?

csTS5 Prediction: I am tried to load a page with django formset, I clearly see in the logs
that the backend logic is executed well within 1 second, I have a logger printing right before
return render () and it is very clear that the backend process is almost done. The point here
is, it is taking way too much time to render the template and nginx throwing bad gateway at me.
What should I do?

In this example, cT5 detects that the first sentence is a run-on sentence and splits it into three different
sentences with periods. However, the target output preserves the run-on sentence and its commas.
This may be due to the fact that formal language is not always necessary for comprehensibility.

Despite the success of csT5, sTS, and hTS, it must be noted that these generally fail to sug-
gest entire sentence format revisions that require reordering words of a sentence. This is most likely
due to the fact that few target outputs in the Stack Overflow dataset actually reformat entire sentences.
Most target outputs make minimal changes, such as inserting words, removing words, and fixing
grammar, perhaps in the interest of preserving the original meaning of the question. And for the
target outputs that do reformat entire sentences, it must be noted that there are multiple ways to
reformat a sentence, which makes it difficult for the model to predict the "correct" way.

7 Conclusion

Summary. Conclusively, we find that csT5, sT5, and hT5 outperform cT5 in rewriting Stack
Overflow questions to increase the overall quality, with the best model, csT5, outperforming cT5 by
29.9%. Fine-tuning a model so that it performs general Grammatical Error Correction tasks enables
it to make some meaningful edits(such as capitalization, punctuation, and spelling corrections) as
demonstrated by cT5; however, when applied to poorly written SO questions, it fails to recognize and
remove unnecessary text, recognize technical jargon, preserve links and special phrases, and preserve
conversational language. In contrast, fine-tuning a model on Stack Overflow questions enables the
model to perform these kinds of tasks that are not captured by GEC models.

Limitations. Our work does not account for Stack Overflow questions that contain code. While
this was an intentional choice, we recognize that this limits the applicability of our model on SO
questions. Additionally, due to time and computational limitations, we had to make restrictions on
the sizes of our models and the amount of data we trained them on.

Future work. Building off of this project, future work may attempt to do the following:

* Fine-tuning on a larger dataset.By fine-tuning on a larger SO dataset, a model might better
learn good question-asking practices, at least within the SO community’s notion of good
questions, as well as become able to recognize more technical terms and other SO-specific
features of the questions.

* Exploring with larger models. Fine-tuning larger models and comparing results can give
more insight as to what the trade-off is between computational costs and accuracy.

* Incorporating code. Devising methods to work with posts with code would open up the
ability to train on larger sections of the Stack Overflow dataset.

References

Zewei Chu, Mingda Chen, Jing Chen, Miaosen Wang, Kevin Gimpel, Manaal Faruqui, and Xiance Si.
2019. [How to ask better questions? A large-scale multi-domain dataset for rewriting ill-formed
questions. CoRR, abs/1911.09247.

Matt Post. 2018. A call for clarity in reporting BLEU scores. In Proceedings of the Third Conference
on Machine Translation: Research Papers, pages 186—191, Belgium, Brussels. Association for
Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2019. [Exploring the limits of transfer learning with a unified
text-to-text transformer. CoRR, abs/1910.10683.

Et al. Rothe, Sascha. 2022. A simple recipe for multilingual grammatical error correction.

Lasz16 Téth, Balazs Nagy, David Jantho, Laszlo Vidacs, and Tibor Gyiméthy. 2019. Towards an
accurate prediction of the question quality on stack overflow using a deep-learning-based nlp
approach.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2020. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pages 38—45, Online. Association for
Computational Linguistics.

http://arxiv.org/abs/1911.09247
http://arxiv.org/abs/1911.09247
https://www.aclweb.org/anthology/W18-6319
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://doi.org/10.5220/0007971306310639
https://doi.org/10.5220/0007971306310639
https://doi.org/10.5220/0007971306310639
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

