Won’t You Be My Neighbor? Probing Informational
Spread in Contextual Representations of Natural
Language

Stanford CS224N Custom Project

Hagop Chinchinian Avi Gupta
Department of Electrical Engineering Department of Political Science
Stanford University Stanford University
hagop@stanford.edu avigupta@stanford.edu

Sevahn Vorperian
Department of Chemical Engineering, Sarafan ChEM-H
Stanford University
sevahn@stanford.edu

Abstract

Masked language models produce contextualized representations, where token
embeddings encode information about its role and function in the overall sequence.
However, the extent to which these representations reflect neighboring word iden-
tity at different offsets remains to be explored. In this project, we apply probing to
extract mutual redundancy in contextual BERT word encodings. We first construct
custom datasets of paired token embeddings over various layer-offset combina-
tions from 10.4K documents from the HuggingFace Wikipedia dataset. We then
fit several variations of linear models (using different initialization schema and
dimensionalities) to predict context word identities from a center contextualized
word encoding. In Experiment 1, we combine a 768 x 768 linear classifier (ini-
tialized to the identity matrix + Gaussian noise) with a the frozen weights of a
768 x 30522 classification matrix extracted from the BERT model. In Experiment
2, we fit a 768 x 30522 matrix created with Xavier initialization. In Experiment
3, we initialize our linear classifier using the matrix extracted from BERT, but
do not freeze the weights. Across all experiments, we find that contextualized
word encodings are substantially redundant, with simple linear models achieving
relatively high prediction accuracy of neighboring word identities. The prediction
accuracy is distributed asymmetrically, as neighboring tokens that come before the
center word are predicted much more accurately. Moreover, the ability to predict
more distant neighbors increases throughout the layers of BERT, with deeper lay-
ers enabling the predictions of further away words with higher accuracy. These
preliminary findings are one of the first steps towards exploring interpretability of
BERT encodings. Moreover, these results suggest that future work on redundancy
in contextualized BERT embeddings could facilitate reduction of model complexity
and word embedding size.

1 Key Information to include

* Custom Project
e Mentor: John Hewitt
¢ External Collaborator/Mentor: Ethan Chi

* This project is not shared with other courses.

Stanford CS224N Natural Language Processing with Deep Learning

2 Introduction

A wide variety of traditional NLP tasks, such as part-of-speech tagging, numeracy, dependency
mapping (just to name a few examples), seek to model the intuitive ways in which humans understand
the semantics of natural language. These factors, among others, contribute to the meaning of words
as they are understood in the context of sentences. Pre-trained encoders presently offer the highest-
performance for state-of-the-art NLP tasks (e.g. ELMo, BERT, RoBERTa, GPT, etc), relative to
earlier static word embedding models, which are computed from simple co-occurence statistics at
the corpus levels (e.g. GloVe, word2vec, n-gram). However, the extent to which human-perceived
semantic features are reflected in high-performing pre-trained sentence encoder embeddings remains
unclear. As the general success of these models would suggest, studies indicate that word meaning
is accurately captured in contextual word encodings (Wallace et al., [2019). Moreover, it has been
demonstrated through ablation studies that long-range word relationships are reflected in a given
word embedding (Khandelwal et al.,[2018)). Most profoundly, contextual word encodings capture
syntactic and semantic details of the sentence from which they were generated. (Tenney et al.|[2019).

In this project, we seek to expand on the existing literature on contextual word encodings by attempting
to directly measure the degree to which the specific context in which a contextual word encoding
was generated can be readily extracted from the encoding vector itself. Using encodings generated
by BERT (Devlin et al., |2018), we demonstrate that a simple linear model can predict the identities
of neighboring context tokens with reasonable accuracy given a center word’s contextual encoding.
Moreover, we show that prediction accuracy for more distant words increases with the layer depth in
a BERT model at which a contextual encoding was generated, which corresponds to the development
of richer semantic meaning. Our findings provide greater interpretability of the contextual encodings
generated by BERT. These results also suggest a possible direction to explore in reducing model
complexity, improving encoder efficiency, and shrinking the size of word encodings.

3 Related Work

Tenney et al.|(2019) demonstrates that the contextual word encodings developed at each layer of a
BERT encoder model vary in the degree to which they capture syntactic and semantic meaning. In
particular, the contextual word encodings at different layers of the BERT model encode information
that is applicable to a variety of classical NLP tasks, such as part-of-speech tagging, parsing, named
entity recognition, semantic roles, and coreference (lenney et al.,[2019).

In addition to probing the contextual encoding vectors generated by BERT, [Tenney et al.| (2019)
provides several useful metrics for evaluating performance of language models at high-level language
tasks; these include (1) a measure of the individual importance of each layer in accomplishing a
particular task; (2) the average layer at which a particular task is adequately achieved; and (3) a
measure of the contribution of each additional layer relative to all prior layers in accomplishing a
particular task. We extend [Tenney et al.|(2019) by applying similar linear proving methods to word
identity prediction, a topic that has not been previously explored but nevertheless has important
implications for the interpretability of contextual word encodings.

Pimentel et al.|(2020) provides an analysis of the value of BERT-generated embeddings for high-level
language tasks, suggesting that these embeddings provide no useful information for the language task
that is not already provided by the individual word embedding. This is demonstrated by estimating
gain (essentially, the amount of information obtained for a particular task relative to some control) for
the purpose of part of speech tagging with BERT. This paper also provides a mathematically rigorous
analysis (from an information theoretic perspective) of what probing approaches to encoder network
analysis are actually trying to measure.

One critique of |[Pimentel et al.|(2020) involves the use of a neural network for the purpose of probing.
Such a model may be too complex and consequently prone to overfitting. Additionally, the paper
only considers the task of part of speech tagging, not considering the task of context word identity
prediction. While it is reasonable that a task like part of speech tagging would not benefit from the
additional layers of an encoder, as further corroborated by [Tenney et al.|(2019), the same may not be
true of word identity prediction, the task attempted in this project.

4 Approach

In this project, we use word identity as a proxy for the broader idea for information: we claim that
representation ¢ holds information about position j if it is possible to extract information about token
7 by applying a linear classifier over word identity to representation ¢. Our selection of a linear
classifier differs from (Pimentel et al., 2020), who specifically argue for the selection of more complex
probes. However, we employ a linear model to demonstrate that the context token word identity is
readily extractable from a contextual word embedding itself and is not a property of a more complex
model, and to minimize the potential for overfitting.

Focusing on masked language models, we treat the prediction of context word identity as an instance
of a probing task (see previous literature review). In particular, for a particular (layer, offset) pair
1, m, we fit the following linear classification problem:

minyse pXsesiei..|s|Cross-Entropy Loss((Mr; ;), token, 1)

where V is the vocabulary size, d is the hidden dimension size, M is the set of V' x d matrices, S is
the set of all sentences in the corpus, |s| is the length of sentence s, and r; ; signifies representations
drawn from layer ! and token ¢, and token, , is the one-hot representation of the word at position
i+ k in the sentence. In other words, we are using the contextual encoding of a center word to predict
a softmax distribution over the one-hot identity vector of a neighboring word.

offset -3 offset +3
offset -2

offset +2

offset-1 offset +1

Extract BERT
per-layer offset -4
embeddings

off:

"."-lllll

center
word

['[CLS], 'K, '##hat), '##chi,, '##g, 'Mo)[##ura) '##dian, 'is, 'a; journalist, , [SEP1T “TF T T

10.4 K Documents

from Wikipedia HDF5
Evaluate

Make datasets of tokens for center/offset pair Fit models

Figure 1: Summary of Data Processing and Model Training Pipeline

We fit 2K + 1 linear models per layer, where K is the maximum offset that we would like to
investigate. For the experiments presented in this report, K was 10. For each (layer, offset) pair, we
fit a single model across all sentences in the corpus.

Broadly, we can think of this process as performing the masked language modelling objective—word
prediction—both “prematurely” (i.e. at an earlier layer) and “offset” (at a different position than
expected). Equipped with this framework, we can then ask the following analysis questions:

* Speed of informational spreading: How quickly does contextual information spread across
the sequence? Starting from zero contextualization at layer 0, does contextualization increase
linearly, superlinearly, sublinearly, etc.? In terms of our word identity probe, we ask to what
extent the accuracy of a probe at layer [changes with .

* Distance: How far does information spread? In terms of our word identity probe, we ask to
what extent the accuracy of a probe with offset k& changes with k.

* Model complexity: How do encoder model characteristics (parameter count, model class)
affect the speed of informational spreading? This will be more extensively studied in future
work on different models for generating contextual word encoding (other versions of BERT,
RoBERTa, ELMo, etc.).

We intentionally fit relatively simple linear models in order to demonstrate that contextual information
is ’easily’ extractable from the contextual encodings themselves. Adopting mutual information as a

target metric, Pimentel et al.| (2020) argue for the selection of arbitrarily complex probes in order to
achieve the best possible results. However, because mutual information is representation-invariant,
estimating mutual information using probing would not provide any information about the underlying
properties of the contextual encodings (Hewitt et al., [2021]).

Therefore, we present results from three simple linear models with slightly different structures and
initialization schema. We fit these probes to contextual word encodings at selected layer/offset
combinations. All of these linear models map a 768-dimensional encoding vector representing the
center word (extracted from the given layer of BERT) to a 30522-dimensional probability distribution
over the possible neighboring word identities for the particular offset at issue. In Experiment 1, we
represent this linear model by initializing a 768 x 768 linear probe by adding random noise to the
identity matrix. We then pass these results through the ’softmax matrix’, a 768 x 30522 classification
matrix extracted from the BERT model itself. We employ the softmax matrix on the theory that has
residual connections that enable it to map from BERT vector space to BERT vocabulary space. To
minimize the parameter space, we freeze the weights of the softmax matrix and optimize only over the
768 x 768 linear probe matrix. However, in analyzing the results of this experiment, we were puzzled
by the extremely high accuracy achieved at offset -1 for all layers (see Figure [3|below) and wondered
whether this was attributable to some property of the softmax matrix. (We also, of course, thoroughly
examined our data loader code for bugs, but found that everything was working as expected.) In
order to test our hypothesis, we naively initialize a 768 x 30522 matrix using Xavier initialization
in Experiment 2 on a small subset of the layer/offset combinations from Experiment 1. Finally, in
Experiment 3, we initialize a 768 x 30522 matrix to the weights given by the softmax matrix, but do
not freeze the parameters on the same subset of layer/offset pairs. Due to computational constraints
(we ran out of AWS and Google Cloud credits partway through training), we were unable to finish
training some of our models, and therefore can only present partial results for some experiments.

S Cosine Similarity Analysis

As a preliminary step, we mapped the cosine similarities of the contextual word encoding vectors
at different layers and offsets. We observed that token embeddings closest to the center token (i.e.,
those with the lowest absolute offset value) exhibited the highest cosine similarity across all layers.
However, as the layer number increased, farther away neighboring tokens exhibited higher cosine
similarity (Fig. 2).

14 --0.2
? -
3
4 -0.4
lu;‘L 5
3 & -0.6
7
8
9 -0.8
10

=
iy

109 8 7 6 5 4 3 2 -1 01 2 3 4 5 6 7 B 9% 10
Offset

Figure 2: Cosine Similarities of Contextual Word Encoding Vectors by Layer and Offset

6 Experiments

6.1 Data

We begin from a corpus of English-language Wikipedia articles made publicly available on the
HuggingFace platform (Foundation). We then truncate and tokenize individual items from a subset of
the corpus using HuggingFace’s implementation of the BERTTokenizer (Wolf et al.,|2019). We then
dump the center token and offset token identities and word encodings to a separate hdf5 file for each
layer/offset pair using h5py (Collettel 2013)). We use these hdf5 files to train a separate linear model
for each layer/offset pair. Due to a lack of computational resources (we exhausted both our allotted
AWS credits and our personal Google Cloud credits), we were only able to use a subset of 10,408
Wikipedia documents for training. We validated our models on a different set of approximately 3,500
Wikipedia documents.

6.2 Evaluation method

We employ a variety of metrics to assess the degree to which our linear probes predict context word
identity. We assess the prediction accuracy of our models on both training and test sets by measuring
the number of word identities that are correctly predicted (assigned the highest probability by the
softmax output, computed using argmax over the softmax vector). We also measure the running
and average cross-entropy loss on training and test sets, and graph loss curves to measure training
convergence.

6.3 Experimental details

We train all models using an AdamW optimizer with learning rate 0.001. In Experiment 1, we train
for 30 epochs (with the exception of the layer O/offset 0 model, which was trained for 10 epochs). In
Experiments 2 and 3, we train for 10 epochs. Which takes approximately 5-10 minutes per epoch
using our current computational infrastructure (due to AWS and Google Cloud credit exhaustion, we
were forced to train on FarmShare’s relatively limited GPU resources). Models were implemented in
PyTorch. We used HuggingFace’s implementations of cased BERT tokenizers and models.

6.4 Results

In this section, we present a subset of the graphs generated to justify our key findings. Additional data
can be found in the Appendix. In also bears noting that in addition to measuring accuracy, we also
measured the cross-entropy loss associated with our predictions. For brevity, plots depicting average
and total loss were omitted from this report, but we found that losses were essentially perfectly
negatively correlated with prediction accuracy.

In Figure 3] we observe that accuracy generally improves from layer O (representing the static
word embeddings with which BERT is initialized) to layer 5, indicating that the context accrued by
BERT’s encoding scheme improves the probe’s ability to predict neighboring words. Interestingly
enough, context also enriches the probes ability to predict its own word identity, as demonstrated
by the increased accuracy for offset 0. Moreover, we see that all probes perform roughly similarly
for instances in which we have matched data, indicating that our results are not an artifact of the
initialization scheme but rather of fundamental properties of the underlying contextual word encoding
vectors. We also observe substantial asymmetry, as the probe achieves much higher accuracy on
prior words (negative offset values) than future words. Given the left-to-right nature of the English
language, there is some logic to this finding, since prior words are likely to contain important context
that BERT would *want’ to encode.

In Figures[4 and 5] we hold the offset constant to evaluate how performance at a particular prediction
task evolves across layers. The models generally achieve higher prediction accuracy on closer
neighbors (smaller absolute offset values), which is to be expected. In general, performance generally
improves with deeper layers (see Figs. [5]and). However, at higher layers for smaller absolute
offset values, performance worsens relative to middle layers, which may indicate a possible tradeoff
between the breadth of context stored across the sentence as a whole and the amount of information
stored about a particular neighboring word.

layer 0

=
=]

mmm xavier uniform probe matrix
BERT softmax initialization
mmm identity probe, then fixed softmax

accuracy
© o
o @

©
»

©
N

— —;
-10 -4

e
=)

. . | — —
(0]

1 4 10
offset

(a) Validation accuracy by offset for layer O

layer 5

=
o

Emm identity probe, then fixed softmax

-__
0 1 a

offset

(b) Validation accuracy by offset for layer 5

accuracy
o ©
o o

o
»

o
[N]

0.0

-4 -1

layer 11

mmm xavier uniform probe matrix
BERT softmax initialization
mmm identity probe, then fixed softmax
— . —
-10 -1

0 1 10
offset

(c) Validation accuracy by offset for layer 11

accuracy
e o o 9o
N o @

o
<]

Figure 3: Validation accuracy by offset for layers 0, 5, 11 for all experiments. "Identity probe,
then fixed softmax" corresponds to Experiment 1, "xavier uniform probe matrix" corresponds to
Experiment 2, "BERT softmax initialization" corresponds to Experiment 3.

7 Analysis

In general, our preliminary results are in line with our expectations, and supported our qualitative
hypotheses. Among the most interesting phenomena we observed in our experimentation occurred at
offset -1. Across all three experiments we observed that a token immediately to the left of the center
word (offset -1) had the highest prediction performance (Fig. [3). It is notable that this performance
substantially exceeds even the baseline suggested by the cosine similarity (Fig. [2), which would
suggest that the prediction accuracy values for offsets -1 and +1 should be roughly similar. Further
testing will be required to determine the exact cause, but we hypothesize that it may be due to the
key/query attention operation performed within the BERT transformer’s encoder architecture, which
is a linear function of the center word’s immediate predecessor. Moreover, as a matter of general
language modeling, we would reasonably expect that the immediately preceding neighbor would
contain the most relevant contextual information that would be incorporated into the center vector.
However, it is somewhat surprising that the accuracy for predicting offset -1 was higher than offset 0.

We also notice that prediction generally increases with deeper BERT layers, a finding consistent with
our hypothesis that deeper layers of BERT "enrich" the contextual representation contained within
the center word vector.

B identity probe, then fixed softmax

offset 0
0.6
0.5
>0.4 |
£ |
303 X
®
02 ‘
.. N
0.0 [
0 1 2 5 1
laver
(a) Validation accuracy by layer for offset O
mmm identity probe, then fixed softmax
offset 1
0.200
0.175
0.150
20.125
(!
50.100
o
% 0.075
0.050
0.025
0.000
0 1 2 5 7 11
laver
(b) Validation accuracy by layer for offset 1
Figure 4: Validation accuracy by layer for offsets 0, 1
B identity probe, then fixed softmax
offset -4
0.10
0.08
>
o
Co.06
3
ot
© 0.04
0.02
0.00
0 1 2 5
laver
(a) Validation accuracy by layer for offset -4
offset 4
0.06 B identity probe, then fixed softmax

1 2

laver

(b) Validation accuracy by layer for offset 4
Figure 5: Validation accuracy by layer for offsets -4, 4

8 Conclusion

In this report, we present early results from fitting various simple linear probes to predict word identity
from contextual word encodings generated by different layers of BERT. We find that context word
identities are readily (i.e., linearly) extractable from BERT vectors using a linear probing scheme. This
finding of redundancy in contextual word encodings suggests that word vectors contain substantial
information about their neighbors. Moreover, we show that although it is easier to predict closer
words than farther away words, deeper layers of BERT enrich the context available about farther
neighbors, making more accurate predictions possible. We also observe substantial asymmetry, as
prior context words are much more readily extractable than future words, with immediate predecessor
words (offset -1) being predicted with near-perfect accuracy. One limitation of these preliminary
findings is that they are only based on one encoding model (BERT) and one corpus (Wikipedia).

In future work, we intend to leverage greater computing resources in order to fully cover the range of
layers and offsets using all of our models. We will also expand the size of our Wikipedia subset and
to use different datasets, such as OpenWebText (Gokaslan et al.,[2019), CNN/DailyMail (See et al.,
2017), and other publicly available datasets. We also intend to test our approach on other cutting-edge
NLP architectures, such as ELMo, RoBERTa, and GPT.

We also intend to make concrete improvements to our current methodology. We will optimize
hyperparameters such as the learning rate, optimizer type, and weight initialization schemes. Each
of the three experiments we present in this report is predicated on certain assumptions about the
information encoded by the "softmax" matrix we extract from BERT’s linear classifier, which we
plan to study further. We will also explore similarity metrics besides cosine similarity.

References
Andrew Collette. 2013. Python and HDF5. O’Reilly.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language understanding,.

Wikimedia Foundation. 'Wikimedia downloads.
Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie. Tellex. 2019. Openwebtext corpus,

John Hewitt, Kawin Ethayarajh, Percy Liang, and Christopher Manning. 2021. |Conditional probing:
measuring usable information beyond a baseline. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pages 1626—1639, Online and Punta Cana,
Dominican Republic. Association for Computational Linguistics.

Urvashi Khandelwal, He He, Peng Qi, and Dan Jurafsky. 2018. Sharp Nearby, Fuzzy Far Away: How
Neural Language Models Use Context. In arXiv.

Tiago Pimentel, Josef Valvoda, Rowan Hall Maudslay, Ran Zmigrod, Adina Williams, and Ryan
Cotterell. 2020. Information-Theoretic Probing for Linguistic Structure. In arXiv.

Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get to the point: Summarization
with pointer-generator networks. In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 1073—1083, Vancouver, Canada.
Association for Computational Linguistics.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. BERT rediscovers the classical NLP pipeline. In
arXiv.

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh, and Matt Gardner. 2019. Do NLP Models
Know Numbers? Probing Numeracy in Embeddings. In arXiv.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. 2019. Huggingface’s
transformers: State-of-the-art natural language processing. CoRR, abs/1910.03771.

https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
https://dumps.wikimedia.org
http://Skylion007.github.io/OpenWebTextCorpus
https://doi.org/10.18653/v1/2021.emnlp-main.122
https://doi.org/10.18653/v1/2021.emnlp-main.122
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771

A Appendix

In this appendix, we present additional plots depicting prediction accuracy, average model loss during
training, and model training.

1.0

e o
o

accuracy
©
S

0.2

0.0

1.0

0.8

accuracy
©
o

©
S

0.2

0.0

1.0

0.8

accuracy
©
o

N
IS

©
[N}

0.0

layer 0
mmm xavier uniform probe matrix
[BERT softmax initialization
mmm identity probe, then fixed softmax
-10 -4 -1 (0] 1 4 10
offset

Figure 6: Validation accuracy at layer O

layer 1

mmm identity probe, then fixed softmax

-—_
o 1

offset

-4 1

Figure 7: Validation accuracy at layer 1

layer 2
. mmm dentity probe, then fixed softmax
— - .
-4 -1 0 1 4
offset

Figure 8: Validation accuracy at layer 2

accuracy
e o o =
5 o w o

©
[N}

0.0

accuracy
e o o =
5 o w ©o

o
[N]

0.0

accuracy
e o o o &
N R o ® ©

e
=)

-10 =1 0

0.035
0.030
20025
£0.020
80.015
0.010
0.005
0.000

layer 5

-1
offset

Figure 9: Validation accuracy at layer 5

layer 7

a8

offset

Figure 10: Validation accuracy at layer 7

layer 11

1 10
offset

Figure 11: Validation accuracy at layer 11

o]

Figure 12: Validation accuracy at offset -10

offset -10

laver

10

mmm identity probe, then fixed softmax

-__
0 1 4

Emm identity probe, then fixed softmax

1

B xavier uniform probe matrix
[BERT softmax initialization
mmm identity probe, then fixed softmax

mmm identity probe, then fixed softmax

11

B identity probe, then fixed softmax
offset -4

0.08
0.04
0.02
0.00

laver

accuracy
o
[=]
<]

Figure 13: Validation accuracy at offset -4

B identity probe, then fixed softmax

offset -1
1.0 —
0.8
>
2 0.6
5
u
Q0.4
0.2
0.0
0 1 2 5 7 11
laver
Figure 14: Validation accuracy at offset -1
mmm identity probe, then fixed softmax
offset 0
0.6
0.5
>0.4
c
g 0.3
®o.2
.. N
0.0
(4] 1 5 11
laver
Figure 15: Validation accuracy at offset O
mmm identity probe, then fixed softmax
offset 1
0.200

0.175

0.150
20.125
o
5 0.100
o
% 0.075

0.050

0.025

0.000

laver

Figure 16: Validation accuracy at offset 1

11

offset 4

mmm identity probe, then fixed softmax

go
3003
®
0.02
0.01
0.00
0 1 2

laver

5

mmm identity probe, then fixed softmax

Figure 17: Validation accuracy at offset 4

offset 10

0.040 |
0.035
0.030
o)
@ 0.025 |
g 0.020
© 0.015
0.010
0.005
0.000
0 11

laver

Figure 18: Validation accuracy at offset 10

layer 0

=
=]

mmm xavier uniform probe matrix
[BERT softmax initialization
mmm identity probe, then fixed softmax

o
@

accuracy
©
o

©
IS

0.2

0.0 — | L .“i. | -_— —
o

-10 -4 -1
offset

layer 1

10 Emm identity probe, then fixed softmax

0.8

o
o

o
»

accuracy

0.2

0.0

offset

layer 2

10 Emm identity probe, then fixed softmax

0.8

o
o

accuracy
o
»

©
N

0.0

- I
1 4

offset

1.0

e 9
o w

accuracy
N
IS

0.2

0.0

accuracy
©
o

©
IS

0.2

0.0

1.0

o
o

accuracy
©
»

©
[N

0.0

layer 5

. mmm dentity probe, then fixed softmax
-4 -1 0

1 4
offset
layer 7
. mmm identity probe, then fixed softmax
-4 -1 0 1 4
offset
layer 11
mmm xavier uniform probe matrix
[BERT softmax initialization
mmm identity probe, then fixed softmax
| |“\“‘\ IIII _—
-10 =1 (0] 1 10
offset
mmm identity probe, then fixed softmax
offset -10
0.05
0.04
o)
g 0.03
3
v
20.02
0.01
0.00

laver

Figure 19: Training accuracy at offset -10

mmm identity probe, then fixed softmax
offset -4

0.14

0.12
5,010
o
©0.08
=
0 0.06
©

0.04

0.02

0.00

0 1 2 5 7

laver

Figure 20: Training accuracy at offset -4

13

B identity probe, then fixed softmax

offset -1
1.0
0.8
>
% 0.6
5
=
2 0.4
0.2
0.0
0 1 2 5 7 11
laver
Figure 21: Training accuracy at offset -1
B identity probe, then fixed softmax
offset 0
0.7
0.6
0.5
>
0.4
=1
g 0.3
0.2
- N
0.0
0 1 2 5 7 11
laver
Figure 22: Training accuracy at offset O
mmm identity probe, then fixed softmax
offset 1
0.25
0.20
oy
© 0.15
°
3
o
% 0.10
0.00
0 1 2 5 7 11

laver

Figure 23: Training accuracy at offset 1

mmm identity probe, then fixed softmax
offset 4

0.08

0.07
0.06
20.05
o
50.04
o
©0.03
0.02
0.01
0.00
1 2 5 7

laver

Figure 24: Training accuracy at offset 4

14

B identity probe, then fixed softmax

offset 10
0.04
>0.03
o
B
hos |
% 0.02
0.01
0.00
laver
Figure 25: Training accuracy at offset 10
layer 0
0.12 mmm xavier uniform probe matrix
010 [BERT softmax initialization
mmm identity probe, then fixed softmax
20.08
2
50.06
H
o
0.04
0.02
0.00 P
-10 -4 -1 0 1 4 10
offset
Figure 26: Average training loss at layer O
| 1
0.12 VEr
mmm identity probe, then fixed softmax
0.10
,0.08
n
2
£ 0.06
2
5
0.04
0.02
0.00
-4 -1 0 1 4
offset
Figure 27: Average training loss at layer 1
layer 2
mmm identity probe, then fixed softmax
0.10
0.08
n
3
T 0.06
o)
>
°0.04
0.00
-4 -1 0 1 4
offset

Figure 28: Average training loss at layer 2

15

avy-iuss

avy-iuss

0.12

layer 5

T 0 1 4

mmm identity probe, then fixed softmax

-4
offset
Figure 29: Average training loss at layer 5
layer 7
I mmm identity probe, then fixed softmax
-4 B & 0 1 4
offset
Figure 30: Average training loss at layer 7
layer 11
mmm xavier uniform probe matrix
i BERT softmax initialization
I mmm identity probe, then fixed softmax
-10 =1 0 1 10

offset

Figure 31: Average training loss at layer 11

16

0.8

07

06

0s

avg_loss
o
a

0.3

0.2

0.1

00

=
H
L4
L]
®

IOPUBDIS))

»

EEEEREERERE
SRERERRRRE
£ = H
¢ 88888680
EEEEEREEEE
® o e @ @ @ * e ®

g_

e 2 g g § 888§]

A A a & A A A A A A
5 10

L B BN I B B IR B B B B BN N N B B BB B B N BN B BN IR B NN

@ Sum

LR B (B 1L

W

FI
15
epoch

xavier uniform probe matrix-avg-loss_layerll _offset-1
xavier uniform probe matrix-avg-loss_layer0_offset-1

xavier uniform probe matrix-avg-loss_layerll_offset0
xavier uniform probe matrix-avg-loss_layer0_offset0

BERT softmax initi: ion-avg-loss_layerll_offset-1

BERT softmax inif ation-avg-loss_layer0_offset-1

BERT softmanx initialization-avg-loss_layerl1_offsetd

BERT softmax initialization-avg-loss_layer0_offset(

identity probe, then fixed softmax-avg-loss_layer2_offsetl
identity probe, then fixed softmax-avg-loss_layer5_offset-4
identity probe, then fixed softmax-avg-loss_layer0_offset-10
identity probe, then fixed softmax-avg-loss_layer7_offset-1
identity probe, then fixed softmax-avg-loss_layerll_offset-1
identity probe, then fixed softmax-avg-loss_layer7_offsetl
identity probe, then fixed softmax-avg-loss_layer7_offset-4
identity probe, then fixed softmax-avg-loss_layerll_offset-10
identity probe, then fixed softmax-avg-loss_layer] offsetl
identity probe, then fixed softmax-avg-loss_layer7_offsetl
identity probe, then fixed softmax-avg-loss_layer2_offsetd
identity probe, then fixed softmax-avg-loss_layer2_offset-4
identity probe, then fixed softmax-avg-loss_layerl _offset-1
identity probe, then fixed softmax-avg-loss_layer2_offsetD
identity probe, then fixed softmax-avg-loss_layer0_offsetl
identity probe, then fixed softmax-avg-loss_layer5_offsetl
identity probe, then fixed softmax-avg-loss_layer0_offset-1
identity probe, then fixed softmax-avg-loss_layer5_offsetd
identity probe, then fixed softmax-avg-loss_layer5_offset-1
identity probe, then fixed softmax-avg-loss_layer0_offsetl0
identity probe, then fixed softmax-avg-loss_layerll offsetl
identity probe, then fixed softmax-avg-loss_layerll offsetl0
identity probe, then fixed softmax-avg-loss_layerl_offset-4
identity probe, then fixed softmax-avg-loss_layery_offsetd
identity probe, then fixed softmax-avg-loss_layerl_offsetd
identity probe, then fixed softmax-avg-loss_layer0_offsetd
identity probe, then fixed softmax-avg-loss_layerl _offsetd
identity probe, then fixed softmax-avg-loss_layer2_offset-1
identity probe, then fixed softmax-avg-loss_layer5_offsetd

identity probe, then fixed softmax-avg-loss_layer0_offset-4
identity probe, then fixed softmax-avg-loss_layer0_offsetd

gsgsés EEEEE
g & g 8 § & 8 8
e @ *_9 LB *_ 0 9
e e g e e e g e
e e e e ® 0 0 8 0 0 @
g 882 eesgeeeee

Figure 32: Training loss during model fitting, all models

17

L] @ eamn

30

	Key Information to include
	Introduction
	Related Work
	Approach
	Cosine Similarity Analysis
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion
	Appendix

