
Optimizing Multi-Task Classification Finetuning in
BERT: a Multi-Pronged Approach

Stanford CS224N Default Project; Mentored by Hans Hanley

Bar Weiner
Department of Computer Science

Stanford University
barw@stanford.edu

Aadi Nashikkar
Department of Computer Science

Stanford University
aadinash@stanford.edu

Soham Konar
Department of Computer Science

Stanford University
skonar@stanford.edu

Abstract

The development of BERT (Devlin et al., 2018) was a state-of-the-art performance
improvement in several natural language processing tasks. In this paper, our intent
was to extend this performance to multitask use cases: paraphrase detection, se-
mantic textual similarity, and sentiment analysis. In exploring improvements to our
model we focus on six distinct optimizations: multitask finetuning for training all
3 tasks together with an aggregated loss function, using cosine similarity on the
comparison task of predicting similarity, using ReLU layers in our architecture to
improve performance, parameter optimizations for dropout and weight decay dis-
tinctly chosen to address fitting issues in different tasks, loss coefficient refinement
to reweight training emphasis, and reworking attention to include linear biases
and slope optimizations. Our primary findings were that cosine similarity layered
with ReLU activation improved accuracy in comparison tasks, multitask finetuning
massively increased performance when performing multitask learning, and that
tuning dropout and loss function coefficients effectively combated overfitting and
increased overall accuracy in multitask systems. We also found that more work
must be done on linear biases in attention calculations to have them improve results
in models like BERT.

1 Introduction

Our project investigates how to modify a single, large base BERT model to perform a number of
tasks. Unmodified, BERT does not perform strongly on several "downstream" tasks like sentiment
analysis and paraphrase detection, as seen in section 5 (Experiments). In the multi-task learning
paradigm, machine learning models are trained utilizing data from several tasks at once, employing
shared representations to discover the commonalities among a group of related tasks. These shared
representations improve data efficiency and may result in quicker learning speeds for connected or
subsequent tasks, assisting in addressing deep learning’s well-known drawbacks of high computation
and data requirements. Using new techniques found in research completed since the release of BERT
in 2018, we augment the base BERT model to iteratively improve it for certain downstream tasks.

Stanford CS224N Natural Language Processing with Deep Learning

2 Related Work

In the paper "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks," the authors
use a Siamese neural network architecture, which consists of two BERT models with shared weights,
to learn the embeddings. The network takes two input sentences and computes their embeddings
which are then compared using cosine similarity. In our project, we replicated this work and added
architecture such as a ReLU activation on top of our cosine embeddings.
In their paper "Multi-task Learning over BERT for News Recommedation", Bi Et AL propose a
method to train BERT on multiple tasks like news topic classification, news subtopic classification,
and news recommendation. The model learns shared representations across tasks, leading to improved
performance on all tasks. The authors show that this outperforms several state-of-the-art methods.
We replicated their approach between our tasks and saw similarly improved performance.
Next the paper "Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrap-
olation" proposes a new method for better performance on longer input sequences by introducing
a neural net modification which involves adding linear biases to the attention weights, while also
removing the default positional embeddings matrix. We extended their initial work, which was
intended for unidirectional models, and evaluated its performance on the aforementioned tasks which
all had varying lengths on input training data.
While these papers did not directly relate to each other, we used them as we saw the weaknesses in our
model arise. We found multi-task loss to improve the model’s shared representations across tasks, but
then we focused on improving our Semantic Text Similarity (STS) with the Siamese BERT-Network
paper. We used linear biases to improve our model on tasks where positional embeddings would not
be learned as well (such as in sentiment analysis, where movie reviews vastly differed in length), and
then also sampled findings from other research work to improve our model further.

3 Approach

Initially, for minBert we implemented Multi-head Self-Attention, the Transformer Layer, and the
AdamW Optimizer. For more details on the architecture, we refer the reader to the default project
handout or minBert paper. We now go into our specific implementation and architecture.

3.1 Multitask Learning: Simultaneous Training

From the beginning, rather than fine-tuning BERT on individual tasks, we made use of multi-task
learning to update BERT. In this training method, we used multi-task learning and added each together
each loss on the tasks at hand and optimized them all together.

Figure 1: Neural Network Architecture for Our 3 Tasks

2

To predict sentiment we passed our sentence embeddings through a linear layer with hidden size 768
by 5 (our number of sentiment classes). We then utilize the cross entropy loss function and sum it
with the other losses to compute a total loss. In the cross entropy loss formula below px is the true
(one-hot) probability distribution of the class, and qx is our predicted probability distribution.

LSST = −
∑

x∈sentiments

px log(qx)

As described in more detail below, for similarity we pass our two sentence embeddings through the
same linear one after the other. Our similarity PyTorch linear layer is of dimension 768 by 100 (an
arbitrarily large layer size which worked well in tests). We then take the cosine similarity of these
two outputs, and activate the similarity with ReLU which we then return. To compute the loss we use
the MSE loss function and scale our ReLU output by 5, to ensure that the range is ∈ [0,5]. In the
formula below xi is the ith observed value, and yi is the corresponding predicted value, and D is the
number of observations.

LSTS =

D∑
i=1

(xi − yi)
2

Finally, for the paraphrase prediction task we use a linear layer of dimension 768 * 2 by 1, as we will
be passing in both input sentences simultaneously through the network. On those lines, we simply
concatenate our two sentences together and pass them through our PyTorch linear layer to get an
unormalized logit for paraphrase. We then use the binary cross entropy loss function on this output
as our labels are either that the sentences are 0. Paraphrased or 1. Non paraphrased. In our formula
below p is our probability of a positive paraphrase prediction label , and yi is the value of y at i.

LPara = − 1

n

N∑
i=1

(y log(p) + (1− y) log(1− p))

This finally comes together to form our total loss which is the sum of the losses:
LTotal = LSST + LPara + LSTS

Training Loop: In our training loop we take batches and load in data until we exhaust the longest
dataset finished, and restarted our iterators over the smaller two datasets as we iterated and exhausted
them as well. We attempted other solutions like looping until the smallest one finished, or looping
over the length of the average of the 3 datasets. The method of looping until we exhausted taking
batches from the longest dataset, yielded the best results; nevertheless, in future work we could try to
randomly sample or take a weighted sample from the longest dataset to guarantee equal training.

3.2 Cosine and Architectural Optimizations for Similarity Prediction

In our approach for similarity prediction, we determined that passing both outputs through the same
linear layer allows the model to learn a shared representation of the input sentences, capturing their
similarity. This representation is a fixed-size vector encoding the most relevant information from
both.

We then compute cosine similarity on our inputs, as described in the equation below, where a result
of -1 means the vectors are opposite, 1 means they are identical, and 0 means they are orthogonal.

s =
x · y

||x|| · ||y||
=

∑n
i=1 xi × yi√∑n

i=1 (xi)
2 ×

√∑n
i=1 (yi)

2
, s ∈ [−1, 1]

3.2.1 ReLU

We then activate the similarity, z, through a ReLU layer (equation below) [1]. This adjusts the
negative similarity scores to zero and sets the range of our output s to be ∈ [0,1] (we scale this later to
fit into the sentiment analysis range of [0,5]). For sentence similarity, we used ReLU to clip negative
similarity scores to zero because negative similarity scores do not provide meaningful information
about the similarity between sentences.

ReLU(z) = max(0, z)

3

3.3 Hyperparameter Tuning and Loss Refinement

Dropout is a regularization technique that helps to prevent overfitting by randomly setting to zero
some portion of the nodes during training, and prevents certain node interdependencies from being
continually reinforced over training data, which can help with overfitting [2]. In our approach, we
tried different dropout fractions from the default of 0.3. Ultimately, we modified our hyperparameters
by implementing separate forward functions in multitask_classifier.py with dropout rates based on
the specific losses on each task. When we noticed that our paraphrase prediction train accuracy was
similar to the dev accuracy, we chose a dropout rate of only 0.1 for its network to increase its power.
We also experimented with other dropout rates in other tasks.

Weight decay is another regularization technique we tried to prevent overfitting, as it en-
courages the model to use smaller weights, which in turn helps to prevent the model from
overemphasizing certain features or memorizing patterns specific to the training data [3]. To achieve
this, we added a penalty term (L2 regularization) to the loss function proportional to the magnitude
of the weights in the network which discouraged the model from using large, non-generalizeable
weights.

3.3.1 Loss Coefficient Tuning

Furthermore, to respond to overfitting and underfitting issues in our implementation, we also changed
the hyperparameters on our simultaneous training loss function. Initially, we had

LTotal = LSST + LPara + LSTS

which we refined to

LTotal = (0.5)LSST + (1.5)LPara + (0.75)LSTS

after some experimentation with trying to reduce the overfitting on SST and STS while trying to
ameliorate the underfitting issue we had on paraphrase detection.

3.4 Attention with Linear Biases

Positional representations are a critical piece of useful self-attention computations. BERT uses a
positional embedding matrix natively and learns these embeddings as part of the training process
[4]. However, a more direct approach is to directly change the attention calculation and give higher
attention values for nearby words than faraway words, in reference to some center word for which
you are calculating self-attention. A basic implementation of this is as follows:

αi = softmax(ki:nqi + [−i,−1, 0,−1, ...(n− i)])[5]

where ki:nqi are the original pre-normalization attention scores, and then we add bias such that the
attention scores for words that are farther from word i are penalized. Thus, we generate the key-query
products as normal, and add a linear bias penalty when the key is far from the query in the sentence.

3.4.1 Linear Slope Optimization

The implementation of this concept that we added to our final project comes from the paper "Train
Short, Test Long..." mentioned in our related works section. In addition to the linear bias matrix,
we added a head-specific scalar m that is a "slope" factor and reduces from 1 to 0 across heads.
The authors found that a geometric sequence over heads (1

21 , ..., 1
2n) for n attention heads gave the

best empirical results. The affect of this extension can be visualized below from the original paper.
However, the original architecture was designed for causally masked decoder self-attention, so it was
described for unidirectional models. We took this concept but extended it to bidirectional models by
writing original code to make this biases matrix bidirectional (symmetrical) and then applying the
separate m scalar to each of these matrices before adding them to the key-query product matrices.
We used the given code only to generate the list of scalars in the geometric sequence.

4

Figure 2: A linear bias matrix augments the typical attention calculation[4]

4 Experiments

4.1 Data

The first data set we used is Stanford Sentiment Treebank which consists of 11,855 single sentences
extracted from movie reviews and parsed into phrases [6]. Each phrase has a label of negative,
somewhat negative, neutral, somewhat positive, or positive. The second data set we used was a
data set provided by Quora which consists of 400,000 question pairs with labels indicating whether
particular instances are paraphrases of one another [7]. The last data set we used was the SemEval
STS Benchmark dataset which consists of 8,628 different sentence pairs of varying similarity on a
scale from 0 (unrelated) to 5 (equivalent meaning) [8].

4.2 Evaluation method

For the sentiment analysis and paraphrase detection tasks, our evaluation metric was accuracy of
label-prediction. For the STS task, we use the Pearson Correlation metric, where a higher correlation
metric indicated better predictions of the human-rated similarity score for various sentence pairs. We
compared the score we received for these evaluation metrics on our extensions versus our baseline on
the held out SST, STS, and Quora/Paraphrase dev sets.

4.3 Experimental details

All experiments were implemented using PyTorch. While training, we used the hyperparameters
of 0.3 for dropout probability, a batch size of 64, and a 10eˆ-5 learning rate for 10 epochs. We
experimented with other parameters, which we describe in our results section. The timing per epoch
during training and testing for our multitask classifier was around 1200 seconds on Colab GPUs.

4.4 Results

We find that our extensions increases in performance across the board from the baseline BERT model.
Using an iterative process, we experimented with several extensions to respond to area our model was
weaker in. We found that the most significant gains in performance came from multitask fine-tuning
(for all of the tasks) and from adding cosine similarity and ReLU activation to the STS task. Our final
model improved on our baseline by adding multitask learning, cosine similarity, ReLU activation,
changes to the loss function, and hyperparameter tuning.

4.5 Results Comparison to Baseline

SST Paraphrase STS Overall
Milestone buggy implementation (Dev) 0.312 0.380 0.020 0.237

Sequential Multitask Training Baseline (Dev) 0.296 0.625 0.174 0.365
Multitask Finetuning (Dev) 0.500 0.753 0.405 0.552

Cosine Similarity (Dev) 0.498 0.759 0.475 0.577
Cosine Similarity + ReLU (Dev) 0.501 0.753 0.702 0.652

Cosine Similarity + ReLU and Linear Biases (Dev) 0.470 0.763 0.668 0.634
Final + Hyper-parameter Tuning (Leaderboard Dev) 0.503 0.766 0.709 0.659
Final + Hyper-parameter Tuning (Leaderboard Test) 0.525 0.766 0.699 0.663

5

Results for various stages of our extensions. Any results after the "Multitask Finetuning" (row 3)
implicitly include the use of Multitask Finetuning in the extension. Note also that the performance

when including linear biases dropped; however, performance on certain samples increased as
discussed in section 6. The final model included modifications to the loss function, but we did not
specifically mention them as a separate result since the effect of these changes was insignificant.

4.5.1 Refining the Multi-Task Training Backbone

When first deciding our approach for multi-task training, we trained our plain minBert implementation
on each data set one at a time and had individual losses for each of the three tasks in this order: first
STS, then SST and then Paraphrase. We realized that this was an ineffective as it caused our model
to "forget" the datasets that we chose to train on first. We can see this reflected in the results below.
Ultimately, we used this model as our baseline to compare our extensions to throughout the paper, as
our model for the milestone had errors in the code as we were not implementing core BERT features
correctly.

SST Paraphrase STS Overall
0.296 0.625 0.174 0.365

Once we caught the error of sequentially learning datasets, we switched to the approach described
above in multi-task learning and utilizing a shared final loss function to optimize upon.

SST Paraphrase STS Overall
0.500 0.753 0.405 0.552

This helped all of our results, and specifically aided SST and STS as predicted. Nevertheless, as
alluded to by Bi. Et Al there may exist "gradient conflicts" across our different tasks which we could
have addressed using a form of Gradient Surgery. In future explorations we can experiment and see
how much of an improvement Gradient Surgery can have on our version of multitask fintetuning.

4.5.2 Improving STS Through Cosine Similarity

After applying multitask learning, we still had noticeably weak results in the STS task as seen below.

SST Paraphrase STS Overall
0.500 0.753 0.405 0.552

To improve our model architecture, we first implemented cosine similarity into our prediction
architecture, as the literature has clearly shown that this can improve performance in comparison
tasks[9]. This resulted in a small bump in Pearson correlation. However, to achieve our final accuracy,
we modified our architecture. Initially, we were passing our two embeddings into their own PyTorch
linear layers, ultimately assuming that the first sentence is on the "left", and the other one is on the
"right" in the comparison. Thus, we modified our model to only use one linear layer for both inputs:
there was no reason to encode both twice, as it is a symmetric task. We then also used a ReLU
activation layer on top of the cosine similarity calculation. We thus expected the large improvement
we saw in STS:

SST Paraphrase STS Overall
0.501 0.753 0.702 0.652

Initially, the cosine output of [-1,1] scaled to [0,5] directly, meaning that a cosine output of -1 mapped
to the minimum score of 0. However, this meant that to output a minimum score of 0, it required
extreme cosine dissimilarity, not just a "lack" of similarity. In other words, sentences not only had
to different meanings, but also had to have opposite embeddings to receive a minimum score of 0.
Adding a ReLU removes the effect of negative cosine scores so that embeddings can be learned
without this noise. One specific example that shows the benefit of ReLU activation was "There’s a
geek answer to this, and a practical answer to this. It’s pretty ridiculous that I’ve seen airlines ask for
these to be turned off at times." In the correct data and the improved new model this received a label
of 0, while it received 2.4 in the old model using cosine similarity without ReLU. This is because,
the cosine similarity was negative, and was mapped to 2.4. However, after the ReLU activation, the
negative embedding correctly adjusted to a correlation of 0.

6

4.5.3 Attention with Linear Biases

The addition of attention with linear biases to our model caused a drop in overall performance of 0.018.
While this is not a large number, it was still significant and demonstrated that our implementation
of attention with linear biases did not improve performance on our tasks. We hypothesize that this
could have been the case, despite the authors’ in "Train Short, Test Long..." empirical support for it,
because the validation done by the authors was done on unidirectional models, so it has been less
studied for bidirectional models. Additionally, positional embeddings are removed in this approach,
so we lose the learned positional representations that BERT introduced.

4.5.4 Hyper-Parameter Tuning and Loss Refinement

After implementing these extensions and excluding attention with linear biases, our performance was
improving, but we had significant problems with both overfitting and underfitting. Our paraphrase
accuracy was nearly identical for both the train and dev data, whereas there were large disparities for
STS and sentiment prediction. Thus, we looked for extensions that would customize the learning
of each task. To do this, we did hyper-parameter search and tuning, as well as modifying the loss
function with weight decay. Notably, we saw a 0.013 improvement in paraphrase detection. We
expected this because our paraphrase-specific loss was originally highest compared to the other tasks
before we tuned the hyperparameters. By specifically decreasing the dropout while learning on
paraphrase data and then increasing the coeefficient weight on paraphrase loss while doing multi-task
learning, we increased the strength of the model. Unfortunately, the introduction of weight decay
did not make impact like hyperparameter tuning. Ultimately, we found values for the other loss
coeefficients (STS loss and Sentiment loss) and dropout rates through a brief search that led to the
highest performance, as seen in the two final rows of the results table.

5 Analysis

5.1 Sentiment Analysis Task: SST

Sentence: It seems like I have been waiting my whole life for this movie and now I can’t wait
for the sequel.

Model Value: 0
Actual Value: 3

The model most likely did bad on this example because the word "can’t" has a generally negative
connotation but because the sentence says "can’t" in the context of the phrase "can’t wait", it is
actually positive. If the model encountered the slang phrase "can’t wait" more often during its training
and realized that it is a positive phrase then maybe it would have reported better results during testing.
For this task, our distribution of accuracies is spread out as as follows: 36.7, 56.4, 36.2, 58.4, 56.9
percent accuracies for the 0, 1, 2, 3, 4 sentiment labels respectively. There is no singular label that
has very weak performance. However, with more data we maybe could have upped our abilities on
the 0 and 2 sentiment labels as well.

5.2 Paraphrase Task

Sentence 1: What are some good badminton rackets?
Sentence 2: Which is the best badminton racket?

Model Value: 0
Actual Value: 1

In our final hyperparameter tuning we pushed our model to fit more aggressively to the paraphrase
dataset. This means that it is less likely to be able to recognize a paraphrase example it hasn’t trained
on in the future. This is a paraphrase example, but our model is not able to pick it up despite there
being lots of similar words and structure. We also potentially could have resolved this by training
on more sets of sentences which also paraphrase by switching out question terms like "what" and
"which".

7

5.3 Similarity Prediction Task: STS

Sentence 1: Man with knife arrested at entrance to Buckingham Palace
Sentence 2: Man Charged After Buckingham Palace Arrest

Model Value: 4
Actual Value: 2.2

The model most likely predicted that the sentences are paraphrases of each other because the sentences
used almost all of the same vocabulary even though the second headline was missing some key words
that the first headline had. With more training data the model could better learn to attend to the words
in the sentences and learn the meanings of the words more precisely rather than just comparing the
direct inclusion of the words.

5.4 Analysis of Linear Biases on Paraphrase Detection

Attention with linear biases was shown to improve perplexity on longer inputs of unidirectional
language models by changing the method of positional embedding [5] However, we could not
replicate the same improvements in the stated downstream tasks for BERT but wanted to still
carefully investigate the effects of attention with linear biases. Specifically, we analyzed the Quora
dev dataset by segmenting according to the length of the first comparison sentence. In the distribution
of first sentence length, 75% of sentences were less than 13 words. In the upper quartile subset of
the data (13 words or longer), we found that the addition of linear biases to the attention calculation
improved accuracy non-trivially. We saw an improvement of classification accuracy from 0.614 to
0.625. On the other hand, accuracy was more similar for the other quartiles. We believe this increase
in performance on the upper quartile of data is notable since it relates to the strengths of the linear
bias approach: when there is less data in higher positions in the training data, simple linear biases
without positional embeddings outperform learned positional embeddings. Since there is less data for
high positional embeddings, there is higher variance in the contribution of these learned embeddings
to model outputs. Thus, we hope to see more work in applying linear biases to bidirectional models,
especially if they can be used for tasks where there is more need for extrapolation on longer sentences.

6 Conclusion

The purpose of this project was improve BERT, in its ability to perform the three following tasks:
sentiment analysis (SST), paraphrase detection, and semantic text similarity (STS). We started with
multitask finetuning which greatly increased the accuracy of BERT on new tasks. Nevertheless,
fundamentally, there is potential to explore this further using methods such as gradient surgery or
a more sophisticated training loop. We then implemented a ReLU activation over cosine similarity
to get better results on the semantic text similarity comparison tasks and increase efficiency of this
learning cycle by zeroing out negative results. After that, we tried two forms of hyper-parameter
tuning: tuning dropout rate based on the current task and weight decay to prevent the model from
accidentally over-prioritizing certain weights. These showed some positive results but we took the
concept further by changing the weights of the hyper-parameters in our simultaneous training loss
function to reduce the under fitting we had during paraphrase detection.

Next, we also experimented introduced attention with linear biases and implemented it using linear
slope optimization so that position and proximity of words played a larger role in the self-attention
calculation. In our analysis, we found that linear biases only improved performance on longer testing
examples where learned positional embeddings might have greater variance with less data to train
on. In future work, we would see how linear biases could be better used in bidirectional models like
BERT, as our results currently show decreased performance.

One limitation we faced during our work was that there was not we didn’t go beyonds the scope
of the datasets to find additional training data. By providing more data, our overall performance
on specific tasks could have improved and been able to generalize to unknown blinded data better.
Further future work on this project would also include getting more data to pretrain and test the model
on and potentially improving our overall training loop and loss calculations with improvements such
as Negative Ranked Weight Loss.

8

References
[1] Abien Fred Agarap. Deep learning using rectified linear units (relu). CoRR, abs/1803.08375,

2018.

[2] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(56):1929–1958, 2014.

[3] Anders Krogh and John Hertz. A simple weight decay can improve generalization. In J. Moody,
S. Hanson, and R.P. Lippmann, editors, Advances in Neural Information Processing Systems,
volume 4. Morgan-Kaufmann, 1991.

[4] Ofir Press, Noah A. Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation, 2022.

[5] John Hewitt. [draft]note 10: Self-attention transformers.

[6] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a sen-
timent treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 1631–1642, Seattle, Washington, USA, October 2013. Association
for Computational Linguistics.

[7] Samuel Fernando and Mark Stevenson. A semantic similarity approach to paraphrase detection.
2008.

[8] Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. *SEM 2013
shared task: Semantic textual similarity. In Second Joint Conference on Lexical and Computa-
tional Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the Shared Task:
Semantic Textual Similarity, pages 32–43, Atlanta, Georgia, USA, June 2013. Association for
Computational Linguistics.

[9] Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 3982–3992, Hong Kong, China, November 2019. Association for Computational
Linguistics.

9

	Introduction
	Related Work
	Approach
	Multitask Learning: Simultaneous Training
	Cosine and Architectural Optimizations for Similarity Prediction
	ReLU

	Hyperparameter Tuning and Loss Refinement
	Loss Coefficient Tuning

	Attention with Linear Biases
	Linear Slope Optimization

	Experiments
	Data
	Evaluation method
	Experimental details
	Results
	Results Comparison to Baseline
	Refining the Multi-Task Training Backbone
	Improving STS Through Cosine Similarity
	Attention with Linear Biases
	Hyper-Parameter Tuning and Loss Refinement

	Analysis
	Sentiment Analysis Task: SST
	Paraphrase Task
	Similarity Prediction Task: STS
	Analysis of Linear Biases on Paraphrase Detection

	Conclusion

