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Abstract

The rapidly advancing capabilities and application of Large Language Models
(LLMs) for text generation emphasize the increasing need to investigate the
nature of and distinguish synthetic texts from human texts, for both practical and
theoretical purposes (Solaiman et al., 2019). While supervised and non-supervised
approaches have been previously explored and remain of interest, we focus on
non-supervised approaches as they don’t require intensive compute associated with
supervised approaches and have the potential to reason about the characteristics of
synthetic text regardless of which model generated them. The most performant
zero-shot (i.e. does not require further fine-tuning) approach so far remains
DetectGPT (Mitchell et al., 2023), but it is reliant on having access to the source
model that potentially generated the text in question.

We explore a novel zero-shot approach to distinguishing LLM text from
human text that uses an existing LLM (e.g. GPT-2), but that does not rely on having
access to, or even knowledge of the source model, beyond a loose assumption that
the source model looks somewhat like a Transformer. The approach is based on
the hypothesis that human texts are less “uniform" than LLM-generated texts; if
we were to segment a given text into partitions of more or less equal size, and
evaluate some metric of “GPT-2-ness" (or the equivalent of whatever model is used
in our approach) of each partition, if the text were synthetic, then this measure of
“GPT-2-ness" will be much more consistent (uniform) across partitions than if the
text were human-generated.

We find that our method gives weak performance, making this not the dis-
criminator of choice, with a few exceptions such as when the text-generating
model is sufficiently different than any available scoring model. We show that
human text is not only less “optimal" in the model-defined sense, but also often
has consistent levels of optimality (or sub-optimality), and such consistency is
comparable to the consistency of the optimality of LLM-generated texts.

1 Key Information to include
• Mentor: John Hewitt
• Sharing Project: CS 238 (mostly not presented in this report)

2 Introduction

Models such as OpenAI’s GPT-3 and Google’s LaMDA (Thoppilan et al., 2022) have demonstrated
the ability to generate impressively coherent and on-topic texts across various domains, from
education, to healthcare, to engineering. While they can be immensely useful, they can also be
destructively used to complete student assessments, create and propagate fake-news articles, spam,



and scams, provide misleading or false information (intentionally or not); these deleterious use-cases
extend wherever the use of LLMs is of relevance. Methods to detect LLM-generated text can be
immensely useful in guiding fruitful use of LLMs, be it as a tool to filter spam, a cheating detection
mechanism, or even just a sanity check on the trustworthiness of a piece of text. Though there are
many reasons to have a computational approach to LLM-generated text detection - and these have
been widely discussed and agreed upon - the chief concern is that humans have been demonstrated to
be only slightly better than chance at identifying LLM-generated text (Gehrmann et al., 2019). This
advantage will only deteriorate as LLMs continue to improve.

Current methods can be broadly categorized into supervised approaches, wherein a pre-
trained LLM is fine-tuned on the specific task of classifying texts into “LLM" or "human"-generated,
as well as non-supervised approaches, wherein white-box methods such as the thresholding of
statistical measurements like entropy are used to accuse a piece of text as LLM-generated (Gehrmann
et al., 2019). Non-supervised / zero-shot approaches are particularly interesting because they don’t
need compute-intensive fine-tuning, are not susceptible to training data biases in the ways that
supervised approaches typically are, and also because they have the potential to reveal interpretable
characteristics about the nature of LLM-generated texts, in comparison to human-written ones.

Zero-shot approaches typically rely on statistical features; as a result, the challenge is in
extracting as much signal as possible that could discriminate a piece of text between LLM
and human-generated. Earlier methods have relied on thresholding some measure based on
the model’s assessment of word / token log-probabilities (e.g. average log-probabilities, word
likelihood ranking, entropy, etc.), but those “absolutist" methods are inherently constrained
in performance because it fails for texts that contain predominantly high-probability or low-
probability words (due to the nature of the content) because both LLM and human-generated
texts will be high or low-probability respectively. Other improvements, most notably DetectGPT
(Mitchell et al., 2023), address this issue by using an LLM to sample random perturbations
of the text - variants of the original text, but with some tokens swapped out in exchange for
different sampled tokens - and comparing the discrepancy between the mean perturbation
likelihood and the original text likelihood, as measured by yet another LLM (the scoring LLM).
Because this derives from the idea that LLM-generated text is more “relatively optimal" than their
local neighborhood of texts than human-generated text, it normalizes for the text’s inherent likelihood.

DetectGPT is a large conceptual improvement and performs extremely well when the scor-
ing LLM is the same as the source LLM (the LLM that was used to generate the text, if it was
LLM-generated at all), but performance drops off considerably if they differ, which we may
intuit as due to probability-scoring discrepancies between models. Given the proliferation of
LLMs, it is increasingly impractical to have different detecting models watching out for dif-
ferent specific source models, or even to know what the source model is, such as when it is proprietary.

We introduce a method based on the hypothesis that LLM writing is more “uniform" than
human writing. We investigate the consistency of a statistical measure (which we define later) across
different parts of a text, with the hypothesis that this statistic will vary significantly more across the
different partitions of a single piece of text if it’s human-written, compared to if it’s LLM-generated.
Because we look at the within-text variance of this statistical measure as computed by an LLM of
choice, rather than the mean, probability-scoring discrepancies between our chosen scoring LLM and
the source LLM could not matter as much. This “second-order" approach could do away with the
need for access or even knowledge to the very source LLM that we would like to detect.

3 Related Work

Zero-shot approaches have been thus far considerably well explored, with many of the earlier
methods relying on the idea that LLMs have been optimized to generate “convincing"-looking
text. Specifically, words (or tokens), which are generated have high likelihood of appearing in their
respective contexts, are constrained to be one of the k most-probable possible words the LLM could
choose at that spot in the text (Ippolito et al., 2020) and have lower entropy (Gehrmann et al., 2019),
and so on. These methods suffer from being “absolutist," as mentioned in Section 2. DetectGPT
(Mitchell et al., 2023) improves on the flaw of these “zeroth-order" approaches by incorporating
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information from the “local structure of the learned probability function around a candidate passage,"
in a sense comparing a text’s probability of occurring to the mean of that of any of the possible
nearby variants (perturbations) of the text. Their technique is also more nuanced as it incorporates
the finding that the probability curvature at LLM-generated texts tends to be negative while that of
human-written texts does not.

While they present a major conceptual and performance improvement with the use of a
“first-order" approach, DetectGPT keeps the soft requirement of knowing and using the very same
LLM that one wishes to watch out for. One may intuit this to be due to the discrepancies in probability
scores between different models. One LLM’s assessment of probability curvature at a point may well
be different from another’s at the same point, and by extension, so are their probability distributions.

We extend the idea of surveying the model’s probability function in the neighborhood of a
text as presented in DetectGPT, and empirically studying additional information that may exist in the
relationship between the characterization of said neighborhoods of various partitions of a text.

4 Approach

Above: each histogram is of a partition’s per-
turbed log-likelihoods. The black line is the
original partition’s log-likelihood.

Above: the hypothesized distribution of
σ2
Z,human (blue) and σ2

Z,LLM (orange), with
shaded regions corresponding to False Positive
and False Negative Rates.

1. For a piece of text x, we first segment it
into partitions of about 50 tokens, to pro-
duce partitions x(j), j ∈ [1, p], where
p = number of partitions for this text.

2. We then generate 50 perturbations
x̃(j,k), k ∈ [1, 50] of each partition by
randomly selecting 15% of words to
mask out and fill in with sampled gener-
ations from a mask-filling LLM.

3. We then score the log-likelihoods of
all the perturbed partitions as well as
the original partitions using a scoring
LLM such as GPT-2, denoting a log-
likelihood by log pθ(·).

4. Similar to DetectGPT, we approximate
these perturbation log-likelihood distri-
butions to Gaussian Distributions (i.e.
log pθ(·) ∼ N (·, ·)), and record the Z-
score of each original partition’s log-
likelihood (henceworth referred to as
simply “Z-score") with respect to its dis-
tribution of perturbed log-likelihoods.

5. We then calculate the variance of the
partition-specific Z-score, for the piece
of text. In our experiments, each text has
a human-written and a LLM-generated
equivalent, so we calculate the variance
for both: σ2

Z,human, σ
2
Z,LLM .

As per our hypothesis, if, within a piece of text,
across its partitions, the variance of partition Z-
scores is high, then we believe it was written by a
human. In notation, our hypothesis can be written
as: σ2

Z,human > σ2
Z,LLM . We measure the AU-

ROC score using these σ2
Z,human, σ

2
Z,LLM for

each story in our dataset.
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5 Experiments

We conducted experiments with the goal of looking for consistent differences between σ2
Z,human

and σ2
Z,LLM . If our hypothesis is true, we can perform thresholding on σ2

Z,test text and we will have a
competitive AUROC. For comparison, we also ran baseline experiments of other existing methods
(the aforementioned zero-shot techniques and DetectGPT) as well as a supervised method (Roberta
fine-tuned for text classification, (Liu et al., 2019)).

5.1 Data

For our experiments, we used 200 news articles from XSum (Narayan et al., 2018), 200 Wikipedia
excerpts from SQuAD (Rajpurkar et al., 2016), and 200 prompted stories from Reddit WritingPrompts
(Fan et al., 2018), three datasets DetectGPT was also evaluated on.

To generate LLM-written texts for each of these data-points, we took either the first 30 to-
kens of the human-written text (or, in the case of WritingPrompts, simply the story prompt),
prepended an instruction to it - “Write a story based on this prompt." - and called that our context. We
take the LLM-generated tokens that came as a responses to our context as the LLM-generated text.
We then remove the context from the original human sample and called that our human-generated
text. There was filtering such that each story was at least about 250 words, for a total of 600 stories
across the datasets.

5.2 Evaluation method

The evaluation method is simply the AUROC metric, which is the area under the Receiver Operating
Characteristic (ROC) curve. The ROC curve is a graphical representation of the trade-off between the
true positive rate (TPR) and the false positive rate (FPR) for different thresholds of a classification
model. We compute AUROC’s for benchmark methods including zero-shot DetectGPT and supervised
learning RobertaLarge. We additionally compute an AUROC for our method for every experiment
we run, representing a unique trio of dataset, LLM text generator, and LLM scorer. Averaging across
the datasets, we generate an 3x3 grid of AUROCs representing our approach’s performance on every
combination of text-generating LLM and text-scoring LLM. Lastly, we benchmark the AUROC grid
performace with the DetectGPT method on every segment.

5.3 Experimental details

5.4 Results

We compute baseline scores for zero-shot and supervised learning approaches and compare their
performance with ours. In the case of the zero-shot methods, these baseline scores come from
experiments where the text-generating LLM is the same as the text-scoring LLM. We see that our
method gives very weak performance relative to other zero-shot learning methods, many have which
have average AUROCs > 90 for all three datasets. Furthermore, the supervised learning detection
models RobertaBase and RobertaLarge perform extremely well on the data, the latter having an
average AUROC > .99 on all three datasets.

XSum SQuAD r/WritingPrompts
Detection Method GPT2 OPT-2.7 Neo-2.7 GPT-J Average GPT2 OPT-2.7 Neo-2.7 GPT-J Average GPT2 OPT-2.7 Neo-2.7 GPT-J Average

Log p 0.939 0.934 0.93 0.876 0.92 0.958 0.926 0.892 0.837 0.903 0.993 0.967 0.993 0.964 0.98
Rank 0.965 0.771 0.951 0.92 0.902 0.974 0.763 0.932 0.906 0.894 0.987 0.98 0.988 0.965 0.98

Log Rank 0.965 0.962 0.963 0.918 0.952 0.983 0.961 0.944 0.898 0.946 0.997 0.98 0.996 0.976 0.987
Entropy 0.521 0.455 0.538 0.567 0.52 0.515 0.467 0.565 0.563 0.527 0.247 0.356 0.141 0.221 0.241

RobertaBase 0.997 0.979 0.997 0.978 0.988 0.995 0.981 0.98 0.963 0.98 0.993 0.977 0.994 0.982 0.987
RobertaLarge 1 0.998 1 0.999 0.999 0.999 0.995 0.998 0.981 0.993 0.999 0.993 1 0.995 0.997
DetectGPT 0.976 0.93 - 0.916 0.941 0.969 0.897 - 0.782 0.883 0.985 0.991 - 0.876 0.95
Our method 0.556 - 0.591 0.633 0.593 0.538 - 0.568 0.533 0.546 0.486 - 0.445 0.507 0.479

Table 1: Comparison of our method with zero-shot and supervised baseline approaches using
AUROC scores.

We first address Table 3, which is the result when we run DetectGPT’s approach on individual
partitions, treating them as texts. The AUROC’s observed here are not as high as they reported
mainly due to truncated text lengths, but it serves as a basis comparison for Table 2 (our results).
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Scorer
Source gpt2-xl gpt-neo-2.7B gpt-j-6B

gpt2-xl 0.527 0.535 0.509
gpt-neo-2.7B 0.540 0.535 0.550

gpt-j-6B 0.531 0.558 0.558

Table 2: Our approach’s AUROC over the 3x3 combinations of text-generating LLMs and text-
scoring LLMs, averaging across all three datasets.

Scorer
Source gpt2-xl gpt-neo-2.7B gpt-j-6B

gpt2-xl 0.954 0.902 0.654
gpt-neo-2.7B 0.766 0.902 0.788

gpt-j-6B 0.530 0.538 0.814

Table 3: DetectGPT’s AUROC on each text segment over the 3x3 combinations of text-generating
LLMs and text-scoring LLMs, averaging across all datasets.

Table 2 illustrates that our method achieves low AUROC, but the AUROC does not decay
drastically in cross-model scenarios (off-diagonals) the way it does in Table 3. At times, we find that
DetectGPT performs even worse than our method (e.g. GPT-J scoring GPT-Neo-generated texts or
GPT2-XL-generated), showing that there is value in using such a “second-order" approach.

5.5 No distribution split between σ2
Z,human, σ

2
Z,LLM

The reason our method is not performative is the lack of a distribution split between σ2
Z,human and

σ2
Z,LLM , which we find very surprising. For example, below are the distributions of σ2

Z,human and
σ2
Z,LLM for 200 stories from the SQuAD dataset. We find this to be typical of all source LLM -

scoring LLM pairings and datasets. We explain this in greater detail and compare this to DetectGPT’s
method in the Appendix.

6 Analysis

6.1 Overall Insights

Our results clearly illustrate that there is perhaps not much signal to be gleaned from the variance of
partition-wise Z-scores of a piece of text. While we find it hard to believe that, in colloquial terms,
humans write with consistent “GPT-2-ness" (or “GPT-Neo-ness" or “GPT-J-ness") over the whole

5



length of the text, in that our “GPT-2-ness" doesn’t vary too much over the whole text, the statistical
experiment we’ve run demonstrates that this is indeed the case.

6.2 Alternative Methods

We also tried looking at various statistical measures instead of σ2
Z . A notable example is to use

maxsegments in text(Z)−minsegments in text(Z), what we call the Z-span of a text, but reasoned that the
extra few AUROC points gained do not outweigh the added susceptibility to outliers. That said, outlier
susceptibility could be a desirable feature in another similar approach, as outliers could indicate
the presence of more than one author; that is outside the scope of this paper. As a comparison, we
illustrate the distributions of σ2

Z (left) versus spanZ (right):

Though the two metrics look distributionally different (seemingly log-normal versus binomial), it
does not impact the separation between the LLM and human distributions.

7 Conclusion

Though our method does not offer a compelling solution to the model-agnostic zero-shot
text-detection problem, we were nonetheless able to statistically study LLM-generated and
human-generated texts and arrive at a very surprising result.

We reiterate that even though supervised detectors may seem to be an attractive solution, as
LLMs proliferate, we have less and less control over the factors that significantly impact the
performance of such solutions, or even the design of one, such as training data skews, model
class, and compute. Statistically analysis of LLM likelihood functions seems to be a promising av-
enue of research that could arrive at second-order solutions that circumvent these model dependencies.

As future work, we note that in exploring our approach, we observe the impact of the
LLM likelihood function (and by extension, its sampling strategies) on our ability to design
discriminators. These include the hyperparameters of nucleus-sampling, beam-search, and so on, that
were out of scope of this project to fine-tune. However, there is good reason to believe that research
on how they may be used to create a good discriminating strategy could be fruitful. Another avenue
to continue exploration is to investigate the impact of text length. While it is intuitive that longer text
lengths will increase the discriminating power of any detector, it is not statistically clear that it is true.

Code for our methods, data, and experiments will be found at here in the future.
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A Appendix (optional)

Comparing discrepancy (Z-score) distribution separations between scorer-source pairs

If source LLM = scoring LLM, the split is clear, meaning that baseline (DetectGPT) will work. For
example, if we look at gpt-neo-2.7B scoring gpt-neo-2.7B partitions:

Variances look the same though:

However, if source LLM ̸= scoring LLM, there is often no split, meaning that baseline (DetectGPT)
often will not work. For example, if we look at gpt-j-6B scoring gpt-neo-2.7B partitions:

Variances looks the same as before; no split:
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