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Abstract

Given the limitations of pre-trained language models for open-domain question
answering, research has shown improved performance using information retrieval
of relevant context. While much work has focused on how to retrieve the most
relevant information, we focus on how best to incorporate the retrieved contextual
information by exploring three frameworks: 1) Input Augmentation — concatenating
the question with the context, 2) Embedded Context Injection — injecting context
embeddings between the model encoder and decoder, and 3) Decoder Token
Upsampling — increasing the sampling probability of tokens in the context. We
evaluate and compare these frameworks across various context types by assessing
the accuracy of generated answers and logical consistency between generated
answers and provided context. We find that input augmentation and decoder
token upsampling outperform our baseline model without context. However, these
methods deteriorate with longer contexts whereas embedded context injection is
quite robust across context types, indicating potential for a model that combines
these frameworks.
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2 Introduction

Despite containing significant amounts of knowledge and performing quite well on sophisticated
knowledge-based tasks, pre-trained language models can still confidently produce inconsistent and
inaccurate answers (Jiang et al.| 2021)). Recently, this can be seen by Google’s Bard model making
a factual error about the James Webb Space Telescope in its first demo. Furthermore, given the
abundance of existing documents and facts, it seems unlikely that pre-trained language models with a
fixed number of weights can store and retrieve these facts (Guu et al.l 2020).

Previous studies have focused on developing information retrieval methods to improve the perfor-
mance of pre-trained language models on question answering (QA). Many of these retrieval methods
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focus on retrieving and ranking the most relevant information but understanding the best way to
utilize this information remains an important question.

In this work, we experiment with different approaches to incorporate contextual information to
improve the accuracy of pre-trained language models for QA and ensure that generated answers
are consistent with the given context. Our methods involve 1) incorporating retrieved context as
input alongside the question, 2) performing embedded context injection between the model encoder
and decoder, and 3) modifying the sampled probability distribution P(#) to increase the likelihood
of sampling tokens in the context. We evaluate these methods on three types of contexts (phrase,
sentence, paragraph(s)) across two metrics, an F1 score to measure the accuracy of generated outputs
compared to ground truth answers and a natural language inference (NLI) model-based evaluation of
the logical consistency between answers and the provided context.

3 Related Work

Several studies have explored different methods of retrieving or generating contextual information to
augment pre-trained language models for question answering. |[Petroni et al.| (2020) compares context
retrieved from an oracle (always contains related true information), an off-the-shelf information-
retrieval system, and an autoregressive language model, finding that the context from the oracle and
information-retrieval system help outperform the standard QA model. |Guu et al.[(2020) train a latent
knowledge retriever to retrieve context from a corpus that outperforms other context retrieval methods
by a significant margin. In both papers, the retrieved context is appended to the question before being
passed as input to the QA model.

While the above research clearly demonstrates the potential of incorporating relevant context into
QA models and investigates how best to retrieve that context, research on how best to use retrieved
context remains comparatively under-investigated. While concatenating questions and context before
passing input to the models is a popular approach, the max token length of models like BERT (512
tokens) limits the amount of context you can utilize (Devlin et al., 2018]). Furthermore, while these
papers show that retrieved context can help achieve better F1 scores, it is unclear how effectively
context is being used in generating answers and if there is room for improvement in this regard.

As such, we focus on comparing various methods of incorporating context into pre-trained QA
models across three different context types and two metrics. In addition to measuring F1 scores
to measure the accuracy of our answers, we also leverage NLI models to measure the consistency
between generated answers and provided context. This serves as a proxy to understand how well the
model is leveraging the given context and was loosely inspired by Mitchell et al.[(2022)) which uses
NLI to maximize the consistency of several generated answers on a batch of questions.

4 Approach

4.1 Baseline

Our baseline model is an off-the-shelf T5-small pre-trained on the training set of the Natural Questions
(NQ) dataset to perform closed-book question answering (Raffel et al., 2020; [Kwiatkowski et al.,
2019). We evaluate the performance of this model using F1-score for comparison against our context
incorporation methods. We will discuss these metrics more in-depth in the evaluation method section.

4.2 Experimental Frameworks

4.2.1 Input Augmentation

Our first method to incorporate contextual information is input augmentation, which fuses the question
and the retrieved context together before passing it into the encoder of the T5-small baseline model.
Mathematically, this can be represented as creating vector 2’ € R™*" by concatenating the tokenized
context vector ¢ € R™ and the original tokenized input vector x € R™. Figure 1 visually depicts this
setup.
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Figure 1: Input Augmentation Method

We evaluate this method using zero-shot learning, where this concatenated representation is used at
test time with no fine-tuning. We also train and evaluated a fine-tuned model using these concatenated
representations.

4.2.2 Embedded Context Injection
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Figure 2: Simplified architecture of modified TS5 model with context injection

To incorporate context at a deeper layer in model, we examine dense context injection between the
encoder and decoder blocks. First, we vectorize our context using two different embeddings, word-
averaged GLoVe embeddings and sentence-averaged SentenceBERT embeddings. For reference,
we use off-the-shelf 300-dimension GloVe embeddings that were pre-trained on Wikipedia 2014 +
Gigaword 5 and 768-dimension SentenceBERT embeddings from the multi-qa-mpnet-base-dot-v1
model, a finetuned Sentence Transformer model from HuggingFace that had the highest performance
on semantic search (Reimers and Gurevych, |2019; |Pennington et al., [2014]).

Next, we pass our context embeddings along with our final hidden state from the T5-small encoder
to our injection layer as seen in Figure 2. The injection layer consists of individual blocks which
concatenate each vector in the final hidden state z € R? with the context embedding ¢ € R™ and feed
this concatenated vector into an MLP neural network which outputs an updated hidden state vector
2’ € R? to feed into the decoder. We experiment with different numbers of layers for this neural
network, ranging from 1 to 7 fully-connected layers with each layer, except the last, followed by a
ReLU non-linearity. Additionally, each linear layer received an input of dimension d + n % and
an output of dimension d + n %, where [ represents the linear layer number, and /N represents the
total number of layers in the given MLP architecture. Using the GLoVe embeddings, we test with 1,
3, and 5 layers in our injection block. Since the SentenceBERT embeddings are richer representations

of the context, we tested with 3 and 7 layers.



4.2.3 Decoder Token Upsampling
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Figure 3: Simplified depiction of the token upsampling framework

In our final approach, we modify the decoding process of our model based on the given context as
shown in Figure 3. Specifically, before the generation of each new token, we modify the baseline
model decoder’s sampling distribution by multiplying the probability of tokens by 10 if included in
the generated context. Mathematically, at time step ¢, this can be represented as taking our original
distribution P(y:|{y<+}) and creating a new upsampled distribution P’(y:|{y<:}) where P’ (y; =
wi{y<:}) = P(yr = w|{y<}) forallw ¢ C'and P'(y, = w[{y<:}) =10 x P(y: = w|{y<,}) for
all w € C where C is the context and V' is the entire vocabulary. P’(y:|{y<:}) is then scaled by a
multiplicative factor to sum to 1. Finally, we sample our token from this upsampled token distribution
and proceed to the next token, following the same process, until we are done. The intuition behind
this method is that if our answer is included in the context, then increasing the probability that those
tokens get sampled should help produce better answers.

S Experiments

5.1 Data

We use the Natural Questions dataset which consists of real queries to the Google search engine
(Kwiatkowski et al., [2019). For each question, an annotator is given a related Wikipedia page
and annotates a long answer and a short answer to this query if present. For the open-domain
question-answering setup, we use the annotated short answer as the answer to the query and set our
retrieved context to either the short answer (short context), long answer (long context), or the sentence
containing the short answer (encapsulated context). There are 307,373 training examples that we
use to fine-tune our pre-trained TS5 model and 7,830 development examples of which the first 5,000
examples are for testing and the remaining examples for validation. We emulate the preprocessing
from [Mitchell et al.|(2022) by removing all questions without annotated answers such as those with
only True/False outputs.

5.2 [Evaluation method

Our quantitative evaluation criteria is two-fold. We first evaluate the F1 score of the model outputs
compared to the annotated short answers, the standard metric for measuring QA accuracy. The F1
score is calculated as the harmonic mean of the precision and recall scaled by 100. Precision is
calculated as the proportion of common tokens in the output and gold standard answer out of the
output token count (precision) while recall is calculated as the proportion of common tokens in the
output and gold standard answer as out of the answer token count (recall).

In addition, we use an NLI system, RoOBERTa-Large NLI model, pre-trained on a combination of
well-known NLI datasets: SNLI, MNLI, FEVER-NLI, ANLI (R1, R2, R3) to evaluate if our model
outputs are logically aligned with the injected contextual information. We do this by computing
entailment probability (ranging from O to 1) and reporting the NLI entailment score as this probability
times 100 for each output-context pair (Liu et al., 2019). The F1 scores will be computed on all
models while NLI alignment scores will only be computed for models with context use as it will
be leveraged to determine how the stage and context type impacts alignment of output with the
provided information. Furthermore, particular experimental variables, namely the number of layers



and embedding type in the injection models, will be investigated for impact on output-context NLI
alignment.

Additionally, we perform a qualitative analysis by determining examples that have differing F1 and
NLI scores across the experimental models. These examples are then investigated to determine the
impact of provided context, the possibility of context information "shocking" and deteriorating the
model, and any other qualitatively determinable effects across test data points.

5.3 Experimental details

All experiments were performed using the pretrained T5-small baseline model and evaluated on
the test set across the three different context types (short, encapsulated, and long). We define short
context as the short-form gold answer, encapsulated context as the sentence in which the short-form
answer is contained, and long context as one or more paragraphs from the associated Wikipedia
article containing the answer.

For the fine-tuned input augmentation model, we train for 5 epochs with all layers unfrozen. For
each embedded context injection model, we freeze every layer except for the last two blocks of
the encoder, the injection block, and the first two blocks of the decoder and fine-tune for 3 epochs.
More generally, all fine-tuned models are trained with a batch size of 16, the AdamW optimizer,
and perform standard gradient clipping at the end of each batch. We utilize standard cross-entropy
loss and teacher forcing during fine-tuning. To set our hyper-parameters such as learning and set of
unfrozen layers, we perform cross-validation on the validation set.

5.4 Results

In terms of F1 score accuracy, we see from Table 1 that for short and encapsulated contexts, input
augmentation techniques (Finetuned, Zero Shot) and upsampling outperform the TS5 Baseline. Par-
ticularly, on short contexts the finetuned input augmentation model outperforms the TS5 Baseline
by over 27 F1 points but falls short of the T5 Baseline on encapsulated contexts. The Zero Shot
model, though, surpasses the TS baseline on short and encapsulated contexts by over 8 points and the
upsampling method exceeds the baseline by 6 points with short context performance and marginally
surpasses it with encapsulated context.

We see amongst the experimental methods (non-baseline), for long contexts, the GloVe 3-layer
injection model performs with the highest accuracy, but does not outperform the T5 baseline.

Short Encapsulated Long
Model F1 NLI F1 NLI F1 NLI
T5 Baseline(Raffel et al.,[2020) 24.17 24.17 24.17

Zero Shot Input Augmentation 3496 39.10 32.19 44.50 17.64 43.49
Finetuned Input Augmentation  51.69 53.14 19.94 3239 6.74 28.98

GloVe 1-Layer Injection 19.70 21.62 389 13.11 142 1690
GloVe 3-Layer Injection 8.82 17.02 2228 27.68 2236 3297
GloVe 5-Layer Injection 21.82 2268 22.15 2756 2222 3240
BERT 3-Layer Injection 2176 2239 1991 2648 20.05 3494
BERT 7-Layer Injection 20.09 22.00 20.03 2624 19.74 30.75
Upsampled 30.81 3094 24.19 31.23 1254 3494

Table 1: F1 scores and NLI Alignment scores across Input Augmentation, Injection, and Upsampling
model techniques on short, encapsulated, and long contexts in comparison to the TS Baseline model.
Note, the TS5 Baseline does not utilize contextual information and, therefore, does not have multiple
F1 scores or any NLI alignment scores by context.

We also observe in Table 1, the increase of layers from 1 to 5 in the injection block of the GloVe
injection model leads to signficant improvement in performance as the GloVe 5-Layer injection model
produces higher F1 scores for all 3 contexts than the GloVe 1-Layer injection model. However, the
BERT injection models display nearly the same accuracy performance despite being of 3-layers and
7-layers. Further, as seen in Figure 5, the best-performing BERT and GloVe models produce similar
F1 scores across contexts despite the different embeddings used for injection.
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Figure 4: NLI Alignment score and F1 score scatter plot demonstrating correlation relationship.

From Figure 4, we also note a relatively strong correlation between NLI alignment score and F1
Score. This trend is consistent for short, encapsulated, and long contexts. This is corroborated in
Table 1, as the highest F1 accuracy models for short and encapsulated contexts also produce the
highest NLI alignment scores.

In Figure 5, we find, despite performing far better than all other experimental models, the finetuned
Input Augmentation model’s performance deteriorates significantly with longer contexts. Conversely,
GloVe 3-layer, GloVe 5-layer, BERT 3-layer, and BERT 7-layer Injection models all produce more
robustness for longer contexts. Particularly, the GloVe 5-layer and BERT injection models output
consistent accuracy across all context sizes. The variability in performance are moderate in zero
shot input augmentation and upsampling models, as seen below, as they show less volatility than the
finetuned or GloVe 1-layer models but more than the larger injection models.

6 Analysis

6.1 Evaluation Breakdown

Our evaluations show that the incorporation of context can improve generated answers, as measured
by F1 scores and an NLI evaluation system. The input augmentation and token upsampling framework
had the best performance, while context injection shows promise if optimized further. The length
of context also had a large impact on the performance of the input augmentation and upsampling
methods, with models utilizing short and encapsulated context having much higher F1 scores than
those using long-form context. This is because the input augmentation method can lead to the
question embedding being drowned out by the long context, and the token upsampling method can
upsample noisy words from the long-form context at key token indices.

Our findings also revealed a positive correlation between F1 and NLI entailment scores, highlighting
that contextual incorporation methods improve answer self-consistency as long as they produce accu-
rate outputs. Given this finding, we believe combining ideas from our context injection methodology
and input augmentation framework could help improve accuracy and self-consistency.
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Figure 5: F1 score distribution across models and contexts.

Focusing on our injection technique, we found that using an injection block with more layers,
particularly for GloVe, leads to improved consistency and performance. This is likely due to the fact
that a single layer between the encoder and decoder of the model can "shock" the model with the
sudden change introduced by concatenation, while a deeper neural network allows for more intricate
fusing of the context embedding and the encoder output state. Although, BERT embeddings tended
to produce greater robustness and performance for short-contexts than GloVe embeddings do, we
surprisingly found the embedding type makes less of an impact when comparing the best-performing
injection models: GloVe 5-layer and BERT 7-layer.

Another finding was that our injection framework was robust to context type. This can be seen when
examining the F1 and NLI performance across the GLoVe and BERT injections with three or more
layers. Thus, this method shows promise for incorporating longer contexts, which was shown to be
an issue for the other methods.

6.2 Qualitative Analysis

Across our experiments, we identified four interesting classes of examples to analyze. Table 2 in
the Appendix further describes these four common themes and provides concrete examples for each
across all of our experimental approaches. These four classes included gold standard examples that
were modified from incorrect to correct by the injection alongside 3 error classes that encompassed
the majority of errors seen. The three error classes are graded from slightly incorrect to majorly
incorrect to gibberish.

An example of a "general context understood, but incorrect answer" error is if given the question
"Who is recognized as the founder of Islam?", the model outputs "Ali" (the successor to Muhammad)
instead of Muhammad. Most errors, especially for the upsampling and augmentation methods, fell
into this category. This makes sense given that the TS5-small baseline model is pre-trained on a large
corpus of text and has a good understanding of the question answering task, but a short piece of
context may not be enough to correct model outputs.

Under the "shocked and lost answer" class we see examples like the following, where the question
asks "Who is written in the book of life" and the generated answer is "Life". A smaller portion of the
errors fell into this category, with the majority of these errors coming when long form context was
injected with a shallow, linear injection block. This makes sense since the modified T5 is not able to
effectively incorporate the new context which corrupts the embedding that is passed into the decoder.

Lastly, a very small number of errors fell into the "shocked and gibberish" category. Depending on
the model setup, these errors either took the form of consistently producing a single character or



word/phrase as output. For example, for the fine-tuned input augmentation method, when prompted
with the question "Who made the most free throws in NBA history", the generated output is "aside".
It is hard to mitigate this class of errors with our input augmentation method given the long form
context we are providing to it. However, we can address this issue in our injection framework by
creating a more complex representation of our injection and can address this in the token upsampling
representation by not multiplying the probabilities of filler tokens that may match the context. Overall,
this analysis highlights areas in which context can improve answer generation and areas in which the
answers still fall short.

7 Conclusion

This project investigates various methods of incorporating context to pretrained models for question
answering. In doing so, we found input augmentation (Zero-Shot and Finetuned) and upsampling
methods are able to outperform the baseline model. However, we find, in comparison to the baseline,
these models deteriorate with context length. Relative to these input augmentation techniques, we
find BERT Injection Models and GloVe Injection Models with 3 or more layers in their injection
produce more robust and consistent performance with longer contexts. We also show that adding
layers to the injection block generally improves performance. Therefore, there is potential for a
model that uses these two in conjunction with a context-length threshold in order to produce a stable
model that provides potential improvements in short-context performance.

With respect to NLI scores, we found there is a relatively strong positive correlation between NLI
alignment scores and F1 scores. This suggests that techniques that produce outputs that better align
with the contexts at shorter and longer context lengths could produce better performance. Thus, a
model that takes in contexts from dataset, Wiki, Google, etc. could frame itself to use the baseline or
an experimental model and continue to regenerate until an NLI alignment level is met to generate
potentially high accuracy outputs.

As discussed, using combinations of these methods to create a best-performing ensemble model could
be a fruitful future investigation. Due to limitations in compute units and resources, we were unable
to test such combination ensembles. Further, under less time and compute restraints, we would aim
to make use of other forms of context such as unrelated, adversarial, and generated contexts which
could lead to additional insights.

Although these methods are applicable to various transformer models, the experiments conducted
were limited to the TS model. Additionally, contexts were derived from a curated dataset as opposed
to in conjunction with a generalizable retrieval system, making it harder to generalize these results to
contexts from real information retrieval systems.
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